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For each positive integer » = 1,2, -+, it is shown that
there is an (n -+ 1)-dimensional acyclic LC* ! continuum X,
containing an n-dimensional sphere which is not the fixed
point set of any self-map of X,.

1. Introduction. A subset A of a topological space X is called
a fized point set of X if there is a (continuous) map f: X— X such
that f(z) =« iff xe A. If X is Hausdorff, then A is closed, and,
clearly, every retract of X is a fixed point set of X. It is possible
that a space X may have the property that each of its nonempty
closed subsets is a fixed point set of X. The problem of determining
which spaces have this property, called the complete itnvariance
property by L. E. Ward, Jr. in [5], has been investigated by H.
Robbins, Helga Schirmer, and L. E. Ward, Jr. Some spaces known
to have the complete invariance property include #n-cells [1], den-
drites [2], convex subsets of Banach spaces [5], compact manifolds
without boundary [3], and all compact triangulable manifolds with
or without boundary [4].

The general question as to what properties a space must satisfy
to insure that it has the complete invariance property has not been
resolved. In fact, in [5, p. 558] L. E. Ward, Jr. asks the following
question.

Does every Peano continuum have the complete invariance
property?

The purpose of this note is to show that even acyclic Peano
continua which possess higher order local connectedness need not
have the complete invariance property. Indeed, for each positive
integer w=1,2, ---, we give an example of an (n + 1)-dimensional
acyclic LC™' continuum X, which fails to have the complete in-
variance property. Moreover, X, contains an n-dimensional sphere
which is not a fixed point set of X,.

2. Notation and the construction of X,. We shall let E”
denote Euclidean #n-dimensional space, and we shall consider E™ to
be canonically imbedded in.E" if m < n. The closed unit ball in
E""* shall be denoted by B"** and the boundary Bd B*** of B**!
shall be denoted by S™.

Consider the rectangle in E* C E"** with vertices (1, —1, 0, ---0),
0, —-1,90,..-,0), (0,1,0,---,0), (1,1,0, ---,0). Let D denote the
closed disk consisting of this rectangle together with its interior in
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E?, and let A denote the segment in Bd D with endpoints
(0, —1,0, ---,0)and (0,1, 0, ---, 0). We shall let C denote the closure
of the curve in E* whose equation is given by y = sinz/z for 0 <
r < 1.

Let {By™|1L <t < «} be a disjoint collection of (n -+ 1)-dimen-
sional balls in E*** satisfying the following properties.

(1) Uicicwo Br*' is homeomorphic to B"** X [1, ) under a ho-
meomorphism which sends Bp™ onto B™" x {t} for each ¢ in the
half-open interval [1, ).

(2) lim,..d(B?™") =0, where 6(Br*") denotes the diameter of
B,

(3) For each t in [1, o),

Brn B = {(11_ sin7tt, 0, -« -, 0)} .

Let S7 = Bd By*:, If J is an interval in the real line, we define

By =JB" and S;=USr.

ted ted

Definition. For n =1, 2, ---, we define
X,,,, = .D U S’[’LLOO) .

Essentially, S} ., is obtained by taking a cone over an n-sphere,
removing the vertex, and then winding the resulting tube of n-
spheres in a “sin 1/2” fashion in E"** so as to converge to the limit
interval A. This procedure is carried out so that the intersection
of E* with the closure of S}, ., is precisely C. The disk D is then
attached to the closure of S7, ., along C to obtain X,.

3. The properties of X,.

Property 1. FEach X, is an (n + 1l)-dimensional acyclic con-
tinuum.

Proof. By acyclic we mean that X, has the Cech cohomology of
a point. Since X, is clearly an (n + 1)-dimensional continuum, we
need only show that it is acyelic. But

X, = (DU Sk U B

and, for each ¢, DU B[, is a deformation retract of DU S{, ., U
Brit,. Since DU B, is contractible, each of the spaces DUSE ., U

rtl, is contractible. Therefore, by the continuity axiom for Cech
cohomology, X, is acyclic.
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Property 2. Each X, is LC"™ at points of A, and locally con-
tractible elsewhere.

Proof. Clearly, every point p in X, — A has a neighborhood
which is finitely triangulable, and therefore X, is locally contractible
at p. If pe A, then p has a compact neighborhood consisting of a
closed disk K and infinitely many disjoint cylinders of the form
S? i1, each of which intersects K in an arc. It then follows that
X, is LC** at »p.

Property 3. Sr is not a fixed point set of X,.

Proof. Since S? is not contractible in S}, .,UA4 and (Sp.,UA4)N
D = C, it follows that S? is not contractible in X,.

Now suppose that f: X, — X, is a map whose fixed point set is
precisely S*. If f(A)cC A, then f has a fixed point in A. Since this
is not possible, there is a point p in A such that f(p)e X, — A. Let
V be a contractible neighborhood of f(»)in X,, andlet 8: VxI—V
denote a homotopy which deforms V to a point. Since f is con-
tinuous at p, there is a neighborhood U of p in X, such that
f(U)YcV. Then, for some 7 in [1, ), we have S* cU. Let a: S x
I— S ., be a homotopy which deforms S? onto S7.

Define a homotopy H: S* x I— X, by

(flaz, 28)) if 0=<t=3}),

B0 = o(atw, 1), 26 — 1), (f3=ts1).

It is easy to check that H is a homotopy which deforms S to a
point in X,. This contradiction shows that S” is not a fixed point
set of X,.

4. Problem. Let us restrict our discussion to the class of com-
pacta. Then all the examples of spaces having the complete in-
variance property which are mentioned in the introduction of this
paper are ANR-spaces. In fact, the first three examples are AR-
spaces. In view of this, it seems appropriate to suggest the fol-
lowing problem.

Does every AR-space (ANR-space) have the complete invariance
property?
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