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Let k& be a differential field of characteristic 0, and @
be a universal extension of %. Suppose that the field of
constants &, of & is algebraically closed. Consider the follow-
ing differential polynomial of the first order over % in a
single indeterminate y:

Ty) = ) —i8w;x); 2€k; 2+0;

here
S(y; £) = y1 — )L — £*y) ;
cek; £2#0,1; & =0.
Take a generic point 2z of the general solution of 7. Then,
z is transcendental over %, and %(z, 2’) is called a differential
elliptic function field.

We prove the following:

THEOREM. Let k(z,2’) be a differential elliptic function
field over k. Then, there exists a finitely generated differen-
tial extension field k* of % such that the following three
conditions are satisfied:

(i) z is transcendental over k*;

(ii) the field of constants of k* is the same as k,;

(iii) there exists an element { of 2 such that k*(z,2’) =
k¥, ¢) and (') = 4S(C; ¥) with the same modulus as «.

Matsuda [3] gave an example of a differential elliptic function
field such that k =k and we can not take k& as k* (cf. [5]).

ReEMARK. Matsuda [3] gave a differential algebraic proof of the
following theorem essentially due to Poincaré: Suppose that a dif-
ferential algebraic function field K over an algebraically closed
coefficient field % is free from parametric singularities. Then, K is
a differential elliptic function field over k if the genus of K is 1.

The author wishes to express his sincere gratitude to Dr. M.
Matsuda who presented this problem and gave kind advices.

1. Two lemmas, The following theorem is due to Kolchin [1]:

LEMMA 1. Let 3 be a perfect differential ideal in the differenti-
al polynomial algedbra k{y}, and let J be a differential polynomial
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i k{y} which is not in Y. Then, 3 has a zero 7 in 2 such that
J) # 0 and the field of constants of k(%) is k.

We shall prove the following:

LEMMA 2. Let F be an element of k{y} of the first order and
let & be a zero of F which 13 transcendental over k. Suppose that
F is algebraically irreducible over the algebraic closure k of k, and
that the field of comstants of k(&) is k,. Then, there exists a mon-
singular zero 7 of F such that & is transcendental over k{(n) and
the field of constants of k{n) is k.

Proof. Let 7 be a generic point of the general solution of F'
over %{&y. Then, 7¢k{ty and 7¢k. Hence, £¢k{p). By Gourin’s
theorem (cf. [4, p. 49]) both £ and 7 are generic points of the general
solution of F over k. Hence, there exists an isomorphism of k(&)
onto k(n) over k. Therefore, the field of constants of k(%) is k,.

2. Proof of Theorem. We shall prove that there exists a non-
singular zero w of T such that z is transcendental over k{w) and
the field of constants of k{w) is k,. First we shall assume that the
field of constants of k<{z) contains properly k,. Let 3 be the prime
differential ideal in k{y} associated with the general solution of 7.
Then, the separant 2y’ of T does not belong to 3. By Lemma 1,
there exists a nonsingular zero w of T such that the field of constants
of k{(w) is k,. Suppose that z is algebraic over k{w). Then, the
field of constants of k{z) is contained in k,, since k{z> S k{w). This
contradicts our assumption. Hence, z is transcendental over k{w).
Secondly, let us assume that the field of constants of k{z) is the
same as k,. Then, there exists a nonsingular zero w of T such that
the field of constants of k{(w) is k, and z is transcedental over k{w)
by Lemma 2, since T is algebraically irreducible over .

We shall denote k{w) by k,.. Let us define an element a of

k.(z) by
a = {B(z, w) — 2A"'w'2'}/ Az, w)*,
where

Ay, ¥:) =1 — £y,
By, ¥) = v:(1 — %,)A — £y,) + y,(1 — y)A — £y,) .

The polynomials A, B and S satisfy a relation:
(1) B(y,, 4o = 4S(y)8(¥:) + (¥, — 9.’ AW, 9.)°
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which is verified in the following:

B(?/u yz)z - 4S(y1)S(y2)
= {y.y: " S(W:) + vy S(WOF — 4S(y.)S(v.)
= {y.w:'S(y:) — vy S(y,)F
= {y.(1 — ¥ )1 — £y) — (1 — y)A — £*y)f
= {?/1 — Y — ’Cz(yfyz - y1y§)}2
= (¥, — ¥>AY, ¥, -
By the definition of a
{A(z, w)a — B(z, w)} — A (w' )@Y =0.
Since w and 2z are solutions of T' = 0 and (1), the left hand side is

{A(z, w)a — B(a, w)}* — 4S(w)S(z)
= A(z, w)'a’ — 24(z, w)*B(z, w)a + B(z, w)* — 4S(w)S(z)
= Alz, w)‘d2 — 24A(z, w)B(z, w)a + (z — w)A(z, w)?
= Az, w){A(z, w)a® — 2B(z, w)a + (2 — w)’}.

Since A(z, w) = 0, we have an algebraic relation over %k, between «
and z:

(2) Az, w)a® — 2B(z, w)a + (z — w)* = 0.
The left hand side of (2) is

(1 — gzw)a® — 22(1 — w)A — £*w) + wld — 2)(1 — £%2)}a

+ (z — w)

= @} (k'2*W® — 2£%2w + 1)
— 20[*w?* + {£*w* — 2(1 + Hw + 1}z + w]
+ 2' — 2zw + W

= ZXK'*w® — 2£%aw + 1)
— 2z[wa? + {Fw® — 2(L + Hw + 1lla + w]
+ o — 2wa + Wt .

Hence we have a relation equivalent to (2):
(3) Aa, w)z* — 2B(a, w)z + (6 — wy¥ =0.

Since z is transcendental over k,, @ is transcendental over %, and
satisfies [k(a, 2): k(z)] = 2. For the discriminant of (2) is 16S(z)S(w)
by (1). We have k,{z) = k(a, 2). We shall prove that a is a constant
(cf. [2, p. 805]). Let us take an element a of k& such that a? = 4/n
and define a new differentiation signed by the dot in k<a, z) by
% = ax’. Then,
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(4) a = {B(z, w) — 27wz} Az, w),
(2 = 48(z) , (1) = 4S(w) .
In what follows, we denote A(z, w) and B(z, w) by A and B respec-
tively for simplicity. Differentiating both sides of (v)* = 4S(w), we
have 2ww = 4S,% and w = 2S, since i = 0. Hence,
B, — w/2= B, — S,
= (1 — w)(1 — w) + w{2c%2 — (1 + &%)}
— {8g2w? — 2(1 + £Hw + 1}
= — 25w + 2£°wz
= 28°w(z — w) .
On the other hand
24,B — ()4,
= —2'wB + 42wl — w)(1 — K*w)
= 2£*w{22(1 — w)(1 — £*w) — B}
= 2w{z(1 — w)1 — £F*w) — w(l — 2)(1 — £%)}
= 268°w(z — w)A .
Therefore
A(B, — w/2) = 2A,B — (W)*4, = 2c*w(z — w)A .
Similarly we have
A(B, — 2/2) = 24,B — (£)A, = 2k%2(w — 2)A .
From the above equalities and (4)

APa = 2{A(B, — w/2) — 2A,B + (w)A,}
+ W{A(B, — z/2) — 24,B + (2)A,}
=0.

Hence, ¢ = 0, and o' = 0.
Let k, denote k() and b be an element of %,{z)> defined by

b = {A(e, w)*z — B(a, w)}/(aw’) .
Then, we have b = S(a). In fact from (1) and (3) we have

{A(a, wyz — B(a, w)f = B, w)’ — (@ — w)'A(e, w)’
= 48(a)S(w) ,

and (aw’)® = 4S(w) since w is a solution of T = 0. Hence,. kl{z) =
k(a, b) because [k,(2): k,(a)] = [ka, b): k.(a)] = 2 and b€ k,z).
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By Lemma 1, there exists a nonsingular solution v of (¥')* = 4S(%)
such that the field of constants of k,{v) is k,. Since @ is a constant,

trans. deg k*(a)/k* = trans. deg k,(a)/k, = 1,

where k* = k,(v) (cf. [2, p. 767]). Hence, ¢ is transcendental over
k*. Therefore, z is transcendental over k* by (3).
Let us define an element { of k*{z) by

¢ = {B(a, v) + bv'}/Aa, v)* .

Matsuda [3] proved that { is a solution of (¥')® = 4S(y) and
k*(, ") = k*(a, b): We may take elements s, ¢;, d; 1 <1<8) of 2
such that

$g=wv, ¢=1—wv, di=1— g%, si=ed, ;
sf=aq, ¢=1—a, d:=1— g, b = s,ed, ;
8; = (8:6,d, + 8,6,d)(1 — £’si8))™" ;

5 = (€6, — 8,8,d,d,)(L — K’sis)) ™ ;

d, = (d,d, — £°8,8,¢,6,)(L — K’sisi)™*.

We shall prove that
(5) ag=1-—-3:s, di=1— k%s?, Sy = ¢y .
In fact by the definitions
¢ = —sd,, di = —£%se, , c;=d;=0.
Since
1 — £%sis} = ¢t + sidj = ¢} + sid:,
we have
(1 — sH(1 — £’sisp)
= (1 — £%isi)’ — (s.c.d, + s,0,d,)
= (¢ + sid3)(c: + sidi) — (.0, + s,0.d,)
= cici + sisidid: — 2s,s,c,6,d,d,
= (6102 - 3132d1d2)2 .
Hence, ¢; =1 — si. Similarly, we have d2 = 1 — £°s?, since
1 — £°8is} = d? + k%%t = di + K%sic?.
We have s; = ¢,d, according to the following:
(1 — g*sisi)’s,
= (1 - Ezsfsg)(slczdz + szcldl)’
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— (1 — #sis})(s.0ods + 8:0.d,)
= (1 — &*sis})(sie,d, + s,eld, + s,e,d))
+ 2£%s,8.55(8,.¢.d; + s,¢,d,)
A — k*sist)(e.cd.d, — 8,8,d7 — K%8,8,¢7)
+ 2k%s,s%e,d.(s,¢,d, + s,¢.d,)
= ¢,c,d,d, — 8,8,d} — K%8,8,¢1 — K*sisic.c.d.d,
+ k*s3sid? + Kk'sisic? + 2ksisic.c,d.d, + 2k%ssicid}
= ¢,c.d,d, + k*sisic.c,d.d,
— 8,8,(d? + K¢} — K’sisid? — K'sisict — 2k°sicid}) ;

I

here
d? + K¢t — k*sisid? — Kk'sisicl — 2ksicid}
= d¥(1 — k®sisi — k’sic)
+ k21 — Ksisi — sid?)
= d}{1 — £’si(s! + ch)} + £’cH{l — si(k’st + db)}
= did; + K*clc .
Hence,

(1 — ksisi)s,
= ¢,c.d,d, + K’sisic.c,d.d, — s,8,(did: + K*cic)

= (¢.6, — 8,5,d,d,)(d.d, — £°5,8,¢,6,) ,

and we have s; = ¢,d,.
By the definition of { we have irreducible equations over k*:

Aa, v)’C* — 2B(a, v) + (@ — vy =0,
A, vye* — 2B, v)a + (L — vy =0,

as we get (2) and (3). Hence, £*(, ") =k*(a,b)=Fk*(2,2"). For we have
[£*(C, ) k*(O)] = [k*(a, ): £* (O] = [k*(a, O): k*(a)] = [k*(a, b): E*(@)] =2
by above equalities.

We remark that the adopting of the s, ¢ and d gives an exposi-
tory verification of the identity (') = 4S() proved by Matsuda [3].
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