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In this work we consider the question as to when an
everywhere defined closed linear map from a quadratic space
H, into another such space H, is orthocontinuous. The
following result is proved:

Let (H,,9.), (H;, ?,) be quadratic spaces whose _| -closed
subspaces are semi-simple. If 7 is an everywhere defined
closed linear map on H, into H, then T is orthocontinuous.

1. Introduction. In [1], [2] Piziak generalized, algebraically,
the geometry of Hilbert space. He introduced the notion of quadratic
space and with this studied sesquilinear forms in infinite dimensions.
He showed that certain general results which are of pure algebra
imply standard topological results in the context of Hilbert space
(e.g., an analogue of the Riesz representation theorem was proved
for these spaces and this implies the Riesz representation theorem for
Hilbert spaces).

Now, in Hilbert space an everywhere defined linear operator is
continuous iff its graph is closed. It is known that if T is an every-
where defined linear operator on a quadratic space and if T is ortho-
continuous then the graph of T is I -closed. The question is whether
or not the converse of this is true. In [2] it is conjectured that
this may not be true in general but that it may be true if our
quadratic space is such that every 1 -closed subspace is splitting.
In this work we show that this conjecture is true. In fact we show
that if every L -closed subspace of our quadratic space is semi-simple
then T is orthocontinuous. We also consider other cases where T
is orthocontinuous but where H,, H, are neither both anisotropic nor
are both such that their 1 -closed subspaces are semi-simple.

One of the implications of our results is that in the case of
inner-product spaces the completeness of the spaces is not necessary
for the “algebraic closed graph theorem” to hold. Thus the theorem
holds for pre-Hilbert spaces. Surprising as this may seem at first,
we point out that the algebraic closed graph theorem does not imply
the closed graph theorem. This is because there may be no context
in a quadratic space in which to discuss continuity. Even if such a
context exists it is possible for an orthocontinuous map not to be
continuous as Example 4 shows.
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2. Preliminaries.

DEFINITION 2.1. [2] A quadratic space is a triple (K, H, ®) where
K is a division ring with involution =, say, H is a left vector space
over K and @ is a nondegenerate orthosymmetric sesquilinear form
on H with respect to the involutive anti-automorphism * of K.

DEFINITION 2.2. [2] Let (K, H, ®) be a quadratic space. For
2,y in H we say z is orthogonal to ¥ and write ¢ L ¥ iff @(x, y) = 0.

We note that since @ is orthosymmetric, # | y implies y L x
and conversely.

We shall in what follows suppress K, @ if there is no danger
of confusion and refer to a quadratic space (K, H, @) as H,

DEFINITION 2.3. [2] Let H be a quadratic space. An element
2 in H is said to be isotropic iff z# L x and anisotropic otherwise.
If every element in H is anisotropic we say H is anisotropic.

For any subset A of H put
At ={yeH:y 1L x for all xeA}.

It is easy to see that A' is a subspace of H for every subset A of
H.

DEFINITION 2.4. [1] A subspace M of H is said to be L -closed
iff M** =M. If H= M@ M* we say that M is a splitting subspace,
and if M N M* = (0) we say that M is semi-simple.

We point out that while it is true that every splitting subspace
is L-closed and semi-simple it is not true in general that every
semi-simple [subspace is splitting. In fact a 1 -closed semi-simple
subspace of a quadratic space H may not split H, e.g., [1, Proposi-
tion 8.2.28]. If however H is finite dimensional then every semi-
simple subspace is splitting [1, Corollary 3.5.8].

As pointed out in [2] the nature of the scalars and the possibility
of existence of nonzero isotropic vectors are two main differences
between Hilbert spaces and general quadratic spaces. (Isotropic
vectors play an important role in some physical theories, e.g., in
the geometry space-time with the Minkowskii metric [2].)

DEFINITION 2.5. Let (H, @,), (H,, @, be quadratic spaces. Let
T: H,— H, be a linear map. T is said to be orthocontinuous if
T(M_LJ.) f T(M)J..L

for every subspace M of H,.
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ProprosiTION 2.6. [2] Let (H, ®,), (H, @, be quadratic spaces
and T: H,— H, be a linear map. Then the following are equivalent:

(i) M= M"*=T*M) =T M)+ for all subspaces M of H,.

(ii) If M is a 1-closed subspace of H, thew T M) is a L-
closed subspace of H,.

(il) TM*H S TM)** for all subspaces M of H,.

(1iv) (T"H(M)** S T (M*) for all subspaces M of H,.

(v) T ¢s orthocontinuous.

In Hilbert space the restriction of a continuous map to a closed
subspace is continuous. This is not the case in general in a quadratic
space.

ProrosiTiON 2.7. Let (H,, @), (H, @, be quadratic spaces and
T: H,— H, an orthocontinuous linear map. If M is a L-closed
semi-simple subspace of H, and @, is the restriction of @, to M then
(K, M, &) is a quadratic space. Further the restriction of T to M
18 orthocontinuous.

Proof. To show that (M, @,) is a quadratic space it suffices to
show that @, is nondegenerate. Suppose x€ M and @,(z, y) = 0 for
all ye M., Then xeM*. But M N M* = (0); hence x = 0. Hence @,

is nondegenerate.
Now let A be a 1 -closed subspace of H which is contained in

M. We note that
{xeM: Oy(x,y) =0 for all ye A} =MnNA*.
Thus the closure in M of A is MN(Mn AY)*. But

MnaNMnAYHY = Mn (M- Vv A
=MNM VvV MnNAH™
=MNM VA
=0VvA.

i.e. Any 1 -closed subspace of H contained in M is 1-closed in M.
If T, is the restriction of T to M and B is a 1 -closed subspace of
H, then T3(B) = M N T (B). Since M is L-closed in H, and T is
orthocontinuous we have that T7(B) N M is a 1 -closed subspace of
H, which is contained in M and hence by the above argument is
1 -closed in M. Thus T, is orth ocontinuous.

3. Algebraic closed graph theorem.

DeFINITION 3.1. Let (H, ®,) 7 =1,2 be quadratic spaces and
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T: H,— H, be a linear map. The graph of 7, written G(T), is the
set

G(T) ={(x, Tx):xc D, < H} .

PROPOSITION 3.2. Let (H,, @,) © = 1, 2 be quadratic spaces. Then
a subspace of H, X H, of the form A X B where A and B are sub-
spaces of H, and H, respectively is 1 -closed in H, X H, iff A is a
1 -closed subspace of H, and B a 1 -closed subspace of H,.

Proof. Let (x,y)e(A x B)*. Then

0=0,P (=, y), (u, v) for all (u,v)e A X B
= @,(z, u) + Dy, v) for all (u,v)eA x B.

In particular for # = 0 we have that y ¢ B* £ H,. Similarly e A+ <
H,. Hence (z, y)c A* x B*. It is clear that if (x, y)e A* x B* then
(z, )€ (A X B)*. Thus (A x B)* = A* x Bt. If A x Bisa |-closed
subspace of H, X H, we have that

(A x B) = (4 x B**
= At x Bt

So, A= A** and B = B**. Conversely if A**=A and B‘* =B
then from (A X B)! = A' x B* we have that A x B is a 1 -closed
subspace of H, x H,.

COROLLARY 3.3. Let (H;,, @,) ¢ =1, 2 be quadratic spaces and let
w: H, X Hy,— H, (resp. 7,: H, X H,— H,) be the linear map defined
by

7((x, ¥)) = w(resp. my((x, ) = 9)  Sfor all (x,y)eH, X H,.

Then for any subspace A of H,(resp. B of H,)m'(A)(resp.n;(B)) is
1-closed in H, X H, iff A is L-closed in H,, (resp. iff Bis | -closed
in H,).

Proof. 7w A) = A x H, for any subset A of H,. This by Pro-
position 3.2 we have that A X H, is a L-closed subspace of H, x H,
iff Ais a L-closed subspace of H,. (The proof for =, proceeds
similarly.)

PROPOSITION 3.4. Let M be o splitting subspace of a quadratic
space (H, ). Then there exists a * sesquilinear form ¥ on H/M*
with respect to which (H/M*,T) is a quadratic space. Moreover if
p s the canonical map p: H— H/M* and if a subspace A of H/M*
is 1 -closed then p™*(4) is @ L-closed subspace of H. If H is of
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the form (H, X H,, @, @ 0,) where (H;, ®,) © = 1, 2 are quadratic spaces
and M = H, x (0), say, then a subspace A of H/M* is 1 -closed iff
p7Y(A) is a 1 -closed subspace of H.

Proof. Since M is a splitting subspace it is semi-simple and
hence the restriction of @ to M, @,, say is such that (M, @) is a
quadratic space, by Proposition 2.7. Also since M is a splitting
subspace there exists a projection P on H such that M = Im(P) [1].
Thus M* = Ker P and so there exists an isomorphism ¢: H/M* — M.
For [z], [y] € H/M* define

U([x], [y]) = @u(s([=]), s([¥]) -
We then have that

(], [y]) =0 for all [x]e H/M*
= Oy(g([z]), s([y])) =0  for all g([z])e M
= [y =0 since @, is nondegenerate and ¢ is onto
= [y] =0 since ¢ is 1 — 1.
Therefore ¥ is nondegenerate. It is easy to see that ¥ is orthosym-

metric and * sesquilinear relative to the involutive anti-automorphism
«» of K. So, (H/M*,¥) is a quadratic space. Let A< H/M*.

[2] € At — O,(g([x]), ([]) = OV[yle A
— o([y]) e g(4)" .
From this we obtain ¢(A') = ¢(A)* and hence that ¢ maps L -closed
subspaces of H/M* into I -closed subspaces of M. Therefore ¢~* is
orthocontinuous. Also if B** = B in M, we have that there exists
an AC H/M* such that A'* = A in H/M* and #(4) = B. Indeed,
since ¢ is onto there exists A S H/M* such that ¢(A) = B.
B = B**
= ¢(A)"*
= ¢(A*") .
Hence
A =¢7(B)

= ¢7($(A"))
= ALt

since ¢ is a bijection. Thus every . -closed subspace of M is the
image of a 1 -closed subspace of H/M*, i.e., if B is a 1-closed
subspace of M then ¢7(B) is a 1 -closed subspace of H/M*. Hence
o is orthocontinuous. Now consider the following diagram:
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H
\P
| ¢
HM*— M.
Suppose A is a 1 -closed subspace of H/M*. Since
pTH(A) = P7Y(4(4))

and P being a projection is orthocontinuous [1] we have that p~'(4)
is a L-closed subspace of H. Finally suppose H = (H, X H,, @, D ?,)
then H, x {0}, {0} x H, are 1 -closed subspaces of H which split H.
Put M = H, x{0}. By Corollary 3.8 we have that if B is a subspace
of H,= H, X {0} then P7(B) is L-closed in H=H, X H, iff B is
L-closed in H,. Therefore p '(4) = P~ (¢(4)) is L-closed in H, X H,
iff ¢(A) is L-closed in M iff A is L -closed in H/M".

COROLLARY 3.5. Let (H;, ;) ©=1,2 be quadratic spaces. Let
. H, X H,— H, be defined by n((x, ¥)) = = for all (x,y) in H, X H,.
Then ™ maps 1 -closed subspaces of H, X H, onto 1 -closed subspaces
of H,.

Proof. Consider the following diagram:

H, x H,

:ol Nz
¢\.
H, X Hy/z7*(0) — H,

where p and ¢ are the mappings defined in Proposition 3.4. Let A
be a 1 -closed subspace of H, X H,., Then A = p~(B) for some B
in H, X H,/z7%0). By Proposition 8.4 we have that B is 1 -closed
in H, X H,/x~(0). Thus

m(A) = ¢(p(4))
= ¢(p(p~(B)))
= ¢(B)

is 1 -closed in H,.

REMARK. We note that if M is a 1-closed subspace of a
quadratic space H although it is not true in general that the inter-
section of a 1 -closed subspace of H and M is 1-closed in M it is
however true that every L1 -closed subspace of M is L -closed in H.
Indeed if AS M then the closure of 4 in M is MN(MNA*)* which is
a | -closed subspace of H. It follows therefore that if T is a linear
transformation on H which maps 1 -closed subspaces into L -closed
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subspaces, the restriction of T to any L -closed subspace, M, of H maps
1 -closed subspaces of M into 1 -closed subspaces of the co-domain

of T.

THEOREM 3.6. Let (H,, @,) v+ = 1, 2 be quadratic spaces such that
every 1 -closed subspace of H, H, is semi-simple. Let T: H,— H,
be an every where defined closed linear map. Then T s ortho-
CONLINUOUS.

Proof. We first note that since every L -closed subspace of
H, H, is semi-simple the same is true of every L -closed subspace
of H, x H,, Hence, since G(T) is 1-closed we have that G(T)nN
G(T)* = (0) and that the restriction of any orthocontinuous linear
map on H, X H, to G(T) is orthocontinuous. Let =: H, X H,— H,
be defined by 7z (z, ¥) = = for every (x, %) in H, X H,. By Corollary
3.5 w, maps L -closed subspaces onto I -closed subspaces. The restric-
tion of =, to G(T"), 7, /e, is 1-1, onto and by the Remark maps I -
closed subspaces of G(T) onto 1 -closed subspaces of H,. Therefore
Tk is orthocontinuous. Also 7,: H, X H,~— H, defined by 7,((x, ) =y
for all (z, ) € H, X H,is orthocontinuous by Corollary 3.3. Therefore
its restriction to G(T), 7;emr), is orthocontinuous.

Now

Tx = Tysa0r) © Tijger (%)

which is orthocontinuous.

An observation of the proof of the theorem shows that if the
graph of T is semi-simple then 7T is orthocontinuous. We now
consider other cases where the conditions on H,, H, imply this and
hence the orthocontinuity of T.

COROLLARY 3.3. Let (H,®,) ©=1,2 be anisotropic quadratic
spaces. If T 1is an everywhere defined closed linear map on H,
into H, then T is orthocontinuous.

Proof. Since (H,, @,) v =1, 2 is anisotropic so also is (H, X H,,
@, PP, as can be easily checked. Hence every L -closed subspace
of H, X H,is splitting. Since a splitting subspace is semi-simple we
have that every L -closed subspace of H, x H, is semi-simple. The
result then follows from the theorem.

REMARK. Corollary 3.7 establishes Piziak’s conjecture [2].

ProrPosITION 3.8. Let (H,, @,) 1 =1, 2 be quadratic spaces over
o division ring K. Suppose there exists a subset R of K with the
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Sfollowing properties:

(i) 0ex+ R

(ii) BRn —R = {0}.
If 0z, x), Dy, ¥) € R for all x€ H,, y<c H, and if H, is anisotropic
then an everywhere defined closed linear map T: H,— H, is ortho-
CONLINUOUS.

Proof. In view of the observation made after the proof of the
theorem, it suffices to show that G(T') is semi-simple. Suppose
(z, Tx) e G(T) N G(T)* then

O(z, 2) + O(Tx, Tx) = 0, D P:(x, Tv), (x, Tx))
=0.
O (x, 2) = —@,(Tx, Tx) .

But @, x)e R and @,(Tx, Tx)e R. Thus if (z, Tx) e G(T)NG(T)" we
have that @,(z, x) e RN —R. But RN —R={0}. Therefore & (x, x)=0.
Since H, is anisotropic we have that x = 0 and so (z, Tx) = (0, 0) so
G(T) is semi-simple.

REMARK. (1) If in the above proposition T is 1-1 and H, is
anisotropic while H, is allowed to be arbitrary the same result is
obtained.

(2) As pointed out in the introduction, our results imply that
in the case of inner product space the completeness of the spaces is
not necessary for an everywhere defined closed linear map to be
orthocontinuous. We pointed out also that even if there is a context
in which to discuss continuity it is possible for an orthocontinuous
map not to be continuous. We now give an example.

4. Example. Let K = R', H, = H, = R*. Define @, on H, by

3
O (@1, o3y X5 )y Y1y Ys» Yy Y)) = 12 Y, — LY,

and @, on H, by

4
Dy((201y oy Tgy )y Yy Yar Yy Yu)) = E;‘ Y, .

Then (H;, @,) v =1, 2 are quadratic spaces. In fact H, is a Hilbert
space as is well known. Let .7~ be a collection of subsets of H,
consisting of @, H,, and all subsets A of H, for which there exists
a | -closed subspace MZ H, with AC H, ~ M. Then

(i) @, H 9 by definition.

(ii) If A,e. 7 we have that J,4.¢€.7".
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Indeed since for each a there exists a | -closed subspace M, such
that A, S H, ~ M, we have U. 4. S U, H ~ M, = H, ~ N.M.. But
N« M, is L-closed. Therefore |J. A.€.7.

(i) IfA,k=1,2,---,me.7 then Ni.,4.€.7. For Nr., A, S A,
foral k=1,2, ---, n, and A, S H, ~ M, for some | -closed subspace
M, of H,.

Therefore .7 is a topology for H,. Let % be the usual topology
of R* which as is known arises from @, in a natural way. Now let
I.(H, 77) - (H, %) be the map defined by Ir =« for all z¢ H..
Then I is orthocontinuous since the inverse image of a 1 -closed
subspace of (H,, @,) is a finite dimensional subspace of (H,, §,) and
hence by [1, Corollary 3.5.2] is a 1 -closed subspace of (H,, @,). But
I is not continuous for if it were I'({x € H,: ||z|| < 1}) would be an
open set in (H,, .7 ) and hence would not contain 0. This is a con-
tradiction since 0¢ I"'({x € H,: ||z]|<1}).
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