
Pacific Journal of
Mathematics

TORSION FREE ABELIAN GROUPS QUASI-PROJECTIVE
OVER THEIR ENDOMORPHISM RINGS. II

CHARLES IRVIN VINSONHALER

Vol. 74, No. 1 May 1978



PACIFIC JOURNAL OF MATHEMATICS

Vol. 74, No. 1, 1978

TORSION FREE ABELIAN GROUPS QUASI-PROJECTIVE
OVER THEIR ENDOMORPHISM RINGS II

C. VlNSONHALER

Let R be a commutative ring with 1, and X an jβ-module.
Then M = X 0 R is quasi-projective as an JS'-module, where
E is either Homz (M, M) or Hom^ {M, M). In this note it is
shown that any torsion free abelian group G of finite rank,
quasi-projective over its endomorphism ring, is quasi-isomor-
phic to X®R, where R is a direct sum of Dedekind domains
and X is an iέ-module.

Introduction* If R is a ring with identity, an JS-module M is

said to be quasi-projective if for any submodule N of M, and jR-map
f:M-+ M/N, there is an .β-map f: M-+M such that / followed by
the factor map M —> M/N is equal to /. Results on quasi-projective
modules appear in [3], [6], and [7]. In this note, we will be con-
cerned with the case where M = G is a torsion free abelian group
of finite rank and R = Homz (G, G) = E{G), and call G "Eqp" if G
is quasi-projective as an 2?(G)-module. The strongly indecomposable
Eqp groups have been characterized in [6], so we will focus on those
groups G (always torsion free abelian of finite rank) such that nG S
Gt φ G2 Q G for some integer n Φ 0 and subgroups Gt Φ 0, G2 Φ 0
of G. In fact, any group G can be quasi-decomposed into a direct
sum of strongly indecomposable summands, nG c Gx φ G2 0 ©
(?fc c (?. It is well-known that such a decomposition is unique up to
order and the quasi-isomorphism class of the summands. It is there-
fore desirable to work with a slightly more general notion of quasi-
projectivity which is invariant under quasi-isomorphism:

DEFINITION. An J?-module M is almost quasi-projective (aqp) if
there exists an integer n Φ 0 such that given any submodule N of
M, and iϋ-map /: Λf —> M/N, there is an itί-map /: M-+M such that
/ followed by the factor map M —> M/N is equal to nf.

In case M is a group G and R = E(G), G is called almost E-
quasi-projective (aEqp).

PROPOSITION 1. Let G and H be quasί-isomorphic groups (nota-
tion: G ~ H). If G is aEqp, then H is aEqp.

Proof. Assume that mGξ^HξZG for some integer mφO. Then
if aeE(G), ma\HeE(H); and if βeE(H), βmeE(G), so we say
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mE(G) £ E(H) and mE(H) £ E(G). Now let K be a fully invariant
subgroup (#(iϊ)-submodule) of H, and f:H-*H/K. Then JΓ* =
E{G){K) satisfies mK*aKc:K* and / induces /*: G-+GJK* via
f*(x) — f(mx) Λ- K*. By assumption this lifts to a map geE(G)
such that πg = nf*, where π: G —»G/JKΓ* is the natural factor map. Let
jί 6 iϊ. Then g(y) = nf*(y) mod iΓ* = nf{my) mod JBΓ* = nmf{y) mod iΓ*.
This implies mflr(i/) = nm2f(y) mod iΓ, so that m# is a lifting of wm2/
and H is aEqp.

By the preceding proposition we may, without loss of generality,
work with a group G = Gx 0 G2 0 © Gn where each Gt is strongly
indecomposable. The following notation is also used:

E = E(G) = Homz (G, G).

= Jacobson radical of ϋ^.
i = E(G)Gt = £;-submodule of G generated by G,.

Now, a sequence of lemmas leads to the main result.

LEMMA 2. Suppose G is E-indecomposable. Then any E-map
of G into G (any map in the center of E) is either monic or nil-
potent.

Proof. Let / be an jE'-map of G into G. Then / = 0?= 1 /, where
/<: Gi—>Gt is monic or nilpotent (see [4]). Let flΊ= ©GJi is nilpotent
and iϊ2 = 0 Gy/y is monic. Since G is j^-indecomposable, there is
a nonzero map between Hx and ii2 (or iϊ2 and ifj, say fc: flΊ —»J5"2>
Λ ̂  0. Letting g1 = φfi ft nilpotent and g2 = φ / y /y monic, we
have #2& = fc^i so that g\h = hg\ for all k > 0. Since #x is nilpotent,
flfξfe = 0 for some k > 0. Since #2 is monic, this says h — 0, a con-
tradiction.

LEMMA 3. Le£ G 6e αί/gp and E-indecomposable. Then for any
nontrivial decomposition G — H(ξ)K, either EH~ G or EKCiH~ H.

Proof. Suppose the conclusion is false. Then the map given by
the identity on H/EK Π H and zero on K/K f] EH is an i£-map and
can be quasi-lifted to an 2£-endomorphism of G. But the lifting can
be neither monic nor nilpotent, contradicting Lemma 2,

PROPOSITION 4. Let G be aEqp and E-indecomposable. Then
for each Gi9 either G/EGi is bounded or there is a j Φ i such that
GJEGj Π Gi is bounded.

Proof. Without loss of generality, assume i — 1. By Lemma
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3, either GjEG1 or G1/JBf(©?==2 Gt) Π G, is bounded. In the latter case,
let fli = #G 2 Π G1 and fl, = # ( φ ? = 3 Gt) Π Gx. Then (fli n H2) 0
[-#(©?=* G<) Π G2] 0 ( E ^ Π θ?=3 Gi) = # is an ^-submodule of G, and
if GJHi Π iί 2 has a nontrivial quasi-decomposition, then the quasi-
projections can be extended to I^-maps of G/K into G/K which can
be quasi-lifted to l?-endomorphisms of G. Again, the liftings can
be neither monic nor nilpotent, contradicting Lemma 2. Therefore,
G/ΈLX Π H2 has no nontrivial quasi-decompositions, so that either
J3Ί Π H2 ~ Hι or H.f] H2 ^ H2, since GJHj. + H2 is bounded.

Case I. If fli. Π H2 ~ H2, then ΈLX ~ Gλ and we are done.
Case II. If H^H,- Hl9 then fl, - G,.
In this case, let H[ = ^ ^ 3 Π Gx and #2 = i5(φ?= 4 G<) Π G1 and let

iί' - H[ n ίί2 0 E(@u G<) n ̂ G 3 n ί?2 0 E{®u GJ n G3 0 £/G3 n θ?=4 σ,.
Then it is straightforward to check that K' is fully invariant and
that, as in the first paragraph, quasi-projections of GJH[Γ\H'2 can
be extended to jE-maps of G/K' into G/K', which quasi-lift to maps
in E. (It follows from Lemma 3 that # ( φ ? = 3 Gt) n G 2 - G2.) Thus
as before, either H[f)H'2 ~ H2 or H[ΠH2 — H[. In Case I we are
done, and in Case II we may repeat the above argument with slight
modifications to eventually get GJGι Ω EGS bounded for some j .

COROLLARY 5. There is a Gt such that G/EGi is bounded.

Proof. By the preceding proposition, either G/EG1 is bounded
or EGh Π CΓI ~ 6?i for some iγ. Then either G/EGh is bounded or
EGh Π Gh ~ Gh for some i2. Inductively obtain a sequence 1, ilf i2,
• , in_! such that -SG^ Π GiA_1 ̂  Gfjfc_1. (Unless the process stops, in
which case G/EGik is bounded for some k.) It follows that G/EGin_x

is bounded.
Henceforth the G* of Corollary 5 will be denoted by Go. That

is, G/EGQ is bounded.

LEMMA 6. If GJEG0 (Ί Gt is bounded, then either Gt ~ Go or
EG, Π Go S J0G0.

Proof. Consider Go —• G, 2-* GQ. If ^/ is monic, then kg^f has an

inverse in E(G0) for some 0 < k e Z. Then Go £ G, ̂  Go

 (A; l g r / ) ' > Go

gives a quasi-splitting of Gt. Since Gέ is strongly indecomposable,
Go - G,.

On the other hand, if gf is nilpotent for all possible g and /,
then EGi Π Go S JoGo since J^GQ Π G£ is of bounded index in Gt.

7. G0/J0G0 - Eo/Jo.
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Proof. Let EQ = Eo/Jo. Then Q ®z Eo is a division ring. Let
xt = α?! + Jo^o, , αr = α?r + Jo^o be a maximal ^-independent set in
GQ/J0G0 = Go Then A = G0/Σ<=i ̂ o#i *s torsion and furthermore must
be bounded. If A were unbounded it would have uncountably many
endomorphisms which would have to be induced by different endo-
morphisms of G. Now consider G^jE^ Π Σί=2 Efti If f ^ 2, this
group has a nontrivial quasi-decomposition, and the quasi-projections
can be lifted to maps in E which are neither monic nor nilpotent,
a contradiction. Thus r = 1 and Go ~ Eox1 = .£70.

LEMMA 8. Lβ£ Zo δe tfeβ center of Eo. Then Zo + Jo = Eo.

Proof For any x e EQ, right multiplication by x is an £0-map
J?o/Jo - i £?0/Jo. Using the previous lemma, α?r quasi-lifts to an EQ map
of Go, ίr> which is in Zo since it is an £70-map. Clearly xr — xe Jo.

The next lemma is well-known but is included for completeness.

LEMMA 9. Let E be a ring with identity and nilpotent ideal
J. Let M be an E-module and L a submodule such that L + JM=M.
Then L = M. (This says JM is small in M.)

Proof J(L + JM) = JM=*JMQL + J2M => Λf = L + J2itf =>
M = L + JhM for all & > 0 by induction. Since J is nilpotent,
M=L.

PROPOSITION 10. Go is strongly irreducible, and hence Go ^
^o = Zo.

Proof Choose a subring S of Ĵ o maximal with respect to

(1) S n J o - 0 (2) SdZo (3) Qf)EoaS.

Note that S is a pure subgroup of Eo and is an integral domain.
Suppose zo$S + Jo for some zoeZo. Then S[20] properly contains S
and satisfies (1), (2), and (3), a contradiction. Thus Zoc.S + Jo=*

Now from the proof of Lemma 7 it follows that Go ~ Eox1 +
J0G0 for some xt e Go. Hence, by Lemma 9, Go ~ Eoxlf and K =
Ker (Eo -> JSΌa?i) £ e/"0. Thus Go - JSΌ/ίΓ = S 0 Jo/-K:. Since Go is strongly
indecomposable, Go ~ S. Therefore Go is strongly irreducible, and
hence Go ~ Eo= Zo by the results of [5].

It now follows from Lemma 6 that for any Gi9 either Gt — Go
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or Horn (Gi9 Go) = 0. Thus, up to quasi-isomorphism and relabeling,
G = ®U H3- 0 L i Gi where Hό = Go, 1 ^ j ^ Λ and Horn ((?„ Go) = 0,
1 ^ i ^ I.

In the following, let G' = ©Li <?*, an #-submodule of G. For
any map φeEQ = E(G0), φ 0 φ 0 is an £?-map of G/G' into G/G'

k times
and hence can be quasi-lifted to an E'-map, ψ, of G. The map ψ is
unique, since if ψ' were another lifting (ψ — ̂ 'XΘjU Hi) — 0, so that
ψ — ψ' = o because i£ίΓ; Π G* ̂  Gi for all i, j . Since ψ* commutes
with projections, ψ(Gi) C Ĝ  for each i. Thus a ring isomorphism
0—>E0~+E(Gi) is obtained via φ—+ψ\Gi. This yields a unitary Eo-
module structure on G>

Now if Ro is the ring of integers in Q (x) 2£0, then Go ~ Eo ~
Ro (x) So, and i?0 ® So is a Dedekind domain.

We are now ready for the main result.

THEOREM 11. If G is a torsion free abelian group of finite
rank, then G is a Eqp if and only if G ~ R 0 X, where R is a
direct sum of Dedekind domains, and X is a unitary R-module.

Proof. The "if" direction has been demonstrated.

If G is .^-indecomposable, let R = R0(g) ©J=1 EQ and X = Ro ®
©LiGi in the notation of the preceding lemma and remarks. The
general case follows by taking direct sums.

REMARK. If G = R 0 X in the above, it is clear that G is
actually Eqp. It would be nice to know exactly which quasi-iso-
morphic images of G were also Eqp.
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