Pacific Journal of Mathematics

TORSION FREE ABELIAN GROUPS QUASI-PROJECTIVE OVER THEIR ENDOMORPHISM RINGS. II

CHARLES IRVIN VINSONHALER

Vol. 74, No. 1

May 1978

TORSION FREE ABELIAN GROUPS QUASI-PROJECTIVE OVER THEIR ENDOMORPHISM RINGS II

C. VINSONHALER

Let R be a commutative ring with 1, and X an R-module. Then $M = X \bigoplus R$ is quasi-projective as an E-module, where E is either $\operatorname{Hom}_{\mathbb{Z}}(M, M)$ or $\operatorname{Hom}_{\mathbb{R}}(M, M)$. In this note it is shown that any torsion free abelian group G of finite rank, quasi-projective over its endomorphism ring, is quasi-isomorphic to $X \bigoplus R$, where R is a direct sum of Dedekind domains and X is an R-module.

Introduction. If R is a ring with identity, an R-module M is said to be quasi-projective if for any submodule N of M, and R-map $f: M \to M/N$, there is an R-map $\overline{f}: M \to M$ such that \overline{f} followed by the factor map $M \rightarrow M/N$ is equal to f. Results on quasi-projective modules appear in [3], [6], and [7]. In this note, we will be concerned with the case where M = G is a torsion free abelian group of finite rank and $R = \operatorname{Hom}_{Z}(G, G) = E(G)$, and call G "Eqp" if G is quasi-projective as an E(G)-module. The strongly indecomposable Eqp groups have been characterized in [6], so we will focus on those groups G (always torsion free abelian of finite rank) such that $nG \subseteq$ $G_1 \bigoplus G_2 \subseteq G$ for some integer $n \neq 0$ and subgroups $G_1 \neq 0$, $G_2 \neq 0$ of G. In fact, any group G can be quasi-decomposed into a direct sum of strongly indecomposable summands, $nG \subset G_1 \oplus G_2 \oplus \cdots \oplus$ $G_k \subset G$. It is well-known that such a decomposition is unique up to order and the quasi-isomorphism class of the summands. It is therefore desirable to work with a slightly more general notion of quasiprojectivity which is invariant under quasi-isomorphism:

DEFINITION. An *R*-module *M* is almost quasi-projective (aqp) if there exists an integer $n \neq 0$ such that given any submodule *N* of *M*, and *R*-map $f: M \to M/N$, there is an *R*-map $\overline{f}: M \to M$ such that \overline{f} followed by the factor map $M \to M/N$ is equal to nf.

In case M is a group G and R = E(G), G is called almost Equasi-projective (aEqp).

PROPOSITION 1. Let G and H be quasi-isomorphic groups (notation: $G \sim H$). If G is a Eqp, then H is a Eqp.

Proof. Assume that $mG \subseteq H \subseteq G$ for some integer $m \neq 0$. Then if $\alpha \in E(G)$, $m\alpha|_H \in E(H)$; and if $\beta \in E(H)$, $\beta m \in E(G)$, so we say

 $mE(G) \subseteq E(H)$ and $mE(H) \subseteq E(G)$. Now let K be a fully invariant subgroup (E(H)-submodule) of H, and $f: H \rightarrow H/K$. Then $K^* = E(G)(K)$ satisfies $mK^* \subset K \subset K^*$ and f induces $f^*: G \rightarrow G/K^*$ via $f^*(x) = f(mx) + K^*$. By assumption this lifts to a map $g \in E(G)$ such that $\pi g = nf^*$, where $\pi: G \rightarrow G/K^*$ is the natural factor map. Let $y \in H$. Then $g(y) = nf^*(y) \mod K^* = nf(my) \mod K^* = nmf(y) \mod K^*$. This implies $mg(y) = nm^2f(y) \mod K$, so that mg is a lifting of nm^2f and H is aEqp.

By the preceding proposition we may, without loss of generality, work with a group $G = G_1 \bigoplus G_2 \bigoplus \cdots \bigoplus G_n$ where each G_i is strongly indecomposable. The following notation is also used:

 $E = E(G) = \operatorname{Hom}_{Z}(G, G).$ $E_{i} = E(G_{i}).$ $J_{i} = J(E_{i}) = \operatorname{Jacobson\ radical\ of\ } E_{i}.$ $EG_{i} = E(G)G_{i} = E$ -submodule of G generated by $G_{i}.$ Now, a sequence of lemmas leads to the main result.

LEMMA 2. Suppose G is E-indecomposable. Then any E-map of G into G (any map in the center of E) is either monic or nilpotent.

Proof. Let f be an E-map of G into G. Then $f = \bigoplus_{i=1}^{n} f_i$ where $f_i: G_i \to G_i$ is monic or nilpotent (see [4]). Let $H_1 = \bigoplus G_i f_i$ is nilpotent and $H_2 = \bigoplus G_j f_j$ is monic. Since G is E-indecomposable, there is a nonzero map between H_1 and H_2 (or H_2 and H_1), say $h: H_1 \to H_2$, $h \neq 0$. Letting $g_1 = \bigoplus f_i f_i$ nilpotent and $g_2 = \bigoplus f_j f_j$ monic, we have $g_2h = hg_1$ so that $g_2^kh = hg_1^k$ for all k > 0. Since g_1 is nilpotent, $g_2^kh = 0$ for some k > 0. Since g_2 is monic, this says h = 0, a contradiction.

LEMMA 3. Let G be a Eqp and E-indecomposable. Then for any nontrivial decomposition $G = H \bigoplus K$, either $EH \sim G$ or $EK \cap H \sim H$.

Proof. Suppose the conclusion is false. Then the map given by the identity on $H/EK \cap H$ and zero on $K/K \cap EH$ is an *E*-map and can be quasi-lifted to an *E*-endomorphism of *G*. But the lifting can be neither monic nor nilpotent, contradicting Lemma 2,

PROPOSITION 4. Let G be a Eqp and E-indecomposable. Then for each G_i , either G/EG_i is bounded or there is a $j \neq i$ such that $G_i/EG_j \cap G_i$ is bounded.

Proof. Without loss of generality, assume i = 1. By Lemma

3, either G/EG_1 or $G_1/E(\bigoplus_{i=2}^n G_i) \cap G_1$ is bounded. In the latter case, let $H_1 = EG_2 \cap G_1$ and $H_2 = E(\bigoplus_{i=3}^n G_i) \cap G_1$. Then $(H_1 \cap H_2) \bigoplus$ $[E(\bigoplus_{i=3}^n G_i) \cap G_2] \bigoplus (EG_2 \cap \bigoplus_{i=3}^n G_i) = K$ is an *E*-submodule of *G*, and if $G_1/H_1 \cap H_2$ has a nontrivial quasi-decomposition, then the quasiprojections can be extended to *E*-maps of G/K into G/K which can be quasi-lifted to *E*-endomorphisms of *G*. Again, the liftings can be neither monic nor nilpotent, contradicting Lemma 2. Therefore, $G/H_1 \cap H_2$ has no nontrivial quasi-decompositions, so that either $H_1 \cap H_2 \sim H_1$ or $H_1 \cap H_2 \sim H_2$, since $G_1/H_1 + H_2$ is bounded.

Case I. If $H_1 \cap H_2 \sim H_2$, then $H_1 \sim G_1$ and we are done. Case II. If $H_1 \cap H_2 \sim H_1$, then $H_2 \sim G_1$.

In this case, let $H'_1 = EG_3 \cap G_1$ and $H'_2 = E(\bigoplus_{i=4}^n G_i) \cap G_1$ and let $K' = H'_1 \cap H'_2 \bigoplus E(\bigoplus_{i=4}^n G_i) \cap EG_3 \cap G_2 \bigoplus E(\bigoplus_{i=4}^n G_i) \cap G_3 \bigoplus EG_3 \cap \bigoplus_{i=4}^n G_i)$. Then it is straightforward to check that K' is fully invariant and that, as in the first paragraph, quasi-projections of $G_1/H'_1 \cap H'_2$ can be extended to E-maps of G/K' into G/K', which quasi-lift to maps in E. (It follows from Lemma 3 that $E(\bigoplus_{i=3}^n G_i) \cap G_2 \sim G_2$.) Thus as before, either $H'_1 \cap H'_2 \sim H'_2$ or $H'_1 \cap H'_2 \sim H'_1$. In Case I we are done, and in Case II we may repeat the above argument with slight modifications to eventually get $G_1/G_1 \cap EG_j$ bounded for some j.

COROLLARY 5. There is a G_i such that G/EG_i is bounded.

Proof. By the preceding proposition, either G/EG_1 is bounded or $EG_{i_1} \cap G_1 \sim G_1$ for some i_1 . Then either G/EG_{i_1} is bounded or $EG_{i_2} \cap G_{i_1} \sim G_{i_1}$ for some i_2 . Inductively obtain a sequence 1, $i_1, i_2, \cdots, i_{n-1}$ such that $EG_{i_k} \cap G_{i_{k-1}} \sim G_{i_{k-1}}$. (Unless the process stops, in which case G/EG_{i_k} is bounded for some k.) It follows that $G/EG_{i_{n-1}}$ is bounded.

Henceforth the G_i of Corollary 5 will be denoted by G_0 . That is, G/EG_0 is bounded.

LEMMA 6. If $G_i/EG_0 \cap G_i$ is bounded, then either $G_i \sim G_0$ or $EG_i \cap G_0 \subseteq J_0G_0$.

Proof. Consider $G_0 \xrightarrow{f} G_i \xrightarrow{g} G_0$. If gf is monic, then kg^{1-f} has an inverse in $E(G_0)$ for some $0 < k \in \mathbb{Z}$. Then $G_0 \xrightarrow{f} G_i \xrightarrow{g} G_0 \xrightarrow{(k^{-1}gf)^{-1}} G_0$ gives a quasi-splitting of G_i . Since G_i is strongly indecomposable, $G_0 \sim G_i$.

On the other hand, if gf is nilpotent for all possible g and f, then $EG_i \cap G_0 \subseteq J_0G_0$ since $EG_0 \cap G_i$ is of bounded index in G_i .

LEMMA 7. $G_0/J_0G_0 \sim E_0/J_0$.

Proof. Let $\overline{E}_0 = E_0/J_0$. Then $Q \bigotimes_Z \overline{E}_0$ is a division ring. Let $\overline{x}_1 = x_1 + J_0G_0, \dots, \overline{x}_r = x_r + J_0G_0$ be a maximal \overline{E}_0 -independent set in $G_0/J_0G_0 = \overline{G}_0$. Then $A = \overline{G}_0/\sum_{i=1}^r \overline{E}_0\overline{x}_i$ is torsion and furthermore must be bounded. If A were unbounded it would have uncountably many endomorphisms which would have to be induced by different endomorphisms of G. Now consider $\overline{G}_0/\overline{E}_0\overline{x}_1 \cap \sum_{i=2}^r \overline{E}_0\overline{x}_i$. If $r \ge 2$, this group has a nontrivial quasi-decomposition, and the quasi-projections can be lifted to maps in E which are neither monic nor nilpotent, a contradiction. Thus r = 1 and $\overline{G}_0 \sim \overline{E}_0\overline{x}_1 \cong \overline{E}_0$.

LEMMA 8. Let Z_0 be the center of E_0 . Then $Z_0 + J_0 = E_0$.

Proof. For any $x \in E_0$, right multiplication by x is an E_0 -map $E_0/J_0 \xrightarrow{x_r} E_0/J_0$. Using the previous lemma, x_r quasi-lifts to an E_0 map of G_0 , \hat{x}_r , which is in Z_0 since it is an E_0 -map. Clearly $\hat{x}_r - x \in J_0$.

The next lemma is well-known but is included for completeness.

LEMMA 9. Let E be a ring with identity and nilpotent ideal J. Let M be an E-module and L a submodule such that L+JM=M. Then L = M. (This says JM is small in M.)

Proof. $J(L + JM) = JM \Rightarrow JM \subseteq L + J^2M \Rightarrow M = L + J^2M \Rightarrow M = L + J^kM$ for all k > 0 by induction. Since J is nilpotent, M = L.

PROPOSITION 10. G_0 is strongly irreducible, and hence $G_0 \sim E_0 = Z_0$.

Proof. Choose a subring S of E_0 maximal with respect to

Note that S is a pure subgroup of E_0 and is an integral domain. Suppose $z_0 \notin S + J_0$ for some $z_0 \in Z_0$. Then $S[z_0]$ properly contains S and satisfies (1), (2), and (3), a contradiction. Thus $Z_0 \subset S + J_0 \Longrightarrow S \bigoplus J_0 = E_0$.

Now from the proof of Lemma 7 it follows that $G_0 \sim E_0 x_1 + J_0 G_0$ for some $x_1 \in G_0$. Hence, by Lemma 9, $G_0 \sim E_0 x_1$, and $K = \text{Ker}(E_0 \rightarrow E_0 x_1) \subseteq J_0$. Thus $G_0 \sim E_0/K = S \bigoplus J_0/K$. Since G_0 is strongly indecomposable, $G_0 \sim S$. Therefore G_0 is strongly irreducible, and hence $G_0 \sim E_0 = Z_0$ by the results of [5].

It now follows from Lemma 6 that for any G_i , either $G_i \sim G_0$

or Hom $(G_i, G_0) = 0$. Thus, up to quasi-isomorphism and relabeling, $G = \bigoplus_{j=1}^{k} H_j \bigoplus_{i=1}^{l} G_i$ where $H_j = G_0$, $1 \leq j \leq k$ and Hom $(G_i, G_0) = 0$, $1 \leq i \leq l$.

In the following, let $G' = \bigoplus_{i=1}^{l} G_i$, an *E*-submodule of *G*. For any map $\phi \in E_0 = E(G_0)$, $\underbrace{\phi \bigoplus \cdots \bigoplus \phi}_{k \text{ times}} \phi$ is an *E*-map of G/G' into G/G'

and hence can be quasi-lifted to an *E*-map, ψ , of *G*. The map ψ is unique, since if ψ' were another lifting $(\psi - \psi')(\bigoplus_{j=1}^{k} H_j) = 0$, so that $\psi - \psi' = 0$ because $EH_j \cap G_i \sim G_i$ for all *i*, *j*. Since ψ commutes with projections, $\psi(G_i) \subseteq G_i$ for each *i*. Thus a ring isomorphism $0 \to E_0 \to E(G_i)$ is obtained via $\phi \to \psi|_{G_i}$. This yields a unitary E_0 module structure on G_i .

Now if R_0 is the ring of integers in $Q \otimes E_0$, then $G_0 \sim E_0 \sim R_0 \otimes E_0$, and $R_0 \otimes E_0$ is a Dedekind domain.

We are now ready for the main result.

THEOREM 11. If G is a torsion free abelian group of finite rank, then G is a Eqp if and only if $G \sim R \bigoplus X$, where R is a direct sum of Dedekind domains, and X is a unitary R-module.

Proof. The "if" direction has been demonstrated.

If G is *E*-indecomposable, let $R = R_0 \otimes \bigoplus_{j=1}^k E_0$ and $X = R_0 \otimes \bigoplus_{i=1}^l G_i$ in the notation of the preceding lemma and remarks. The general case follows by taking direct sums.

REMARK. If $G = R \bigoplus X$ in the above, it is clear that G is actually Eqp. It would be nice to know exactly which quasi-isomorphic images of G were also Eqp.

References

1. R. A. Beaumont and R. S. Pierce, *Torsion free rings*, Illinois J. Math., 5 (1961), 61-98.

2. L. Fuchs, Infinite Abelian groups, Vol. II, Academic Press, New York. 1973.

3. _____, On torsion Abelian Groups quasi-projective over their endomorphism rings, Proc. Amer. Math. Soc., 42 (1), Jan. (1974), 13-15.

4. J. D. Reid, On the Ring of Quasi-Endomorphisms of a Torsion Free Group, Topics in Abelian Groups, Chicago, (1963), 51-58.

5. ____, On rings on groups, Pacific J. Math., 53 (1974), 229-237.

6. C. Vinsonhaler and W. J. Wickless, Torsion free Abelian groups quasi-projective over their endomorphism rings, (to appear in the Pacific J. Math.).

7. L. E. T. Wu and J. P. Jans, On quasi-projectives, Illinois J. Math., **11** (1967), 439-448.

Received April 21, 1977.

THE UNINERSITY OF CONNECTICUT STORRS, CT 06268

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, California 90024

C.W. CURTIS

University of Oregon Eugene, OR 97403

C.C. MOORE

University of California Berkeley, CA 94720 J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

R. FINN AND J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON

B. H. NEUMANN

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON OSAKA UNIVERSITY

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics Vol. 74, No. 1 May, 1978

Gerald Arthur Anderson, Computation of the surgery obstruction groups	
$L_{4k}(1; \mathbb{Z}_P)$	1
R. K. Beatson, <i>The degree of monotone approximation</i>	5
Sterling K. Berberian, <i>The character space of the algebra of regulated functions</i>	15
Douglas Michael Campbell and Jack Wayne Lamoreaux, <i>Continua in the plane with</i>	
limit directions	37
R. J. Duffin, Algorithms for localizing roots of a polynomial and the Pisot Vijavaraahavan numbers	47
Alessandro Figà Talamanca and Massimo A Picardello <i>Functions that operate op</i>	- 77
the algebra $\mathbb{R}_{2}(G)$	57
John Frik Fornaess <i>Bihalamarphic mappings between weakly pseudoconver</i>	57
domains	63
Andrzei Granas, Ronald Bernard Guenther and John Walter Lee. On a theorem of S	00
Renstein	67
Jerry Grossman On groups with specified lower central series quotients	83
William H. Julian Bay Mines III and Fred Richman Algebraic numbers a	05
constructive development	01
Suriit Singh Khurana A note on Padon Nikodim theorem for finitely additive	91
Surjit Singii Khurana, A note on Kaaon-Ivikoaym theorem for finitely additive	102
Come K. Kinemidiian. A Nach Maran transition list function de come a descritores	105
Garo K. Kiremidjian, A Nash-Moser-type implicit function theorem and nonlinear	105
Doundary value problems	105
Ronald Jacob Leach, Coefficient estimates for certain multivalent functions	133
John Alan MacBain, Local and global bifurcation from normal eigenvalues. II	143
James A. MacDougall and Lowell G. Sweet, <i>Three dimensional homogeneous</i>	1.5.5
algebras	153
John Rowlay Martin, <i>Fixed point sets of Peano continua</i>	163
R. Daniel Mauldin, <i>The boundedness of the Cantor-Bendixson order of some</i>	
analytic sets	167
Richard C. Metzler, Uniqueness of extensions of positive linear functions	179
Rodney V. Nillsen, <i>Moment sequences obtained from restricted powers</i>	183
Keiji Nishioka, Transcendental constants over the coefficient fields in differential	
elliptic function fields	191
Gabriel Michael Miller Obi, An algebraic closed graph theorem	199
Richard Cranston Randell, <i>Quotients of complete intersections by</i> C [*] actions	209
Bruce Reznick, Banach spaces which satisfy linear identities	221
Bennett Setzer, <i>Elliptic curves over complex quadratic fields</i>	235
Arne Stray. A scheme for approximating bounded analytic functions on certain	
subsets of the unit disc	251
Nicholas The Varopoulos. A remark on functions of bounded mean oscillation and	
bounded harmonic functions. Addendum to: "BMO functions and the	
$\overline{\partial}$ -equation"	257
Charles Irvin Vinsonhaler, Torsion free abelian groups quasi-projective over their	
endomorphism rings. II	261
Thomas R. Wolf. <i>Characters of p'-degree in solvable groups</i>	267
Toshihiko Yamada. Schur indices over the 2-adic field	273