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SEQUENCES OF BOUNDED SUMMABILITY DOMAINS

R. M. DEVOS AND F. W. HARTMANN

C. Goffman and G. N. Wollan conjectured that the bounded
summabilίty field of a regular matrix A is so thin that the
union of countably many such sets is not dense in m. G. M.
Petersen proved this conjecture. This result is strengthened
by showing if A is a noncoercive matrix whose summability
field contains all the finite sequences then its bounded sum-
mability field is so thin that the union of countably many
such sets is not dense in m. An example is given to show
that the condition of containing the finite sequences is
necessary.

Preliminaries* Let m and c be respectively the Banach spaces
of bounded and convergent sequences, x = {xn}, of complex numbers
w i t h n o r m \\x\U = s u p Λ \xn\, B(x, r) = {z e m : \\x + z\\oo < r}. D e n o t e

the nth. section of x by Pn(x) = (x19 , xΛ, 0, 0, •)• For each in-
finite matrix A the set of x transformed by A to convergent se-
quences is called the summability field of A and denoted by cA. The
set of bounded sequences in cA is called the bounded summability
field of A and is denoted by Ĵ Γ A is called conservative if and
only if cA Z) c, regular if and only if A is conservative and limits
are preserved, coercive if and only if cA Z) m. If A = (ank), then the
A transform of x is designated by Ax = {{Ax)n} — {Σikankxk}. A is
conservative if and only if |ĵ 4.||oo = supnΣ*l#»*l < °o, ak = lim^α^
exists for each k and HϊΆn^kank exists [5, p. 165]. A is coercive
if and only if Σ& I a»t I converges uniformly in n and ak exists for
each k [5, p. 169]. Define the essential norm of A by ||^L||C =
lim supΛ Σfc I ank — ak \ whenever ak exists for each k. (Note || ||c is
not a true norm, since || ||c may be infinite.)

Let E°° be the set of all finite sequences and No the set of all
sequences of 0's and Γs. Using binary expansions there is a natural
injective mapping of (0,1) onto all but a countable subset of No.

MAIN RESULTS. C. Goffman and G. N. Wollan conjectured [4]
that the bounded summability field of regular A is so thin that the
union of countably many such sets is not dense in m. G. M. Petersen
proved this conjecture [6]. We strengthen that result and show
that in a certain sense our result is best possible.

THEOREM. Let {AJ be a countable collection of noncoercive matrices
with JZζΌ E°°, i = 1, 2, , then (j£=i *&l is n°t dense in m.

We prove the theorem through a series of lemmas. Since we
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want E°° c J%ζ we shall assume all A in the sequel have convergent
columns.

L E M M A 1. Let \\A\\oo < °° then \\A\\C = 0 if and only if A is

coercive.

Proof Suppose A is coercive. Let ε > 0. There exists k0

for all n. Since {ak} e /\ there is a &! such that k> kx implies

Σ \ak\ < ε / 3 .

Let fc2 = max (k19 k0). There exists nQ — nc(k2) such that n>n0 implies

\

Let n> n0 then

oo

=

VII

<

5'

k2

fc=l

k2

6/3

α

«.

+

c —

»-

»-

ε/3 +

l<

1 +

1 +

ε/3

ε/3 .

= ε .

Conversely assume A is noncoercive. There exists ε > 0 and
an increasing sequence of positive integers {n(p)}p=1 such that
ΣfeU+i |β»(jo,*l > ε- There exists k0 such that ΣfeU0+i lα*l < ε / 2 p ί c ^
j) with p > k0 then

Σ |αΛ(3,)ffc — αfc| *ϊ Σ |α»(j»),fc — α j

^ Σ \an(p),k\ — Σ | α Λ |

^ ε - ε/2 = ε/2.

Therefore | | 4 | | c > 0.
Let JΓ(C, C) be the Banach algebra of conservative matrices and

3Γ be the ideal of compact operators. It is well known [8] that
A 6 3ίΓ if and only if A is coercive. Γ(c, c)/*3Γ is a Banach algebra
and is called a Calkin algebra [2]. It is easily seen that || ||e is the
norm in the Calkin algebra.

LEMMA 2. Let \\A\\e < 00 and a and b be cluster points of Ax,
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xem, then |α - δ| ̂  2||A||β | |α||0 0.

335

Proof. Let a and b be cluster points of Ax and ε > 0. There
exist increasing sequences of positive integers {n(i)}f {m(j)} and No

such that for n(ί), m(j) > No

< ε

and

Σ a>mu),k%k — b<e .

There exists Nt such that n> N1 implies

Let n(i), m(j) > max (No, NJ then

a- b\ ̂ Σ an(i),k^k ~~ Σ 2ε

OO X 1 2ε

Since ε is arbitrary the conclusion follows.
The next lemma is due to Bennett and Kalton and appears as

Lemma 7 of [1, p. 577].

LEMMA 3. (Bennett and Kalton). If zlf z2, , zn is any finite
collection of complex numbers then there exists a subset J(n) of
{1, , n) such that

Σ
jej(n)

LEMMA 4. If || A\\ = oo, then there exists E(A) with E(A)czN0,
N0\E(A) of first category and if ue E(A) then B(u, 1/32) n *$*? — 0 .

Proof. Case 1. Assume all the rows of A are in z1. Let
|| A|| = oo. Pick sequences n(k) and q(k) inductively such that n(l) = 1
and

( i ) Σi°=?(fe)+i lα»(fc),il < 2~

(ϋ) ΣlLVn+i I α.(«., I > (65/7) sup, {ΣtfΓ111 αΛ |}.
By Lemma 3 select J(k) c {̂ (fc — 1) + 1, , q(k)} with
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Σ an(k),i
jkΣ

iej(k)

1 Q(k)

^ 4 Σ |α.(*).«|.
4 A +

Σ |
t=g(A-l) + i

For each natural number k define the sequence uk by u* — 1 if i e
J(k)f u\ — 0 if i ί e7(&). Let

If E(A) = n?=i L)£U <λ, then JS'(A) is of second category. [\Jΐ=* Ok

is open and dense, hence by the Baire theorem E(A) is of second
category.] Let ueE(A) and ||2|U < 1/32. u is in an infinite num-
ber of the Ok. Let ueθr. Then

\(A(u + z))nM\ ^ \(Au)nM\ - \{Az)n[r)\
q(r)

< a B f f ( Σ j +

32 έί

a<n,{r),ini
1

— ~̂» —
oo

1 9 ( r ) ι 3 3 g ( ^; 1 ) ,

4 ί=?(r—l)+l

— — V
32 i=g(r)+l

7 q(r)

82 ^ ( - i

32 έi
1 g(r)

I ^Γ 1 1 /7
32 i=q(r-l) + l

—
gg q(r-l)

32 § \an(r),ι —
32

a s r • °° .

Hence the A transform of u + z is unbounded.

2. Let A have one row, x, not in z1. Let B = (6Λfc) where
δ̂fe = P%(̂ )> ^ = 1,2, •••. Then J^a& and J5 satisfies the hy-
pothesis of Case 1. Let E(A) = ^(B) then E(A) Π J ^ = 0 and 2£(A)
satisfies the other conditions of the lemma's conclusion.

LEMMA 5. If \\A\\ < °°, and A is noncoercive then there is
E{A) with E(A) £ JV0, N0\E(A) is of first category and if ue E(A),
then B(u, 1/32) ί l ^ / = 0 .

Proof Case 1. Assume ak = 0, k — 1, 2, . Let α" be the
wth row of A. Using an argument similar to that of Petersen and
Baker [6] (see also the construction of Lemma 4) it can be shown
that without lose of generality one may assume that the rows and
columns of A are in E°° and moving to the right, (if Pόa

% = 0 then
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Pάa
m = 0 for m ̂  n). By Lemma 1 || A\\ΰ > 0. Hence there exists

increasing sequences n(j) and r(j) of positive integers such that
( i ) Wlii-»+i\**ifl.k\>\\A\\β/2

( i i ) ( P r ( i , - P r ( i-i))α ( i ) = o* ( y ) .

Let J(2j) be a subset of r(2i - 1) to r(2j) - 1 with

kej(2j)
. \>\\Λ\l

4 j = r(2j-l) + l 8

(see Lemma 3). Define O3 = {ueN0: uk = 1 if kej(2j), uk = 0 if
r(2i - 2) + 1 ̂  fc <: r(2i), fc £ /(2;?)}. Since only a finite number of
coordinates are specified for elements of Ojf Oj is open. For each
k, \J7=kOj is open and dense, hence by the Baire category theorem.
Π?=i U?=k Oj is of second category. Let E(A) = {u e No: An has
cluster points, α, 6, with |α — δ| ̂  ||A||c/8}. By construction each
element of f|?=i UT^Oj has 0 and a (\a\ > ||A||c/8) as cluster points
thus E(A) is of second category. Let ueE(A) and \\z\\oo < 1/32 and
consider A(u + z). An has two cluster points separated in distance
by at least ||A||c/8, and A{z) has cluster points separated by at most
2(1/32)|| A||β (Lemma 2). Therefore A(u + z) has at least two cluster
points; hence u + z 0

Case 2. Let ak Φ 0 for some k. Define B = (bnk) where bnk =
αA, ?ι, k = 1, 2, . 5 transforms every bounded sequence to a con-
stant sequence, thus the cluster points of (A — B)u, uem, are a
shift of those of Au, and A — B satisfies the hypothesis of Case 1.
Thus the conclusion follows in a manner similar to Case 1.

Proof of Theorem. Let At be a countable collection of non-
coercive matrices with J^J Z) E°°, i = 1, 2, . By Lemmas 4 and 5
for each i there exists E(At) £ iVo, i ? ^ ) of second category, and if
ueE(At), B(u, 1/32) Π J ^ = 0 . Thus fl?°=i -#04) ^ 0 and if we
ΓL~=i#C4), then JB(tt, 1/32) n (Lh~=i ̂ O = 0 . Hence UΓ=i JK is not
dense in m.

Goffman and Wollan in [4] gave an example of a countable
family of FK spaces contained in m whose union is dense in m.
They can be realized as summability domains in the following manner.
Let {rj be a denumeration of the nonzero rationals. Define At =
(αίίί) by

( i ) a$ = rif α £ = - 1 , ^ = 1,3,5, . . .
(ii) alS = - 1 , αίS = rr1, w = 2, 4, 6, •

αwfc = 0, k ̂  3, w = 1, 2, 3, - - -.
Then J ^ = {(αjjϊ̂ i". x1 = x, x2 = rtx, xk arbitrary for k ̂  3 and x com-
plex} Π m. Each J^J is nowhere dense in m, but UΓ=i J*f is dense.
Note, however, that J^f^E00. Hence the hypothesis that each
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j^J 2 E°° cannot be removed and our result is in some sense best
possible.

Although we have proved our result only for j^J, we conjecture
that the following more general result holds:
Conjecture. If {Fi} is a countable collection of jPϋΓ-spaces each con-
taining E°° but not m, then UΓ=i Ft is not dense in m. (See [8] for
definitions and basic results.)
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