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Let A be an equicharacteristic discrete valuation ring
with residue class field F and field of quotients K. The
purpose of this note to prove that the transfer map Kn(F) ->
Kn(A) is zero (n ^ 0).

By virtue of Quillen's localization sequence for A, this is equiv-
alent to the statement that the map Kn{A) —> KJJC) is injective.
This result has been conjectured by Gersten and proved by him in
the case in which F is a finite separable extension of a field contained
in A. We establish the general result by using a limit technique
to reduce to this special case.

LEMMA. Let A be a discrete valuation ring with maximal ideal
m and residue class field A/m = F. Suppose that A contains a
field L\ suppose further that Ff is a finite separable extension of
L satisfying L c ' F ' c F. Then there exists a subring A! of A such
that:

(a) A' is a discrete valuation ring containing L;
(b) Ar c A is local and fiat;
(c) if we denote by m' the maximal ideal of A, then m = m'A;
(d) the image of A! in F is Ff; {since m ΓΊ A = m', this implies

that we may identify the residue class field of A! with F').

Proof. Let m be generated by the parameter π. Consider first
the case in which A contains a field mapping isomorphically onto
F'; let us denote this field also by F'. π is easily seen to be alge-
braically independent of F'f so the subring Ff[π\ of A is isomorphic
to a polynomial ring in one variable over F', and π generates a
maximal ideal m'. Then A' = F'[π\m, is a discrete valuation ring.
Furthermore, elements of the complement of m' in F'[π] are units
in A, so A1 c A. A is flat over A! since A! is Dedekind and A is
torsion-free as an A'-module; the other conditions are clear.

Now suppose that A does not contain a field mapping isomor-
phically onto F'. Ff is a simple extension of L, say F' — L(a); let
feL[X] be the minimal polynomial of ά. Lift a to a e A. If we
denote by v the valuation on K, then v(f(a)) > 0 since f(a) = 0
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implies f{a) e m. If v(f(a)) > 1, consider a+π. We have f(a+π) =
f(a) + πf'(a) = πf'(a) (mod τr2). But f'(a) is a unit, for otherwise
fr(a) — 0, contradicting separability. Thus v{f{a + π)) = 1. By re-
placing a by a + π, we may therefore assume without loss of gen-
erality that v(f(a)) = 1.

Next we claim that a is transcendental over L. For, if not,
let g 6 L[X] be the minimal polynomial of a. Then g(ά) — 0 implies
/1 g, which forces / = g. But then L[a] is a field mapping isomor-
phically onto F', contradicting the assumption. Therefore L[a] is
isomorphic to a polynomial ring, and f(a) generates a maximal ideal
m\ If h e L[X] is such that h(a) is a nonunit in A, then A(δ) = 0,
which implies f\h; thus h(a)em'f and it follows that the discrete
valuation ring A! — L[a]m, is a subring of A. AraA is local and
flat, and A! projects onto F\ Since v(f(a)) = 1, it follows also that
m'4 = m.

For any ring R, let P(JΪ) denote the category of finitely gener-
ated projective i?-modules, and let Mod fg(R) denote the category of
finitely generated J?-modules. Then if R is a discrete valuation ring
with residue class field F, restriction of scalars defines an exact
functor P(F)-+ Mod fg(R), which induces a map of ϋΓ-groups Kn(F)->
Kn (Mod/#(#)). Since R is a regular ring, the inclusion P(R) —>
Mod fg(R) induces an isomorphism Kn(R) —> Kn (Mod fg(R)) [2]. Quillen
defines the transfer homomorphism tr: Kn(F) —> K»(R) to be the com-
position Kn{F)^Kn (Mod fg(R))=>Kn(R).

THEOREM. Let A be an equicharacteristic discrete valuation ring
with residue class field F. Then the transfer map tr: KJJF)-+K«(A)
is zero (n ^ 0).

Proof. Let us denote the maximal ideal of A by m. Let Fo

denote the prime field. Then we can write F — lim Ftf where Ft

ranges over the subfields of F finitely generated over Fo. Since
Quillen's JBΓ-groups commute with filtered inductive limits [2], we
have Kn(F) = lim Kn(Fi), and it suffices to prove that the composi-
tion Kn(Fi) -> l£(F) -> Kn{A) is zero for all i.

Since FQ is perfect, Ft is separably generated over Fo; i.e., there
exist elements xlf , xt of Ft such that Li = F0(x19 , xt) is purely
transcendental over Fo, and Ft is finite separable over Lt. Lift
{xlf , xt} to {xlf - - , xt} in A and consider the subring FQ[xl9 , xj
of A. {#!,••••,&«} are clearly algebraically independent over Fo.
Furthermore, all nonzero elements of this subring are units in A,
so A contains the field of quotients of this subring. In other words,
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A contains a field mapping isomorphically onto Lt. Then by the
lemma we can find a discrete valuation ring At c A, with maximal
ideal mt9 such that L* c At, At c A is local and flat, m = mtA, and
the diagram

A >F
U U

A- > F

commutes.
Now consider the diagram of exact functors

P{F) > Mod fg(A) < P(A)

P(F<)

where the vertical arrows are induced by extension of scalars; the
middle functor is exact bebause Aid A is flat.

The right-hand square clearly commutes. On the other hand, if
V is a vector space over Ft9 then the clockwise path of the left-hand
square gives V —> F φF. V, considered as an A-module. The other
path gives V-> A®A. vkA^iAJm,)®^/^ V= (A/m.A)®^^ V =
{Aim)®uί/m.) V=(A/m)®irί V — F(&F. V, using the fact that mtA — m.
Thus the two paths agree up to natural isomorphism, and we have
a commutative diagram of iΓ-groups

±
But the bottom map is zero by the result of Gersten alluded to above

[1], so we have Kn(Ft) —> Kn(F) - i Kn(A) is zero, as required.
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