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The notion of a Γ-ring was introduced by N.
Nobusawa. The class of Γ-rings contains not only all rings but
also Hestenes ternary rings. Recently, W. E. Barnes, J. Luh,
W. £. Coppage and the author studied the structure of Γ-rings
and obtained various generalizations analogous of corresponding
parts in ring theory. The object of this paper is to study the
properties of prime Γ-rings. Main results are the following
theorems: (1) A Γ-ring M is a subdirect sum of prime Γ-rings if
and only if 0>(M) = 0, where 0>(M) denotes the prime radical of
M. (2) For the matrix Γ^-ring Mm,π we have 0>(Mm,n) =
(^(M)) m n , where M is a ring such that x E MTxTM for every
xeM.

2. Preliminaries. Let M and Γ be two abelian groups. If for
all x, y, z E M and all α, β E Γ, the conditions (1) xay E M (2)
(JC + y)az = xaz + yaz, x(a + β)z = xaz + xβz, xa(y + z) = xay + xaz,
(3) (xay)βz = xa(yβz) are satisfied, then we call M a Γ-ring.

If A and B are subsets of a Γ-ring M and Θ C Γ, we denote A ΘJ5,
the subset of M consisting of all finite sums of the form Σα,γΛ where
ciiEAibiEB and jiEΘ. For singleton subsets we abbreviate this
notation for example, {α}ΘJB = a&B. A right ideal (left ideal) of a
Γ-ring M is an additive subgroup J of Af such that ITM C /
(MΓ/ C /). If / is both a right and a left ideal, then we say that / is an
ideal, or two-sided ideal of M. For each a of a Γ-ring Λί, the smallest
right ideal containing a is called the principal right ideal generated by a
and is denoted by | α). Similarly we define {a \ and (α), the principal left
and two-sided (respectively) ideals generated by a.

Let / be an ideal of a Γ-ring M. If for each a + J, b + I in the factor
group Λf/I, and each γ E Γ, we define (α + J)γ(fc + I) = αγfc + /, then
M// is a Γ-ring which we shall call the Γ-residue class ring of M with
respect to /.

If Mi is a Γ.-ring for i = 1,2 then an ordered pair (0, φ) of mappings
is called a homomorphism of Mi onto M2 if it satisfies the following
properties: (1) θ is a group homomorphism from Mx onto M2 (2) φ is a
group isomorphism from Γi onto Γ2 (3) For every x,y E Mu 7 £ I\,
(xγy)0 = (x0)(γψ)(y0). The kernel of the homomorphism (0, φ) is
defined to be K = {x E M \ xθ *= 0}. Clearly K is an ideal of M. If 0 is
a group isomorphism, that is, if K = 0, then (0, φ) is called an isomorph-
ism from the Γrring Mx onto the Γ2-ring M2.

Let I be an ideal of the Γ-ring M. Then the ordered pair (p, t) of
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mappings, where ρ:M —>M/I is defined by xp = x +1 and i is the
identity mapping of Γ, is a homomorphism called the natural
homomorphism from M onto MIL

For all other notions relevant to Γ-rings we refer to [4].

3. Semi-primeness.

DEFINITIONS. An ideal P of a Γ-ring M is prime if for any ideals
A,B QM,AYBCP implies A C P o r B C P . A subset S of M is an
m-system in M if S = 0 or if α, b G S implies (a)Γ(b) ΠS^0. The
prime radical 2P(A) is the set of x in M such that every m-system
containing x meets A. The prime radical of the zero ideal in a Γ-ring M
is called the prime radical of the Γ-ring M which we denote by
3>{M). An ideal Q of M is semiprime if, for any ideal [/, L T l / C O
implies U CO. A Γ-ring M is semi-prime if the zero ideal is semi-
prime.

The following theorem characterizes semi-primeness for ideals in
Γ-rings. The proof is a minor modification of the proof of the corres-
ponding theorem in ring theory, and we omit it.

THEOREM 1. If Q is an ideal in a Y-ring M, all the following
conditions are equivalent.

(1) Q is a semi-prime ideal
(2) If a GO such that aYMYa C Q, then a G Q.
(3) // (a) is a principal ideal in M such that (α)Γ(α)CQ, then

aEQ.
(4) // U is a right ideal in M such that UYUCQ, then UCQ.
(5) If V is a left ideal in M such that VY V C Q, then VCQ.

COROLLARY 1. A Y-ring M is semi-prime if and only if aYMYa -
0 implies a = 0.

DEFINITION. A subset S of M is strongly nilpotent if there exists a
positive integer n such that (SY)nS = (0).

It follows easily by induction that if Q is a semi-prime ideal and A is
an ideal such that (A Y)nA C Q for an arbitrary positive integer n, then
A QQ. Hence, (0) is a semi-prime ideal if and only if M contains no
nonzero strongly nilpotent ideal. By Theorem 1 (4) and (5), we have
also that (0) is a semi-prime ideal if and only if M contains no nonzero
strongly nilpotent right (left ideal).

The author [3] showed the following result.
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THEOREM 2. An ideal Q in a Γ-ring M is a semi-prime ideal in M if
and only if&(Q)=Q.

By Theorem 2, (0) is a semi-prime ideal if and only if £P(M) = (0).

Thus we have the following theorem.

THEOREM 3. A Γ-ring M has zero prime radical if and only if it
contains no strongly nilpotent ideal {right ideal, left ideal),

4. Prime Γ-rings. In this section we shall be concerned with
the concept introduced in the following definition.

DEFINITION. A Γ-ring M is said to be prime if the zero ideal is
prime.

The following theorem is analogous to the corresponding theorem in
ring theory, and we omit its proof.

THEOREM 4. If M is a Γ-ring, the following conditions are
equivalent:

(1) M is a prime Γ-ring.
(2) Ifa,bEM and aΓMΓb = (0), then α = 0 or b=0.
(3) If (a) and (b) are principal ideals in M such that (a)Γ(b) = (0),

then a = 0 or b = 0.
(4) If A and B are right ideals in M such that A ΓB = (0), then

A=(0)orB= (0).
(5) If A and B are left ideals in M such that A ΓB = (0), then A = (0)

or B = (0).

The importance of the concept of prime Γ-rings stems primarily from
the following fact.

THEOREM 5. // P is an ideal in the Γ-ring M, then the Γ-residue
class ring M/P is a prime Γ-ring if and only ifP is a prime ideal in M.

We prepare the following lemma which is fairly easy to prove, and
we omit the proof.

LEMMA 1. Let (β,ι) be a homomorphism of Γ-ring M onto the
Γ-ring N, with kernel K. Then each of the following is true:

(1) If I is an ideal (right ideal) in M, then Iθ is an ideal (right ideal)
in N.
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(2) If J is an ideal (right ideal) in N, then Jθ1 is an ideal (right ideal)
in M which contains K.

(3) // / is an ideal (right ideal) in M which contains K, then
I = (IΘ)Θ~\

(4) The mapping I-+IΘ defines a one to one mapping of the set of
ideals (right ideals) in M which contain K onto the set of all ideals (right
ideals) in N.

Proof of Theorem 5. Let M/P be prime and A, B be ideals of M
such that ATB C P. Let (p, i) be the natural homomorphism from M
onto M/P. Then by Lemma 1 Aθ and Bθ are ideals of M/P such that
AΘΓBΘ = (0). Since M/P is prime, it follows that Aθ = (0) or Bθ = (0),
that is, A C P or B C P. Thus P is a prime ideal in M.

Conversely, let P be a prime ideal in M. Lemma 1 shows that each
ideal in M/P is of the form A /P, where A is an ideal in M which contains
P. Thus we may assume that A/P,B/P be ideals of M/P such that
(A/P)T(B/P) = (0), which implies Λ Γ B C P . Then by the primeness of
P we have A C F o r B C ? . Hence A = P or B = P and so A IP = (0)
or B/P = (0). This completes the proof.

Barnes [1] has characterized 2P(M) as the intersection of all prime
ideals of M.

The author [4] has shown the following lemma.

LEMMA 2. A T-ring M is a subdirect sum of T-rings Sh i E 21, if and
only if for each i E 2ί there exists in M a two-sided ideal Kι such that
M/K, = Sh moreover Π ^ K , = (0).

Thus, these facts and Theorem 5 yield the following theorem which
is analogous to Theorem 4.3 in [4].

THEOREM 6. A T-ring M is a subdirect sum of prime T-rings if and
only if

Following Luh [2], we introduce the matrix ring Mmn.
Let G be an additive group. We shall denote by GmM the additive

group of all m x n matrices over the group G. For l g i ^ m , l ^ / ^ n ,
and a EG, let aEx] denote the matrix having a at the ith row and /th
column, and 0 elsewhere.

Let M be a Γ-ring. Consider the group Mmn and Γnm. For
(OijMbijEM^n and ( γ ^ E Γ ^ , define (aij)(yij)(bij) = (c/y), where cη =
Σ?=iΣj= 1αΛγh k6k /. Then M m n forms a Γ^-ring.

We now prove the next theorem which will indicate one way to
construct new prime Γ-rings from given ones.
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THEOREM 7. // M is a Γ-r/ng, the matrix ring M m n is a prime
Y^-ring if and only if M is a prime Γ-ring.

Proof Let us prove that if M is not prime, then M m n is not
prime. If M is not prime, there exist nonzero elements a and b of M
such that aTMYb = 0. Then, we have, for example,
aEnY^mMmnY^mbEn = Q with aEn and bEn nonzero elements of
Mw,n. Hence, M m n is not prime. Conversely, suppose that Mm>n is not
prime, and hence that there exist nonzero matrices XUja^Eμ and Σ^V^/
such that (X / /α i /^)Γ^mMm^m(Σ/,ΛJB / 7) = 0. Let /?,<?, r and s be fixed
positive integers such that am τ£ 0 and brs ^ 0. As a special case of the
preceding equation, we find that for each x E M, each γ, η G Γ,

= 0.

In particular, the (p,s) element must be zero, that is,
0. Since this is true for every x in M and every γ, η in Γ, we have
a^YMYbrs = 0, and M is not prime. This completes the proof.

Luh [2] has obtained the following lemma.

LEMMA 3. Let M be a Y-ring such that x ELMYXYM for every
x EM. Then the ideals of the I \ m -ring M m n are the form f/mn, where U is
an ideal of M.

We prepare the following lemma.

LEMMA 4. If I is an ideal in the Y-ring M, then the matrix Y^-ring
(M//) m n is isomorphic to the Y^-ring Mm,n//mπ.

Proof Let θ be a mapping of the I \ m -ring (M//)m,n to the I\m-ring
Mm,n//m,n such that ( ^ +I)Θ = (xiy) + /m>n. Clearly, θ is a group
isomorphism from (M//)m ? n onto Mm n//m n . Let t be an identity mapping
from I \ m onto I \ m . By the definition of multiplications of the Γ-residue
class ring, we have that

+ I)(Ύij)(yi} + / ) ] * = (** + /)β, where (z/;) = (x,

This shows that (0, i) is an isomorphism of (M/I)m,n onto Mm n//m n.

We now prove the following result.
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THEOREM 8. Let M be a Γ-ring such that x E MTxTM for every
M. If <3>{M) is the prime radical of the Γ-ring M, then &(Mmn) =

Proof From Lemma 3 it follows easily that /->Jm,n (I an ideal in
M) is a one to one mapping of the set of all ideals in M onto the set of all
ideals in Mm,n. Moreover, by Lemma 4, (M//)m,n = Mm>n//m>n. Hence,
by Theorem 7, Mmn//m?n is a prime Γn,m-ring if and only if M/I is a prime
Γ-riπg. From Theorem 5 it follows that Jm,n is a prime ideal of Mmn if
and only if / is a prime ideal of M. Thus, if {Pi \ i E 21} is the set of all
prime ideals in M, we have

= n

REMARKS. A Γ-ring M is said to be simple if (1) MΓM^ 0 and (2)
M has no ideals other than 0 and M itself. If M is simple, MΓxΓM =
M for each nonzero element x in M. Hence x E MΓxΓM. Thus, for a
simple Γ-ring M, 0>(Mm,π) = (^(M))m,π = 0.

If there exists an element e in M and an element δ in Γ such that
xde = edx = x for every element x EM,e is called an unity of M. If M
has an unity, for every x in M X E M Γ J C Γ M , and then ίP(Mmn) =
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