Pacific Journal of Mathematics

A SIMPLE PROOF OF THE EXISTENCE OF MODULAR AUTOMORPHISMS IN APPROXIMATELY FINITE-DIMENSIONAL VON NEUMANN ALGEBRAS

ROBERTO LONGO

Vol. 75, No. 1

September 1978

A SIMPLE PROOF OF THE EXISTENCE OF MODULAR AUTOMORPHISMS IN APPROXIMATELY FINITE DIMENSIONAL VON NEUMANN ALGEBRAS

Roberto Longo

An elementary direct proof of Tomita-Takesaki Theorem for an AFD von Neumann Algebra.

Introduction. After that M. Tomita [5] proposed the 1. modular automorphisms of the several proofs existence of Tomita-Takesaki theorem have been given by Takesaki, van Daele, Haagerup (unpublished) and Zsido [4, 6, 7, 8], but none of these is elementary. However a simple proof of the theorem for approximately finite dimensional von Neumann algebras (with a cyclic separating vector) may be extracted by an article of N.M. Hugenholtz and J.D. Wieringa 1], which was published very soon after the appearance of Tomita's original preprint. Motivated by the great interest that approximately finite dimensional von Neumann algebras have in Mathematics and in Physics, we present a simplified shorter version of the proof of Hugenholtz and Wieringa.

2. Statement and Proof. Let \mathcal{R} be a von Neumann algebra acting on the Hilbert space \mathcal{H} and $\xi \in \mathcal{H}$ a cyclic separating vector for \mathcal{R} and then also for its commutant \mathcal{R}' . As usual we introduce the antilinear operators

$$S_0: A\xi, A \in \mathcal{R}, \to A^*\xi, \ \mathcal{D}(S_0) = \mathcal{R}\xi,$$

$$F_0: B\xi, B \in \mathcal{R}', \to B^*\xi, \quad \mathcal{D}(F_0) = \mathcal{R}'\xi;$$

 S_0 (and F_0) is a closable operator: in fact if $A \in \mathcal{R}$ and $B \in \mathcal{R}'$

$$(S_0A\xi, B\xi) = (A^*\xi, B\xi) = (\xi, AB\xi) = (\xi, BA\xi)$$

= $(B^*\xi, A\xi) = (F_0B\xi, A\xi)$

so that $S_0^* \supset F_0$ and $\mathcal{D}(S_0^*)$ is dense.

In what follows we call $F = S_0^*$ the adjoint of S_0 , $S = F^*$ the closure of S_0 and $\Delta = FS$ the modular operator which is non singular and positive. For the moment we suppose \mathcal{R} finite dimensional; then there exists a faithful tracial state τ and for each state ω of \mathcal{R} there exists a positive operator $H \in \mathcal{R}$ s.t.

$$\omega(A) = \tau(AH) = \tau(H^{1/2}AH^{1/2}), \qquad A \in \mathcal{R},$$

moreover *H* is invertible iff ω is faithful. Let $\pi: \mathcal{R} \to \mathcal{B}(\mathcal{H}_{\tau})$ be the *GNS* representation given by τ and ω a faithful state of \mathcal{R} : we have $\mathcal{H}_{\tau} = \mathcal{R}, \ \pi(A)B = AB$ if $A, B \in \mathcal{R}$ and

$$\omega(A) = (\pi(A)H^{1/2}, H^{1/2}), \quad A \in \mathcal{R},$$

where $H^{1/2} \in \mathcal{R}$ is a cyclic separating vector for $\pi(\mathcal{R})$. It is easily seen the operator Δ of $\pi(\mathcal{R})$ relative to the vector $H^{1/2}$ is given by

$$\Delta: A \in \mathscr{H}_{\tau} \to HAH^{-1} \in \mathscr{H}_{\tau}$$

from which it follows

$$\Delta^{-u}\pi(A)\Delta^{u}=\pi(H^{-u}AH^{u}), \qquad A\in\mathscr{R}, t\in\mathbf{R},$$

and then

$$\Delta^{-u}\pi(\mathscr{R})\Delta^{u}=\pi(\mathscr{R}), \qquad t\in\mathbf{R}.$$

By the uniqueness of the GNS representation we then see that for each finite dimensional von Neumann algebra \mathscr{R} the modular operator Δ relative to a cyclic separating vector is such that

$$\Delta^{-it}\mathscr{R}\Delta^{it}=\mathscr{R}, \qquad t\in\mathbf{R},$$

which is a particular case of Tomita-Takesaki theory.

Next step is proving the theorem when \mathscr{R} is approximately finite dimensional, in the sense that there exists an increasing sequence $\mathscr{M}_n \subset \mathscr{R}$ of finite dimensional von Newmann algebras s.t.

$$\mathscr{R} = \left(\bigcup_{n=1}^{\infty} \mathscr{M}_n\right)''.$$

Then we have to prove:

THEOREM 1. Let \mathcal{R} be an approximately finite dimensional von Neumann algebra acting on the Hilbert space \mathcal{H} and $\xi \in \mathcal{H}$ a cyclic separating vector for \mathcal{R} . The modular operator Δ relative to ξ is such that

$$\Delta^{-u}\mathscr{R}\Delta^{u}=\mathscr{R}, \qquad t\in\mathbf{R}.$$

Our proof requires some lemmas. Let \mathcal{M}_n be an increasing se-

quence of finite dimensional von Neumann algebras generating \mathscr{R} and put $\mathfrak{A} = \bigcup_{n=1}^{\infty} \mathscr{M}_n$ so that \mathfrak{A} is a weakly dense * subalgebra of \mathscr{R} .

LEMMA 1. The linear subspace of \mathcal{H} $\mathfrak{A}\xi = \{A\xi \mid A \in \mathfrak{A}\}$ is a core for S.

Proof. It is enough to show that for each $A \in \mathcal{R}$ there exists a sequence $A_n \in \mathfrak{A}$ s.t.

$$A_n \xi \to A \xi$$
 and $A_n^* \xi \to A^* \xi$

and this follows because the selfadjoint elements of \mathfrak{A} are dense in the selfadjoint elements of \mathfrak{R} in the strong topology.

Now we call \mathcal{H}' the domain of S with scalar product

$$(x, y)' = (x, y) + (Sy, Sx), \qquad x, y \in \mathcal{D}(S).$$

As the topology of \mathcal{H}' is that of the graph of S, we see that \mathcal{H}' is a Hilbert space and by lemma 1 $\mathfrak{A}\xi$ is a dense linear subspace of \mathcal{H}' . Now the sesquilinear form $(x, y), x, y \in \mathcal{H}'$, is bounded in \mathcal{H}'

$$|(x, y)| \le ||x|| ||y|| \le ||x||' ||y||', \quad x, y \in \mathcal{H}'$$

 $(||x||' = (x, x)'^{1/2})$ and therefore there exists a linear operator $T \in \mathcal{B}(\mathcal{H}')$ of norm less than 1 s.t.

(1)
$$(Tx, y)' = (x, y), \quad x, y \in \mathcal{H}'$$

Let $E_n \in \mathcal{M}'_n$ be the selfadjoint projection of \mathcal{H} onto $\mathcal{M}_n \xi$ and $\mathcal{M}_{nE_n} = \{A \mid_{E_n(\mathcal{H})} | A \in \mathcal{M}_n\}$ the von Neumann algebra \mathcal{M}_n cut down by E_n . The application

(2)
$$\pi_n \colon A \in \mathcal{M}_n \to A \mid_{\mathcal{M}_{n_{\mathcal{E}}}} \in \mathcal{M}_{n_{E_n}}$$

is a * isomorphism between \mathcal{M}_n and $\mathcal{M}_{n_{E_n}}$ because ξ is a separating vector for \mathcal{M}_n ; moreover ξ is a cyclic separating vector for $\mathcal{M}_{n_{E_n}}$ and therefore if S_n is the antilinear operator

$$S_n: A\xi = \pi_n(A)\xi \to A^*\xi = \pi_n(A)^*\xi, \qquad A \in \mathcal{M}_n$$

then, by what we know, the modular operator $\Delta_n = S_n^* S_n$ is s.t.

$$\Delta_n^{-it} \mathcal{M}_{n_{E_n}} \Delta_n^{it} = \mathcal{M}_{n_{E_n}}, \qquad t \in \mathbf{R}.$$

We see also that $S_n = S |_{\mathcal{M}_{n_{\varepsilon}}}$ and if \mathcal{H}'_n is the linear space $\mathcal{D}(S_n)$ with scalar product

$$(x, y)' = (x, y) + (S_n y, S_n x), \qquad x, y \in \mathcal{D}(S_n)$$

then \mathcal{H}'_n is a Hilbert subspace of \mathcal{H}' ; as in (1) there exists $T_n \in \mathcal{B}(\mathcal{H}'_n)$ of norm less that 1 s.t.

(3)
$$(T_n x, y)' = (x, y) \qquad x, y \in \mathcal{H}'_n.$$

LEMMA 2. Let $P_n \in \mathcal{B}(\mathcal{H}')$ be the selfadjoint projection of \mathcal{H}' onto \mathcal{H}'_n . The operators $\tilde{T}_n = T_n P_n + (I - P_n) \in \mathcal{B}(\mathcal{H}')$ are s.t.

$$|| Tx - \tilde{T}_n x ||' \to 0, \qquad \forall x \in \mathcal{H}'.$$

Proof. As $\bigcup_{n=1}^{\infty} \mathcal{H}'_n = \mathfrak{A}\xi$ is dense in \mathcal{H}' by Lemma 1, the orthogonal projections P_n strongly converge to I in \mathcal{H}' (we use the symbol I to indicate both the identity of \mathcal{H}' and the identity of \mathcal{H}).

By (1) and (3)

$$(Tx, y) = (T_n x, y)$$
 if $x, y \in \mathcal{H}'_n$

and therefore

$$\tilde{T}_n = P_n T P_n + (I - P_n);$$

it follows that

$$\|\tilde{T}_n x - T x\|' \to 0$$

if x belongs to the dense subspace $\bigcup_{n=1}^{\infty} \mathcal{H}'_n$ and then for each $x \in \mathcal{H}'$ because the \tilde{T}_n are equibounded.

We extend the modular operators $\Delta_n = S_n^* S_n$ to the whole space \mathcal{H} by

$$\tilde{\Delta}_n = \Delta_n E_n + I - E_n,$$

then each $\tilde{\Delta}_n$ is a positive invertible operator and we may consider $\tilde{\Delta}_n^u$, $t \in \mathbf{R}$.

LEMMA 3. For each real t, Δ^{u} is the strong limit of $\tilde{\Delta}_{n}^{u}$ i.e.

$$\|\tilde{\Delta}_n^{ii}x-\Delta^{ii}x\|\to 0, \qquad x\in\mathcal{H}.$$

Proof. The lemma is proved if we show that

(4)
$$(\tilde{\Delta}_n + I)^{-1} \rightarrow (\Delta + I)^{-1}$$
 strongly;

in fact by a classical theorem on generalized convergence [3, Th. VIII. 20] it follows from (4) that

(5)
$$f(\tilde{\Delta}_n) \rightarrow f(\Delta)$$
 strongly

for each bounded continuous complex valued function f on the real line; moreover the same argument shows that (5) holds also when f is bounded continuous on an open subset A of the real line of spectral measure 1 for Δ and each $\tilde{\Delta}_n$; in particular for $A = (0, \infty)$ and $f(\lambda) = \lambda^{ii}$ the conclusion of the lemma follows from (4).

Note that the range of $(\Delta + I)^{-1}$ is equal to $\mathcal{D}(\Delta) \subset \mathcal{D}(S)$ so that we have by (1), for each $x, y \in \mathcal{D}(S)$,

$$((\Delta + I)^{-1}x, y)' = ((\Delta + I)^{-1}x, y) + (Sy, S(\Delta + I)^{-1}x)$$
$$= ((\Delta + I)^{-1}x, y) + (\Delta(\Delta + I)^{-1}x, y)$$
$$= ((\Delta + I)(\Delta + I)^{-1}x, y)$$
$$= (x, y) = (Tx, y)'$$

which implies

$$T = (\Delta + I)^{-1}|_{\mathscr{D}(S)}.$$

By the same argument $T_n = (\Delta_n + I)^{-1}$ and then

$$ilde{T}_n|_{\mathcal{M}_{n\xi}} = (ilde{\Delta}_n + I)^{-1}|_{\mathcal{M}_{n\xi}}$$

Applying Lemma 2, if $x \in \mathfrak{A}\xi$ we have for large *n*

$$\| (\tilde{\Delta}_n + I)^{-1} x - (\Delta + I)^{-1} x \| \leq \| (\tilde{\Delta}_n + I)^{-1} x - (\Delta + I)^{-1} x \|'$$

= $\| \tilde{T}_n x - T x \|' \to 0,$

and as $\|(\tilde{\Delta}_n + I)^{-1}\| \leq 1$, $n \in \mathbb{N}$, and $\mathfrak{A}\xi$ is dense in \mathcal{H} , we obtain the lemma.

By the isomorphism π_n defined in (2) we may define the modular automorphisms σ_i^n , $t \in \mathbf{R}$, of \mathcal{M}_n by

$$\pi_n(\sigma_t^n(A)) = \Delta_n^{-it} \pi_n(A) \Delta_n^{it}, \quad A \in \mathcal{M}_n, \quad t \in \mathbf{R}.$$

LEMMA 4. If $A \in \mathfrak{A}$ then the sequence $\sigma_i^n(A)$, defined above a certain integer, strongly converges to $\Delta^{-u}A\Delta^{u}$, i.e.

$$\|\sigma_t^n(A)x-\Delta^{-it}A\Delta^{it}x\|\to 0, \qquad x\in\mathcal{H}, t\in\mathbf{R}.$$

Proof. As we suppose $A \in \mathfrak{A}$ there exists $N \in \mathbb{N}$ s.t. $A \in \mathcal{M}_n$, $n \ge N$. Take $x \in \mathfrak{A}\xi$: there exists $N' \in \mathbb{N}$ s.t. $x \in \mathcal{M}_n\xi$, $n \ge N'$. Then we have for $n \ge \max(N, N')$

$$\sigma_t^n(A)x = \pi_n(\sigma_t^n(A))x = \Delta_n^{-it}A\Delta_n^{it}x = \tilde{\Delta}_n^{-it}A\tilde{\Delta}_n^{it}x$$

and Lemma 3 implies

$$\|\sigma_t^n(A)x - \Delta^{-u}A\Delta^{u}x\| \to 0, A \in \mathfrak{A}, x \in \mathfrak{A}\xi, t \in \mathbf{R}.$$

As $\mathfrak{A}\xi$ is dense in \mathscr{H} and $\|\sigma_{\iota}^{n}(A)\| \leq \|A\|$ is an equibounded sequence the lemma follows.

Proof of Theorem 1. In view of Lemma 4 if $A \in \mathfrak{A}$ then $\Delta^{-u}A\Delta^{u}$, $t \in \mathbf{R}$, belongs to the strong closure of \mathfrak{A} i.e.

$$\Delta^{-u}\,\mathfrak{A}\Delta^{u}\subset\mathfrak{R},\qquad t\in\mathbf{R};$$

by continuity

$$\Delta^{-u}\mathscr{R}\Delta^{u}\subset\mathscr{R}, \qquad t\in\mathbf{R}$$

and then by symmetry

$$\Delta^{-it}\mathscr{R}\Delta^{it}=\mathscr{R}, \qquad t\in\mathbf{R}.$$

REMARK 1. The essential tool we have used in the proof is the existence of a faithful tracial state on each approximating von Neumann algebra \mathcal{M}_n

Acknowledgements. We are deeply indebted to S. Doplicher for encouragement and helping. We gratefully acknowledge the hospitality extended to us by Prof. L. Streit at ZiF, Bielefeld University in June-July 1976.

References

1. N. M. Hugenholtz, and J. D. Wieringa, On Locally Normal States in Quantum Statistical Mechanics, Comm. Math. Phys., 11 (1969) 183-197.

2. R. Longo, Dimostrazione del Teorema di Tomita–Takesaki sul Commutante e sugli Automorfismi Modulari di un'Algebra di von Neumann Iperfinita, Tesi dell Universita di Roma, (1975).

3. M. Reed, and B. Simon, *Methods of Modern Mathematical Physics*, I, Functional Analysis-Academic Press, (1972).

4. M. Takesaki, Tomita's Theory of Modular Hilbert Algebras and its Application, Springer, (1970).

5. M. Tomita, Kyushu University preprint, (1967).

6. A. Van Daele, A Bounded Operator Approach to the Tomita-Takesaki Theory, Rome Meeting on C*-Algebras and their Applications to Theoretical Physics, Symposia Mathematica, Academic Press, (1977).

7. ____, Lectures given in Varenna summer school, (1973).

8. L. Zsido, A proof of Tomita's Fundamental Theorem in Theory of Standard von Neumann Algebras, Revue Comm. Pures et Appl., (to appear).

Received April 20, 1977. Supported in part by Consiglio Nazionale delle Ricerche (G.N.A.F.A.)

ISTITUTO MATEMATICO G. CASTLNUOVA UNIVERSITÀ DI ROMA 00100 ROMA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

J. DUGUNDJI

Stanford University

Stanford, CA 94305

F. WOLF

Department of Mathematics

R. FINN AND J. MILGRAM

University of Southern California Los Angeles, CA 90007

ICHARD ARENS (Managing Editor) niversity of California os Angeles, CA 90024

. A. BEAUMONT niversity of Washington eattle, WA 98105

. C. MOORE niversity of California erkeley, CA 94720

ASSOCIATE EDITORS

. F. BECKENBACH

B. H. NEUMANN

K. YOSHIDA

SUPPORTING INSTITUTIONS

NIVERSITY OF BRITISH COLUMBIA ALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY NIVERSITY OF CALIFORNIA **IONTANA STATE UNIVERSITY** NIVERSITY OF NEVADA EW MEXICO STATE UNIVERSITY **REGON STATE UNIVERSITY** NIVERSITY OF OREGON SAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they a ot owners or publishers and have no responsibility for its contents or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in type rm or offset-reproduced (not dittoed), double spaced with large margins. Underline Greek letters in re terman in green, and script in blue. The first paragraph or two must be capable of being used separately as nopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, hich case they must be identified by author and Journal, rather than by item number. Manuscripts, uplicate, may be sent to any one of the four editors. Please classify according to the scheme of Math. Review idex to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Bart Iniversity of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially pai dditional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$72. year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions. Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should ent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

UBLISHED BY PACIFIC JOURNAL OF MATHEMATICS. A NON-PROFIT CORPORATION Printed at Jerusalem Academic Press, POB 2390, Jerusalem, Israel.

> Copyright © 1978 Pacific Journal of Mathematics All Rights Reserved

Pacific Journal of Mathematics Vol. 75, No. 1 September, 1978

Mieczyslaw Altman, General solvability theorems	1
Denise Amar and Eric Amar, Sur les suites d'interpolation en plusieurs	
variables	15
Herbert Stanley Bear, Jr. and Gerald Norman Hile, Algebras which satisfy a	
second order linear partial differential equation	21
Marilyn Breen, Sets in \mathbb{R}^d having $(d-2)$ -dimensional kernels	37
Gavin Brown and William Moran, Analytic discs in the maximal ideal space	
of $M(G)$	45
Ronald P. Brown, Quadratic forms with prescribed Stiefel-Whitney	
invariants	59
Gulbank D. Chakerian and H. Groemer, <i>On coverings of Euclidean space by</i>	
convex sets	77
S. Feigelstock and Z. Schlussel, <i>Principal ideal and Noetherian groups</i>	87
Ralph S. Freese and James Bryant Nation, <i>Projective lattices</i>	93
Harry Gingold, Uniqueness of linear boundary value problems for	
differential systems	107
John R. Hedstrom and Evan Green Houston, Jr., <i>Pseudo-valuation</i>	
domains	137
William Josephson, Coallocation between lattices with applications to	
measure extensions	149
M. Koskela, A characterization of non-negative matrix operators on l ^p to l ^q	
with $\infty > p \ge q > 1$	165
Kurt Kreith and Charles Andrew Swanson, <i>Conjugate points for nonlinear</i>	
differential equations	171
Shoji Kyuno, <i>On prime gamma rings</i>	185
Alois Andreas Lechicki, On bounded and subcontinuous multifunctions	191
Roberto Longo, A simple proof of the existence of modular automorphisms	171
in approximately finite-dimensional von Neumann algebras	199
Kenneth Millett, <i>Obstructions to pseudoisotopy implying isotopy for</i>	
embeddings	207
William F. Moss and John Piepenbrink, <i>Positive solutions of elliptic</i>	201
equations	219
Mitsuru Nakai and Leo Sario, <i>Duffin's function and Hadamard's</i>	217
conjecture	227
Mohan S. Putcha, <i>Word equations in some geometric semigroups</i>	243
Walter Rudin, <i>Peak-interpolation sets of class</i> C^1	243
Elias Saab, On the Radon-Nikodým property in a class of locally convex	207
	281
<i>spaces</i>	
Suan Sui Suche wang, Sphinne ing Ol & monic Separable por violanda	275