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Radamacher has defined a generalized Dedekind sum

sthk;xy)= > ((h%l”)) ((‘kﬂ»

a(mod k)

and proved a reciprocity theorem for this sum that generalizes
the well known result for s(h,k). In the present paper we
define

bs(hk3x,y)= > E,(h(g—;:—x> + x> B, (%2),

a(mod k)

b Oksx )= 3 (=17 (1) Ay (i k%,9),

where B, (x) is the Bernoulli function, and show that
(s+Dk*ars(h k3 x,y)— (@ + Do (kb y, x)
= (s + DkB..1(x)B,(y) ~ (r + DhB,(x)Beus(y)  ((h, k)=1).

We also prove the polynomial reciprocity theorem

(1 _ v) “2_1 uh—[(hn+z)/k]ua _ (1 - u) hz—l Uk—[(kb+z)/h]ub = u'l - Uk
a=0 b=0

((h,k)=1)
as well as some related results.
1. Introduction. For real x put
x—[x]-% (x # integer)
X =
() 0 (x = integer),

where [x] denotes the greatest integer =x. The Dedekind sum s(h, k)
is defined by
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w3 (@) (%)

The most striking property of s(h, k) is the reciprocity theorem
(1.2) 12hk{s(h,k)+s(k,h)}=h?>~3hk + k*+1 ((h, k)=1).
For an excellent introduction and many references to Dedekind
sums see [9]. N
The Bernoulli function B, (x) is defined by
B,(x) = B.(x —[x]),

where B,(x) is the Bernoulli polynomial defined by

(1.3) ze

Note that, for x # integer, B (x) = ((x)).
Apostol [1], [2] defined the generalized sum

(1.4) shik)= S B, (E’) E"(f‘k—’)

(mod k)

and proved the reciprocity theorem

(1.5) (n+D{hk"s,(h,k)+ kh"s,(k,h)}= (Bk + Bh)"*'+ nB,,,
((h,k)=1).

This result is indeed valid forall n = 0. For a simple proof see [4, §3].
A further generalization of (1.4) is furnished by

(16) b= 3 B(2)5 (%),

a (mod k)

where r, s are arbitrary nonnegative integers. Put

(17) (pr.s(h’ k) = 2} (_ 1)‘ (:) h'd’r—t.sﬂ(h’ k)

The writer [3], [7] has proved the following reciprocity theorem which
includes (1.5) as a special case.
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(1.8) (s + Dk*1, (1, k) — (s + 1)kB,.,B, = (r + D)h"Yy, (k, h)
—(r+DhB,.,B,  ((hk)=1).

He has also proved the following polynomial reciprocity:

k=1 h-1
(1.9) (u—1) z Uty — (p — 1) 2 71 g k]
r=1 r=1
=ut—v* (b k)=1),

where u, v are indeterminates.
Rademacher [10] has generalized s(h, k) in the following way:

110)  sthkixy)= S ((h“—,}hx)) ((9%2))

a (mod k)
where x, y are arbitrary real numbers. He proved that
s(hyk;x,y)+s(k,h;y,x)
= —18(x)8(y) + ((x)(¥))
(1.11) 1(h < 1 - k <
+1 {E Bu(y)+ 7= Bulhy + kx)+ —h—Bz(x)_},

where (h,k)=1 and
1 (x = integer)
d(x)= {
0  (x# integer) .

For a simplified version of the proof see [5].
In the present paper we define

(1.12) G(hksxy)= 2 Br(h%X*L")E‘(w)

a(mod k) k

and

A13) ki y)= 3 (177 (7 Ay b kixy),

corresponding to (1.6) and (1.7), respectively. We prove the reciprocity
theorem
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(s + Dk*Wors(h k3%, 9)— (r + Dh'Yer, (kb 5y, x) = (5 + 1)kB,.1(x)B.(y)
(1.14) ~(r+ 1DhB,(x)B,..(y)  ((hk)=1).

It should be observed that there is no loss in generality in assuming
that

(1.15) 0=x<1, 0=sy<l1.

We show also, assuming (1.15), that

k-1 h-1
(1.16) (1 — v) 2 uh—[(ha+z)/k]va _ (1 _ u) 2 vk—[(kb+z)/h]ub =yu" — p*
a=0 b=0

((hk)=1),

where z = kx + hy. For x =y =0, (1.16) reduces to (1.9) after a little
manipulation. Clearly (1.16) holds for all z such that 0=z <h +k.

For some additional results see §4 below, in particular (4.1), (4.2),
(4.3), (4.4), (4.5), (4.6).

2. Proof of (1.14). We recall that [8, Ch. 2]

@.1) B.(hx)=h"' 3 E,.(x + Fb)

b(mod k)

Thus (1.12) becomes

¢,,,(h,k;x,y)=h"1 2 Er<a+l+ b+x>§s<a+)’>.
a(mod k) k h h

b(mod k)

We shall write this in the abbreviated form

22) &.s(hk;x,y)=h"" ;E(a+ﬁ)1§s(a),
where

_aty _btx
(23) a = k ﬁ - h

and the summation on the right of (2.2) is over complete residue systems
(mod k) and (mod h), respectively.
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Substituting from (2.2) in (1.13), we get
@4) g k;xy)=h"" ]20 (-1y(}) S B@+B)Bun (@),
Now consider
®(h,k;x,y;u,v)

(2.5) B 1520 sk sl K3 %, y)r's'

hrlksl r _ o
> r'(s—?)'v ,Z( 1y~ )a=

ns

i

S B(a+B)Brry(a).

0 b=0

We assume in what follows that
(2.6) 0=x<1, 0=y<1,
which implies
2.7) O0=a<l, 0=p<l.
Thus

B,...,-1(a) = B, ().

Taking m =r+s—j—1, (2.5) becomes

®(h, k;x,y;u,v)
=h“va;og§£’;—x +ﬁ)E—B(a)
m+ ! _ mert;
2 (- G=yi0m =7y () (ko)
(2.8) =h-lva;0 :;;;U;—L"Xﬁ(a+p)zo( ht:;—!ku) B. (a)
= h ]ZO ("”)'(;!’r‘:,J’ ko) S B (a + B)Ba(a)
Since

B(x +1)=B,(x)=jx',
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the inner sum

55 Bla+B)Bu(@)

§1Ma+ﬁ—w+BDBAa)

;B,(a+B)Bm(a)— ; (B,(a+B)—B,(a+B—1))Bm(a)

a+Bz1
= ;B,(a"'ﬁ)Bm(a)—i ; (e + B =1y Bn(a).
a+fz1

Thus (2.8) becomes
29) M k;x,y;uv)=0(hk;x,y;u,v)—P:(h, k;x,y;u,0),

where

@, (hk;x,y;u,v)=h""v i (h“)'(f'h“'+kv)'"
»m=0 Jjom:

' Z B/(a + B)Bn(a),

®,(h,k;x,y;u,v)=h7"v Z (huy( 'hu'+kv)"'
»m=0 ] m:

. g, (e +B-1Y"B,(a).

a+pzl

Clearly, by (1.3) and (2.3),

®,(hk;x,y;u,v)=h""v ’"f"il ;—l{:i‘k:__ki)

. 2 ehu(a+ﬁ)e(—hu+kv)a

(2.10) “b
_ _u —hutkv ,..e"—1e"-1
ehu_l e—hu+ku__1 € eu__l ev__l
uv k —1 hu-—ko

— hu+xu+yu
>

e—1e—1e —ex ¢
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—hu + kv s
®,(h,k;x,y;u,v)=uv g ke _ 1 2:4 ghutetbo1) g Chutin)a
a,

(2.11) arp=l
_ hu — kv xu+yu 2 eau+bu.

= UV 50 €
ehu_eko ~

It follows from (2.10) that

&, (hk;x,y;u,v)— D (k,h;y,x;0,u)

(2.12) = e"'f_l evzil ehu—kv xu+yu{ehu(elw__1) ekv(ehu_l)}
—(_ ue ve”
=( hu+kv)e,‘_1 POt

while

(2.13) Dy(h, k;x,y;u,v)— D@ (k,h;y,x;0,u)=0.

Therefore, by (2.9), (2.12) and (2.13),

Bk k3%, 310,0) ~ Bk, 5y, 50,u) = (— hu + ko) 2 LT
(2.14)
By (2.5), the left hand side of (2.14) is equal to
20 {sk* " ams(h, k5 %, y) = TR oK, B3y, X)) oy ,.s,
By (1.3), the right hand side of (2.14) is equal to
(~hu+kv) 3 B.(x)B.0) 7oy
2_ {skB,(x)B,-(y)~ hB,.(x)B.(y)} 57 ,.s.

Hence, equating coefficients of u'v*/r!s!, we get
sk e-i(h, k 3x,y) = th" ', i(k, B3y, x) = skB,(x)B;-i(y)

—rhB,.(x)B,(y).
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Finally, dropping the restriction (2.6), we have
(2.15) sk* ', i(h,k;x,y)— rh" 'y, _i(k,h;y,x) = skB,(x)B,-(y)
—thB,_((x)B,(y),

for all nonnegative r,s and all real x, y.

3. Proof of (1.16). We again assume that
3.1 0=x<1, 0=sy<1.

By (1.12) and (1.13) we have
balukin)= £ 1 () 3 B (h5 ) B (57).
j=0 a=0
Then, as in the previous proof,
D(h,k;x,y;u,0)

= 2 sk i (b k32 y) Sy

rs=0
> ul(k ~ o N
o5 o (e S () (5

»m=0 'm' k k k
u —hu+kv'd ha + z ha +z
> exp - )u

— 2 u'(— hu+kv)’"goB](ha+z_ [ha+z-]>Bm(g_i2>

Tl T ] e o1 & k k
+%X(-—hu+kv)}

uuv h:: — kv . S exp {(h _ [hak+ z]) "+ av},

ki
et —1 e"™m—e* =

where
(3.2) z = kx + hy.

It follows that
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O(h,k;x,y;u,v)—P(k,h;y,x;0v,u)
oy “wiiemere Sew|(h- [ ura)
e,,uf 1 :l,,l: ::,3, ety :2:) exp {(k - [kbh+ Z]) v+ bu}.
Comparing (3.3) with (2.14) and simplifying, we get

(e’ — l)zexp{(h - [h—akiz-Du +av}

—(e*—1) :211, exp {(k - [k—bh-l——ZD v +bu}= —e™ + ek,

(3.4)

Replacing e e® by u, v, respectively, this becomes

k-1 h~1
1__ v uh—[(ha+z)/k]va - 1__ u vk—[(kb+z)/h]ub — uh —- Uk
oy C9Z -0g

((h,k)=1).

Clearly (3.5) is a polynomial identity in the indeterminates u, v. It
is not evident how the restriction (3.1) can be removed.

To show that (3.5) includes (1.9), take x =y = z =0 and replace a
by k —a, b by k —b. Thus the left hand side of (3.5) becomes

A-v)u*—(1Q-u)*

4 (1 — U) E uh—[h—(halk)]vk—a _ (1 _ u) "2—1 p kel Gkb/ g b

a=1 b=1
= (uh _ Uk)_ uv(uh—l_ vk~1)
= h-1

+ (1 — U) g u[halk]Hvk—a _ (1 _ u) 2 v[kb/h]-nuh—b,

a=1 b=1
since

[m—-x]=m-1-[x] (m = integer, x # integer).

Thus we get
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= h=1
(1 _ v) S y (halk) gy k=a=1 _ (1 _ u) 2 plkbIA]  h=b=1 — k=1 _ vk—l’
a=1 b=1

which is (1.9) in a slightly different notation.

4. Additional results. We have
(e*—-1) S exp {(h - [hak+ z]) u+ av}
=SS ha +z]\"u N,
- 230 R e r-on
Thus the left hand side of (3.4) is equal to
< : ha +
2 {3 (- M) @rr-a
rs=0 =0
- & (- [

) @+ -b0)

Sinee the right hand side of (3.4) is equal to

Whrur mksvs
_2) r! +§, s!’

we get
0[5 @ oo 5 (- [ @ ear-v)
4.1) = —h'8,0+ k*8,, ((h,k)=1)

for all nonnegative r, s and all z such that
0=z<h+k.

Hence, in particular,

S (1= P2 e r-o- 5 - [ -9

a=0 b=0

4.2)

(r>0,5s>0; 0=z<h+k).
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For example, for r =5 =2,

Z(Za +1) (h - ["—“E—E])2= :2:)(21; +1) (k - ["bh+ Z])z

O=z<h+k).

For s =1 we get

E P L 2‘:‘ kb +z (b +1y - b7)
) o< [ D ( [r>0, ]())§z<h+k).
Recall [8, Ch. 2] that
nx"'= B,(x +1)— B.(x)
= 3 ()b @+ 1y -0,

where B, = B,(0) is the nth Bernoulli number. Thus if in (4.1) we
replace r, s by i, j, respectively, multiply both sides by

() (s

and sum over i, j, we get

@ 53 amm(h- [P -5 emm (- [45])
=B,(k)B,—B,(h)B, (0=z<h+k).

A more general result is
53 a+nyB,(h+e- [242E))
a=0

@5) - erer e (ken-[H5)

= B,(¢)B,(k + n)— B,(h + ¢)B.(n) 0=z<h+k),

where £ and 7 are arbitrary. In particular, for £ =1—h, n =1-k, (4.5)
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reduces to
53 (@ +1-kyB,(1-[22E2]) —r 8 b+ 1-ny-B,(1- [EB1E])

= B,(1— h)B,(1)— B,(1)B,(1- k).
Since
B.(1-x)=(—1)"B.(x),

we get

00 sgu-arn () -rFuovoa ()
= —B,(h)B,+BB,(k) (0=z<h+k).
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