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WEIGHTED TRANSLATION SEMIGROUPS

MARY R. EMBRY AND ALAN LAMBERT

A special class of weighted translation semigroups {S,} on
L*(R.) is studied. The weakly closed algebra &/ generated by
the semigroup is maximal abelian and the spectra of elements of
o are studied. It is shown that each densely defined linear
transformation commuting with & is closable and that every
transitive algebra containing &/ is weakly dense in the full
algebra of operators on L*(R.).

1. Introduction. A weighted translation semigroup {S,} with
symbol ¢ is defined on L*(R.) by

—4)—(—2——¢(x t)f(x—t) for 0=t=x

0 for t>x

(SHH(x) =

where ¢ is a continuous, complex-valued function on . such that
¢(x)#0for x in R,. These semigroups were studied in [2] and [3]. In
[3] strongly continuous subnormal weighted translation semigroups are
characterized as those for which ¢? is a Laplace-Stieltjes Transform of a
probability measure. In [4] a more general type of weighted translation
semigroup is studied.

To insure the strong continuity of {S,} we assume that
SUDrea. | @ (x + t)/d(x)] = Me™ for all ¢t and some constants M and w [2,
Lemma 2.1]. Two weighted translation semigroups with symbols ¢ and
p are unitarily equivalent if and only if |@$/p| is constant [2, Theorem
2.5]. Thus without loss of generality we assume that ¢ is positive-
valued and that ¢(0) = 1.

Throughout the paper unless otherwise indicated we shall assume

further that f ’ (6 (x)/d(t)d(x — t))’dt is bounded and shall say that ¢ is
0
of bounded kernel type. For such a ¢ and for each f in L*(R.) we define

(1) f g(—}) S.dt.
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In §2 we show that {A;: f € L¥(®.)} is a subalgebra of B(L?), the full
algebra of operators on L%(®R,). We denote {A;: f € L} R.)} by «, and
its closure in the weak operator topology by &#. In Theorem 2.6 we
show that & is a maximal abelian algebra and that &, is a proper
ideal of .

In §3 we establish a basic relation between the multlphcanve linear
functionals on & and the elements of L*(R.) of the form e* /¢ (t). This
relation enables us in Theorem 3.5 to determine completely the spectrum
of each element of ;. In §4 it is shown that any densely defined linear
transformation commuting with & is closable. This result enables us to
apply Arveson’s Density Theorem to show that if e*/¢(¢) € L} R.) for
some A, then any transitive subalgebra of B(L?) which contains & is
weakly dense in B(L?). Finally in §5 certain function theoretic consid-
erations related to ¢ are investigated. It is shown in Corollary 5.5 that if
the associated semigroup is hyponormal then ¢ is not of bounded
kernel type.

Throughout the paper the following notation is used: H =
A:e*/d()ELAR)}, E={g:g(t)=e*/(t),A€H} and a(d)=
sup{ReA: A € H} where a(¢)= —if H is empty. G will denote the
infinitesimal generator of the semigroup {S}.

2. Basic facts about /. In this section we shall show that
each A, is a bounded linear operator on L*(%.), that the mapping f — A;
of L*(%R,) onto &, is a continuous linear mapping, that s, is an algebra,
and that & is a maximal abelian algebra.

Lemma 2.1. ||Af||Spllf| for all f in L*(R.) where

= | (gwet—)

Proof. Let g € L®R.). To see that A; is well-defined we note
that

)= T se)ear
@

- || s e~ s

and the integral exists since f and g are square integrable and ¢ is
continuous and nonzero. We note further that
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AR [ (Gaoy) @], 1f0st - Fa

Therefore

lagl=o? [ | 1fee - n)rdiax = o7l 1Pl

so that A; is a bounded linear operator on L*(R.) and | A[|=p|/f].
LEmma 2.2. (1) Aaf+[ig = aAf + BAB’
(i) Ag=A,f, and
(i) AA, = A4,

for all f and g in L(R.) and all complex numbers o and B.

Proof. (i) and (ii) follow immediately from equation (2). To prove
(iii) we let f, g, h € L*(®.) and note that

Wan @)= [ SohEs fo@m e~ na

S —1¢.9 . T _g(s)d(x — 1) _
—Lo ¢(t)¢éc—t)f(t) ez ¢(s)¢(x_t_s)h(x t — s)dsdt

[ e o gs—0d(x-1),
Lo d(t)p(x — 1) f(’)L, b(s = N)b(x —5) " (x 7 8)dsdt

- f [ ¢(r>¢(s¢—(f))¢(x —5y f(8(s —Dh(x - s)dt] ds

X

X

- o[, s gt — et (s - spas
= . x

o BB~ 9)
= (Anh) ().

(Ag)(s)h(x —s)ds

Thus (iii) holds for all f and g.

It now follows immediately from Lemma 2.2 that &, is a commuta-
tive algebra and from Lemma 2.1 that the mapping f— A, is
continuous. An easy computation shows that this mapping is one-to-
one. We state these results in the following theorem.
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THEOREM 2.3. &, is a commutative algebra of operators on L*(R,)

and the mapping f — A; is a continuous, one-to-one, linear mapping of
L*(R.) onto A,.

It follows from the Open Mapping Theorem and Theorem 2.3 that
oA, is closed in the uniform topology if and only if the mapping f — & is
bicontinuous. It is an open question whether or not &, is closed in the
uniform operator topology.

Lemma 2.4. If Tis an operator on L*(R.) which is in the commutant
of sy, then TA; = Ay for each f in LA(R.).

Proof. Let f and g be elements of L*(%R.,). Then TAg = TAf =
A Tf = Ayg. Consequently TA; = Ay as desired.

Lemma 2.5. {S}CHA — A,.

Proof. Let f, = ngy[r,r +1/n] where ¢[a, b] is the characteristic
r+l/n

function of [a,b]. Then f, € L¥(®R.) and A;, =n f S.dt which, be-

cause of the strong continuity of S, converges strongly to
S, Consequently S, € 4. To see that S, & o, we assume the contrary:

S, = fom (f()/d(2))Sdt for some f in LA (R.). Consequently, S¥(g/¢)=
J " (f(2)/$(t))S*(g/$)dt for each g in L¥(%R.) of compact support. Thus
go(x +r)= f” F@O)/d(t)g(x +t)dt. If  we define K(y,s)=
W/(b(&‘ —y+r)) for y=r and 0 otherwise, we arrive at the
integral equation g(y)= f ) K(y,s)g(s)ds. Since the identity is not an
integral operator on Lz(gti) [5, p- 87], we arrive at a contradiction and

our proof is complete.

An immediate consequence of Lemma 2.5 is that the weakly closed
algebra &, generated by {S,} is a subalgebra of &. Since each element of
o, is obviously in &f;, we see that &, = &; that is, the weakly closed
algebra generated by the semigroup {S,} is the same as the weakly closed
algebra generated by {A;}.

THEOREM 2.6. & is a maximal abelain algebra and 4, is a proper
ideal of A.

Proof. That & is abelian follows from the fact that &f, is
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abelian. Thus by Lemma 2.4 if T € &, then TA; = Ay € A, proving
that &/, is an ideal of &/. Lemma 2.5 assures us that &, is proper and that
I . Choose a net g, such that A,, converges weakly to the identity
operator I. Then since TA,, = Ar,, we have T =lim Az, and hence
T € o, proving that each element of the commutant of & is an element
of of. The proof that & is maximal abelian is complete.

We observe that no Ay is invertible since &, is a proper ideal of the
maximal abelian algebra &/. We shall study in more detail the spectral
properties of elements of &, in the next section.

3. Spectral properties of /. In this section we first charac-
terize certain multiplicative linear functionals on & and then use this
information to study the spectra of elements of &. In particular we are
able to show in Corollary 3.4 that whenever g, € L*(R.) where g,(x) =
e”/¢d(x), then g is an eigenvector for each element of & *. For an
element A; of o, we then show in Theorem 3.5 that the eigenvalues
corresponding to the g, together with the real number 0 make up the
entire spectrum of A %.

THEOREM 3.1. If m is a multiplicative linear functional on A, then
there exists a unique g in L*(R.) such that

(i) m(A)=(fg) and

(ii) 2 =1(g f)g for all f in L*(R.).

Conversely, if m and g satisfy (i) and (ii) and g#0, then

(iii)) A*g=(g Ag)llg|P)g for all A in A
and m can be extended to a multiplicative linear functional K on A such
that

(iv)y KA)=(Ag g) gl for all A in A.

Proof. Assume that m is a multiplicative linear functional on &«
and define L (f) = m(Ay) for each f in L3(®R,). It follows from Theorem
2.3 that L is a continuous linear functional on L*(%.). By the Riesz
Representation Theorem there exists a unique element g of L*(%.) such
that L(f)=(f,g) for all f. Consequently m(A;)=(f,g) for all f
in L¥(R.).

Assuming now that m is multiplicative, we have for all f and h in
LX) (h (g )8)=(f, 8)(h g) = m(A)m(As) = m(AAs) = m(Asp) =
(Afh,g)=<(h,A%g). Consequently A%*g =(g,f)g as desired.

Assume now that m and g satisfy (i) and (ii) and that
g#0. Reversing the computation in the preceding paragraph, we
conclude that m is a multiplicative linear functional on &f,. We shall
construct a multiplicative linear extension of m on &f,. Let A €«
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and A, > A weakly. Then (g, Ag)=1lim(g, Asg)=1lim(A%gg)=
lim(g, fA)||g P by (i). Consequently lim (8. f,)=(g, Ag)|g|* and
for each h in L*R.), (g, Ah)=1im(g Ah)=1m{(g, fi)g, h)=
(g h)(g Ag)llglf. Thus A*g=((g,Ag)/|gl")g, proving the final
assertion. We now define K(A)= ((Ag,g)|g|F) foreach A in of. A
straightforward computation shows that K is a multiplicative linear
functional on & and that K is an extension of m.

We have shown that to each multiplicative linear functional on &
there corresponds a unique clement g of L*%.) which is a common
eigenvector for the elements of o*, provided g#0. In Theorem 3.3 we
shall show that each such function g is necessarily of the form e*/¢ (¢) for
some complex number A.

LemMma 3.2. If G is the generator of {S,} and A is sufficiently large,
then A; = (A — G)™' where f(t) = e ™¢(1).

Proof. Since {S,} is strongly continuous, there exist constants M
and w so that sup, |¢(x + t)/d(x)| =S| = Me™ (2, Lemma 2.1]. Thus
¢(t) = Me*" and for A sufficiently large f(t)= e ¢ (t) € L*(R,). Then

f (F(6) b ()Sdr = f eSdi = (A — G)". [6, p. 344].

THEOREM 3.3. If m is a multiplicative linear functional on of and g
satisfies

() m(A)=(f,g) and

(i) Atg=(g g forall fin LXR.),
then either g =0 or there exists a complex number A such that g(x)=
eV /d(x). Conversely, if g(x)=e"/d(x) and g € L¥(R,), then g
satisfies (ii).

Proof. Let g satisfy (i) and (ii). By Lemma 3.2 (A*—- G*)'g =
(g, f)g where f(t)= e “p(t)E LY (R.). If(g,f)=0,then g =0. Assume
that (g, f) #0. Since A%g =(g,f)g, we have

G) @)= [ 2R ear  ae

Let h(x)= ¢(x)g(x)/e” and note that h € L'(R,) since ¢(x)/e™ €
LY®,) and g€LXR,). We now have (gf)h(x)= j h(t)dt

a.e. Since h is integrable and (g, f) # 0, we can conclude first that h is
continuous and secondly that h is differentiable. Thus (g, f)h'(x)=
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—h(x) and h(x)= Ae® or equivalently g(x)= Ae®"*/¢p(x). It
follows from (3) that (g f)g(0)= (1/¢(O))fo (d(t)g(t)/e*)dt =

(1/¢(0))(g, f). Thus g(0) =1/¢(0), so that A = 1 and g(x) = e****/$(x),
as desired. A straightforward computation shows that if g is of this
form, then g satisfies (ii).

As an immediate consequence of Theorems 3.3 and 3.1 we have:

CoroLLARY 34. If g (t)=e"/d(t)ELYR,), then A*g, =
(g Al g PD)gs for all A in A.

In the remainder of the paper we let H = {A: e*/¢(t) € L}(R.,)} and
E ={g:g(t)=e"/p(t),A € H}. Weshall show that both sets are either
empty or large: more precisely, either H is empty or H is a closed

half-plane and at the same time either E is empty or its linear span is
dense in L¥R.).

THEOREM 3.5. o(A;)={{f,g): g € E}U{0}.

Proof. In our comments following Theorem 2.6 we observed that
0€ o4.(A;) whenever f € L®R,). By Theorem 2.6 & is a maximal
abelian algebra and hence for each A in o, 0(A)=04(A)={m(A):m
a multiplicative linear functional on }. By Theorems 3.1 and 3.3,
m(A;) = (f, g) for some g in E provided m is not identically zero on &,
completing the proof.

We observed in the proof of Theorem 3.5 that o(A)={m(A): m a
multiplicative linear functional on &} which implies that o(A)D
{(Ag,g) gl g € E} U{my(A)} where m, is identically zero on &,. It
is not known whether this set is the entire spectrum of A ; equivalently, it
is not known if m, is unique.

COROLLARY 3.6. Among the conditions

(1) oA contains a nonzero quasinilpotent element

(ii) o((B— G)")={0} for some B such that (B — G)™' is bounded ;

(iii) o(A;)=1{0} for all f in L¥(R.);

(iv) E =g,

(v) the linear span of E is not dense in L*(R.), the following
implications hold: (i) = (i) © (iii) © (iv) © (v).

Proof. (i) > (v). If 0(A)={0}, then by Theorem 3.1(iii) A*g =0
for each g in E. Thus if A is nonzero, the linear span of E is not dense
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in L(R,) and (v) bolds. (v)=> (ii). If o((B— G)")#{0} for suffi-
ciently large B3, then by Theorem 3.5 there exist g(t)=e*/¢p(t)EE. If
the linear span of E is not dense in L*(%.), then there exists a nonzero f
such that

0= j ) f(t)dt whenever Rez =Re A

(z— A)'_A_‘Mdt
fe é(t)
=f ”“Tb%;)dt for z = A + ix, x real.

Thus the Fourier coefficients of the L '(R.) function e*f(t)/¢(t) are zero,
implying that f =0 a.e. This contradiction completes the proof that
(v) = (ii). (i) = (iii)) = (iv) by Theorem 3.5; (iv) = (v) trivially.

The following two examples demonstrate the two different types of
symbols ¢: in the first example a(¢)> — « and H is a half plane and in
the second example a(¢)= — and H is empty. Thus in the second
example each A, is quasinilpotent.

ExamprLE 1. Let ¢(x)=x+1. We shall show that ¢ is of
bounded kernel type and a(¢) = 0.

2

o(x) _ , [log(x +1)
SRy U =2 | Gy T ETeT 1)]

which is bounded on .. To see that a(¢)=0 we note that
f |e*/(x + 1)[*dx converges for ReA =0 and diverges for ReA >
[

0. Thus by Corollary 3.6 no element of & is quasinilpotent and by
Corollary 3.4 g is a common eigenvector for A* whenever g(x)=
e/d(x), ReA =0.

ExamrLE 2. Let ¢(x)=e ™. We shall show that ¢ is of
bounded kernel type and a(¢)= —x. Obviously for each complex
number A e*/¢p(t) € L? so that a(¢)= —»=. To see that ¢ is of
bounded kernel type we compute as follows

) Gat=n) = [,
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X
— J e—Zr(x—r)dt
0
X
0
—ewn [ L g
2
X
= e *" f e*’ds.
0

Thus by I'Hopital’s Rule

ifx e¥dx

lim | (S >2dx=lim———-dx 0

), Goee—n) @i Ta
X

=0.

Consequently since f ’ (¢ (x)/d(t)d(x — t)y’dx is continuous and van-
0

ishes at o, it is bounded.

We note also for this example that since |S}|"" = e ™™, each
S.(t#0) is quasinilpotent. The fact that each A; is quasinilpotent
follows from Corollary 3.6.

~nt?2

Although it appears difficult in general to determine which symbols
¢ are of bounded kernel type, in certain cases one can use information
about the set H to show that ¢ is not of bounded kernel type. More
precisely, if ¢ is of bounded kernel type, then H is a closed half
plane. To see this we argue as follows. Assume A € H. Then

Lw (e /P (x))dx = fow e/ (x)Pdx <w. Consequently if Rez =

Re A, then z € H, proving that H is a half plane. Now choose 8 so that
f()y=e*dp(t)EL¥R,) and (B— G)' is bounded. By Lemma 3.2
and Theorem 3.5 o(B-G)")={1/(B—A):A€H}U{0}. Thus
{1/(B — A): A € H} U {0} is compact and it easily follows that H is closed.
In [3] it was shown that ¢(x)=(x +1)""* is the symbol for a

subnormal weighted translation semigroup. Since f |e*/é(t)[dt con-
0

verges for Re A <0 and diverges otherwise we see that H is not closed
and hence ¢ is not of bounded kernel type. At the end of §5 we shall
see that no subnormal weighted translation semigroup has symbol of
bounded kernel type. Indeed a stronger conclusion is obtained: if {S,} is
hyponormal (§7S, > S,S7 for each t), then the symbol ¢ of {S,} is not of
bounded kernel type.
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4. Transitivity. For clarity in this section we' shall let &/,
denote the weakly closed algebra generated by {S,}, where ¢ is the
symbol of {S,} and ¢ is of bounded kernel type.

Let T be a linear transformation with domain D(T)C X. We say
that T commutes with A in B(X)if AD(T)C D(T)and ATx = TAx for
each x in D(T). Also, T commutes with a set of operators S if it
commutes with each operator in S. T is said to be closable if T has a
closed extension.

THEOREM 4.1. If T is a densely defined linear transformation com -
muting with {,, then T is closable and TA, is bounded for every h in D (T).

Proof. To prove that T is closable we must show that if {h,} is a
sequence in D(T) converging to 0 and {Th,} converges to some vector f,
then f =0. Note thatif u isin D(T)and v isin L*(%.), then A,v = Au
is in D(T). Let g be in D(T). Then

TA,g = AwTg —0.

But TA,.g = TAh, = A,Th, —> A,f. Thus for every g in D(T), A f =
0. Butsince D(T) is dense in L R.), {A,: g in D(T)} is weakly dense
in o4;. Since I is in &, we have f=0. Hence T is closable.

Now suppose h is in D(T). Since TA, commutes with &, TA, is
closable. But TA, is everywhere defined, so TA, is in B(L?. In fact,
since TA,f = TAh = A;Th = Apf, we have TA, = A,

Note that with T as in the above theorem and h in D(T), (TA,)* is,
of course, bounded. Explicitly, (TA,)*=T*A%. To see this let f also
be in D(T) and let g be in L*(R,). Then

(Tf, A%g)=(ATf g)
= <TAhfa g>
=(f,(TA,)*g)

so that A%g is in D(T*) and (TA,)*g = T*A g

The properties of transformations commuting with the algebra &,
just developed are nicely applicable to the theory of transitive
algebras. An algebra J of operators on X is transitive if the only closed
subspaces of X invariant under all the operatorsin J are {0} and X. For
general discussions of transitive algebras see [1] and [7, Chapter 8]. The
following result is an immediate corollary to Arveson’s density theorem.

PROPOSITION. (Arveson). If J is a transitive algebra with the
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property that every linear transformation commuting with J is a multiple of
the identity, then J is weakly dense in B(X).

Now if T is a closed densely defined linear transformation commut-
ing with the transitive algebra J and either T or T* has an eigenvector
(other than 0), then T is a multiple of the identity. Since T* commutes
with 7*={A*: A in J}and 7 * is transitive if and only if 7 is, it suffices
to justify the above remark in the case Tx = Ax, x# 0. But then for
every A in 7, TAx = ATx = AAx so T— Al =0on {Ax: A in 9} which
is dense in X. But one sees easily that a closed transformation agreeing
with a bounded operator on a dense set is in fact that bounded operator,
and so T = AL

We now apply these remarks to certain algebras of the form

o, Recall that a(¢) = sup {/\ in R: J'm (e /d*(x))dx <00} .

THEOREM 4.2. If ¢ is of bounded kernel type and a(¢p) > — =, then
every transitive algebra containing 4, is weakly dense in B(L?>).

Proof. We have seen that every densely defined linear transforma-
tion commuting with &, is closable. It is easy to show that the minimal
closed extension of a closable transformation L commutes with all the
operators commuting with L. Let T be a closed linear transformation
commuting with &f,. Then for each & in D(T), we have seen that T*A %
is in A% Let g(x)=e*®>/¢p(x). Then g is in L*(R,) and A%g =
(8, f)g for each f in L¥(R,). Now T*A%=(TA,)*=A%, so

(g, Th)g =T*A%g =(g, h)T*g.

Thus g is an eigenvector for T* ((g, k) cannot be 0 for all & in the dense
set D(T)). It follows from the proposition preceding this theorem that
every transitive algebra containing &, is dense.

Question. What about transitivity considerations in the case

a(¢)= ~?

5. Functional properties of ¢. We now concentrate on
some properties of the function ¢ — a(¢). Throughout the following
discussion we assume that ¢ is in C'([a,©)) for some a =0 and that
¢(x)#0 for all x =0. Note that Theorem 5.2 is not dependent upon ¢
being of bounded kernel type. Define
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LemmA 5.1, If ¢ is of bounded kernel type, then a(¢p) < .

Proof. We have seen that for ReA = a(¢) g.(x)=e™/d(x) is in
L*®R,) and for every f in LXR.) (f, gr) = f (e”/d(x))f(x)dx which is

the Laplace transform of f/¢, Lf, evaluated at — A. Thus if a(¢) =, Lf
is entire for each f in L(®,). But (f, gr) is in the spectrum of A, so Lf is
bounded and entire. By Liouville’s Theorem Lf is constant for every f
in L?. But then f/¢ =0 and f=0. Thus a(¢) <.

THEOREM 5.2. If disin C'[a,) for some a =0 and ¢(x) # 0 for all
x then i(¢) = a(d)=s(o).

Proof. We prove only the inequality i(¢)=a(¢), the other
inequality’s validity being quite similarly (and symmetrically)
ascertained. If i(¢)= — o the inequality holds. Assume first that i(¢)
isfinite. Lete >0andlet A =i(¢)—e. Then since ¢’/ is continuous
for t=za we have ¢'(t)/p(t)>A +(€/2) for all t=a. Let f(x)=
e [¢p*(x). Then f'(x)/f(x)=2(A—(¢'(x)/d(x))< —€ for all x=a
hence f(x)= f(a)e ™" * for all x Z a. Since f is continuous on [0, a], f
isin L'(R,). Thus i(¢)—€ = a(ep) for all € >0 and so i(¢) = a(d).

Now, if i(¢)= +x then we have lim,..(¢'(¢)/d(t))= +». But
then we easily see that for any A in R the function f defined above is in
L’ and so a(¢)= + .

COROLLARY 5.3. If lim,..(¢'(t)/¢(t)) exists, then a(d)=
lim,...(¢'(t)/ 6 (2))-

In order to see that strict inequalities in the above Theorem 5.2 are
possible, even for ¢ of bounded kernel type, note that if & and 1/h are
bounded continuous functions on &. and ¢ is of bounded kernel type,
then he¢ also is of bounded kernel type. Moreover, one easily verifies
that a(¢) = a(hd). However (assuming h is in C'([a,*))) for p = h,
p'lp=(h'Ih)+(d'/P). If, for example, we let ¢(x)=x+1and h(x)=
2+ sin x then all requirements above are satisfied, lim,. (¢'(¢)/¢(¢)) =0,
liminf.(h'(t)/h (t))= — V3/3, limsup..(h'(t)/h(t))="V3/3, and so
i(p)=—V3/3, a(p)=0, and s(p) = V3/3.

We conclude the paper by showing that the class of weighted
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translation semigroups with symbol of bounded kernel type is disjoint
from a rather large class of weighted translation semigroups, including
the hyponormal (and of course subnormal) ones.

LEMMA 5.4. For ¢ of bounded kernel type in C'([a,*)) for some
a>0, a(d)<s =sup.z, (¢'(t)/d(1)).

Proof. We have already seen that a(¢) <> so the case s = is
obvious. Suppose then that s <®. Then for t=a, ¢'(t)/d(t)=s so
¢ (t)/d(a)=e**and hence 1/¢d*(t) = (1/d*(a))e*“ . We then have

- @ e2u(¢)t d - a e2a(¢)t d (J‘w (o) ],d )
o0 Atz | < dt+ edaters t) e,
o &%) o (1) a

Thus a(¢)<s, for otherwise the last integral diverges.

CoroLLARY 5.5. If {S,} is a hyponormal weighted translation
semigroup with symbol ¢ in C'([a,®)) for some a =0, then ¢ is not of
bounded kernel type.

Proof. In [2] we showed that {S,} is hyponormal if and only if
log¢p is convex. Thus ¢'/¢ is an increasing function and so
lim,_.. (¢'(t)/ ¢ (1)) = sup,=0(@'(¢)/$(2)). By Corollary 5.3 and Lemma 5.4
¢ cannot be of bounded kernel type.

Note that if {S,} is subnormal, the condition of ¢ being in C'([a, «))
holds automatically since ¢ has the form ¢*(x) = e™ f e “dp(t) where p
0

is a probability measure.
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