Pacific Journal of Mathematics

ON THE COHOMOLOGY OF KUGA'S FIBER VARIETY

RITA HALL

Vol. 75, No. 2

October 1978

ON THE COHOMOLOGY OF KUGA'S FIBER VARIETY

RITA HALL

Results of Matsushima and Murakami, and Matsushima and Shimura, are applied to the study of certain subspaces of the cohomology of fiber varieties of Kuga–Satake type. These subspaces are defined in terms of the Kähler and fiber space bigradings of the cohomology of the fiber variety.

Let G be a real connected semi-simple Lie group with finite center, and K a maximal compact subgroup of G. The quotient space X = G/K is then a symmetric space (of non-compact type). Assume that X is a symmetric domain. Consider a discrete subgroup Γ of G such that $\Gamma \setminus G$ is compact and Γ has no fixed point in X. Take a representation $\rho: G \to GL(F)$ of G in a real vector space F, such that ρ leaves invariant a nonsingular alternating form β on G. Suppose that $\rho|_{\Gamma}$ leaves invariant a lattice L in F, and that the form β takes integer values on $L \times L$. From the data $\{G, K, X, \Gamma, \rho, F, \beta, L\}$ Kuga has constructed an algebraic variety V, fibred by a family of abelian varieties, when ρ satisfies an additional condition.

In this paper the cohomology of the fiber variety V is studied. The cohomology of V is bigraded by the Kähler structure of V, and also by the fiber structure of V. In §1 it is shown that the Kähler and fiber bigradings:

(k)
$$H'(V)_{c} = \sum_{p+q=r} H^{(p,q)}(V)$$

(f)
$$H'(V)_{c} = \sum_{a+b=r} H^{(a,b)}(V)_{c}$$

are compatible, and so lead to a finer decomposition of the cohomology of V:

$$H'(V)_{\mathsf{C}} = \sum H^{a_1a_2b_1b_2}.$$

In §3 this decomposition is related to the work of Matsushima and Murakami, ([5]) when the representation ρ satisfies a certain

^{&#}x27; S > 0 means S is positive definite

condition. In §4 is studied the special case $G = SL(2, \mathbb{R})^N$, using results of Matsushima and Shimura [7]. The dimensions of the non-zero $H^{a_1a_2b_1b_2}$ are seen to be expressible in terms of the dimensions of spaces of Γ -automorphic forms. For N = 1, one obtains

$$H^{(p,p)}(V) = H^{\{0,2p\}}(V)_{c} + H^{\{2,2p-2\}}(V)_{c}.$$

This result used in the proof of the Hodge conjecture for the fiber variety V over an algebraic curve associated to an indefinite quaternion algebra over \mathbf{Q} .

1. Preliminaries. First recall the construction of the fiber variety V. Let G, K, X, and Γ be as above. The quotient space $U = \Gamma \setminus X$ is then a compact complex manifold, and Kodaira has shown it is a Hodge manifold. Let B be an $N \times N$ integral skew-symmetric matrix with det $B \neq 0$, and suppose there exists а repre- $\rho: G \to Sp(B) = \{M \in GL(N\mathbf{R}): MBM = B\} \text{ such}$ sentation that ${}^{\rho}|_{\Gamma}: \Gamma \to GL(N, \mathbb{Z})$. Denote the representation space \mathbb{R}^{N} by F and the lattice \mathbb{Z}^N by L. Form the semidirect product GF by defining $(g, u)(g', u') = (gg', \rho(g)u' + u)$. The group GF acts on $X \times F$ in a natural way, and ΓL is a discrete subgroup of GF which acts on $X \times F$ properly discontinuously and without fixed points. The quotient space $V = \Gamma L \setminus X \times F$ is then a compact manifold. The projection $V \to U$ makes V a fiber bundle over U.

Let \mathfrak{G} and k denote the Lie algebras of G and K respectively, and let $\mathfrak{G} = k + p$ be the Cartan decomposition of \mathfrak{G} with respect to k. Then one can show there exists an $N \times N$ matrix S such that

1. ${}^{t}S = S, S > 0^{1}$ 2. $(B^{-1}S)^{2} = -1_{N}$ 3. $\rho(K) \subset 0(S) = \{M \in GL(N, \mathbb{R}): {}^{t}MSM = S\}$ 4. ${}^{t}d\rho(X)S = Sd\rho(X), X \in k$

The pair $\{B, S\}$ is called a symplectic pair, and every such pair is conjugate to the pair

$$\left\{J=\begin{pmatrix}0&1_{N/2}\\-1_{N/2}&0\end{pmatrix},1_N\right\};$$

that is, there exists a real $N \times N$ matrix T such that ${}^{t}TBT = J$ and ${}^{t}TST = 1_{N}$. The mapping $M \stackrel{a}{\rightarrow} T^{-1}MT$ gives an isomorphism of Sp(B) onto Sp(J) and induces an isomorphism

$$X_0 = Sp(B)/0(S) \cap Sp(B) \cong Sp(J)/0(1_N) \cap Sp(J).$$

The latter space is identified with the Siegel space $\mathfrak{h}^{N/2} = \{Z \in M(N/2), \mathbb{C}\}$: Z = Z and $\operatorname{Im} Z > 0\}$ by

$$Sp(J) \ni \begin{pmatrix} A & B \\ C & D \end{pmatrix} \rightarrow (Ai+B)(Ci+D)^{-1} \in \mathfrak{h}^{N/2}.$$

Of the two possible complex structures on X_0 , we give the one making the mapping $X_0 \rightarrow \mathfrak{h}^{N/2}$ holomorphic.

Assume that the mapping $\tau: X \to X_0$ induced by $\rho: G \to Sp(B)$ is holomorphic. This assumption makes it possible to define a *GF*invariant complex structure on $X \times F$. Let $\rho': G \xrightarrow{D} Sp(B) \xrightarrow{a} Sp(J)$ and let $\tau': X \to \mathfrak{h}^{N/2}$ be the induced mapping. Let $\xi(u)$ be the coordinate vector of $u \in F = \mathbb{R}^N$ with respect to the standard basis of \mathbb{R}^N , and let $\xi'(u) = T^{-1}\xi(u)$. Define

(1)
$$Z(x, u) = \begin{pmatrix} Z^{\perp}(x, u) \\ \vdots \\ Z^{N/2}(x, u) \end{pmatrix} = (\tau'(x), 1_{N/2})J\xi'(u).$$

If $w^{1}(x), \dots, w^{n}(x)$ is a system of complex coordinates for X, then the system $w^{1}(x), \dots, w^{n}(x), Z^{1}(x, u), \dots, Z^{N/2}(x, u)$ gives complex coordinates for $(x, u) \in X \times F$. With respect to this complex structure on $X \times F$, the action of GF is holomorphic. Give V the induced complex structure.

Let x = gK. Then $A(x) = {}^{\prime}\rho(g)^{-1}S\rho(g)^{-1}$ and $J(x) = B^{-1}A(x)$ are well-defined, and J(x) induces the complex structure on the fiber over Γx in U. If ds_0^2 is a Hodge metric on U, then the metric $ds^2 = ds_0^2 + {}^{\prime}d\xi(u)A(x)d\xi(u)$ makes V a Hodge manifold.

Let $\Omega'(X)$ be the space of real valued *r*-forms on *X*. Let $\Omega'(X, \Gamma, \rho) = \{\omega \in F \otimes \Omega'(X) : \omega \circ \gamma = \rho(\gamma)\omega\}$. The exterior differentiation *d* on $\Omega^*(X)$ gives a coboundary operator $1 \otimes d$ on $\Omega^*(X, \Gamma, \rho)$. Let $H'(X, \Gamma, \rho)$ be the *r*th cohomology group of the complex $(\Omega^*(X, \Gamma, \rho), 1 \otimes d)$. Given a suitable inner product $(,)_F$ on *F*, the notion of harmonic element of $\Omega'(X, \Gamma, \rho)$ can be defined. Let $\mathcal{H}^a(X, \Gamma, \rho) = \{\omega \in \Omega'(X, \Gamma, \rho) : \omega$ is harmonic}. $\mathcal{H}^a(X, \Gamma, \rho)$ and $H^a(X, \Gamma, \rho)$ are naturally isomorphic.

Identify $\Lambda^b(F)^*$, the dual to the Grassmanian $\Lambda^b(F)$, with $\Lambda^b(F^*)$. Choose an ordered basis $\{\xi^{D_i}: i = 1, \dots, \binom{N}{b}\}$ of $\Lambda^b(F)^*$, such that each ξ^{D_i} is of the form $\xi^D = \xi^{D_1} \wedge \dots \wedge \xi^{d_b}$ where $D = (d_1, \dots, d_b)$ and $\{\xi^1, \dots, \xi^N\}$ is the usual coordinate system on $F = \mathbf{R}_N$. This notation will also be used for differential forms; e.g., $d\xi^D$ for $d\xi^{d_1} \wedge \dots \wedge d\xi^{d_b}$. Let Λ^b be the natural representation of GL(F) on $\Lambda^b(F)$, and let $\rho^{(b)} = (\Lambda^b \circ \rho)^*$ be the representation of G on $\Lambda^b(F)^*$, contragredient to $\Lambda^b \circ \rho$. The symmetric positive definite matrix S given

above can be used to define a suitable inner product on $\Lambda^b(F)^*$, so that $\mathscr{H}^a(X,\Gamma,\rho^{(b)})$ is defined. (The condition of suitability is that, with respect to $(,)_F, \rho(X)$ is skew-symmetric if $X \in \mathbf{k}$ and symmetric if $X \in \mathbf{p}$.)

Let $\mathscr{H}'(V)$ be the space of real harmonic forms on the Kähler manifold V, and let H'(V) be the *r*th real de Rham cohomology group of V. H'(V) and $\mathscr{H}'(V)$ are naturally isomorphic; this isomorphism will be referred to as the Hodge isomorphism. One can define a mapping of $\mathscr{H}^{a}(X, \Gamma, \rho^{(b)})$ into $\mathscr{H}^{a+b}(V)$ by

$$\mathscr{H}^{a}(X,\Gamma,\rho^{(b)}) \ni \hat{\omega}(x) \to \hat{\omega}(x) \land \begin{bmatrix} d\xi^{D_{i}}(u) \\ \vdots \\ d\xi^{D_{i}}(u) \end{bmatrix} = \omega(x,u) \in \mathscr{H}^{a+b}(V)$$

$$(2)$$

(Here, differential forms on V are considered to be ΓL -invariant forms on $X \times F$.) Let $\mathscr{H}^{\{a,b\}}(V)$ be the image of this mapping. Then the space $H^{\{a,b\}}(V)$ occurring in the decomposition (f) is the image of $\mathscr{H}^{\{a,b\}}(V)$ under the Hodge isomorphism. See [3] for details and proofs.

2. In this section the decomposition

$$\mathscr{H}^{\{a,b\}}(V)_{\mathsf{C}} = \sum_{\substack{a_1+a_2=a\\b_1+b_2=b}} \mathscr{H}^{a_1a_2b_1b_2}$$

is obtained. $(\mathscr{H}^{\{a,b\}}(V)_{\mathbb{C}})$ is the complexification $\mathscr{H}^{\{a,b\}}(V) \otimes \mathbb{C}$ of the real vector space $\mathscr{H}^{\{a,b\}}(V)$.) Rewrite equation (1) of §1 as

$$\begin{pmatrix} z \\ \bar{z} \end{pmatrix} = \begin{pmatrix} -1 & \tau' \\ -1 & \bar{\tau}' \end{pmatrix} \xi'.$$

By taking differentials obtain (1,0)-forms $u^{1}(x, u), \dots, u^{N/2}(x, u)$ defined by the equation

(3)
$$\begin{pmatrix} u \\ \bar{u} \end{pmatrix} = \begin{pmatrix} -1 & \tau' \\ -1 & \bar{\tau}' \end{pmatrix} d\xi' = \begin{pmatrix} dz & -d\tau' \cdot \xi'' \\ d\bar{z} & -d\bar{\tau}' \cdot \xi'' \end{pmatrix}$$

where

$$\xi'' = \begin{pmatrix} \xi'^{N/2+1} \\ \vdots \\ \xi'^N \end{pmatrix}.$$

For $D = (d_1, \dots, d_b)$, put |2D| = b.

DEFINITION. Let $\omega \in \mathscr{H}^{\{a,b\}}(V)_{c}$. ω is of type $a_{1}a_{2}b_{1}b_{2}$ if

$$\omega(x, u) = \Sigma \psi_{A_1 A_2 B_1 B_2} dw^{A_1} \wedge d\bar{w}^{A_2} \wedge u^{B_1} \wedge \bar{u}^{B_2}$$

where $\psi_{A_1A_2B_1B_2} = 0$ unless $|A_i| = a_i$ and $|B_i| = b_i$, i = 1, 2. The terminology " $a_1a_2b_1b_2$ -component of $\omega \in \mathcal{H}^{\{a,b\}}(V)_c$ " will be used, whether or not that component is harmonic. Let

$$\mathcal{H}^{a_1a_2b_1b_2} = \{ \omega \in \mathcal{H}^{\{a,b\}}(V)_{\mathbb{C}} : \omega \text{ is of type } a_1a_2b_1b_2 \}.$$

Several definitions are needed. Let \mathfrak{G}_c be the complexification of the Lie algebra of G. The representation $\rho: G \to GL(F)$ induces a representation $\rho_c: G \to GL(F) \subset GL(F_c)$ and a Lie algebra representation $\rho = d\rho_c: \mathfrak{G}_c \to GL(F_c)$. The isomorphism (2) of §1 given by $\hat{\omega} \to \omega$ extends to a C-linear isomorphism of the complexifications

$$\mathscr{H}^{a}(X,\Gamma,\rho^{(b)})_{\mathbf{C}}\cong\mathscr{H}^{\{a,b\}}(V)_{\mathbf{C}}.$$

An invariant complex structure on $X_0 = Sp(B)/0(S) \cap Sp(B)$ is determined by the element $Z_0 = -1/2B^{-1}S$ belonging to the center of k_0 , the Lie algebra of $0(S) \cap Sp(B)$; and the invariant complex structure on X is determined by an element Z belonging to the center of k.

Let $\mathfrak{G}_{c} = \mathbf{k}_{c} + \mathbf{p}_{+} + \mathbf{p}_{-}$ be the decomposition of \mathfrak{G}_{c} into (respectively) the 0, + i, and -i-eigenspaces of ad Z. Then \mathbf{k}_{c} is orthogonal to $\mathbf{p}_{c} = \mathbf{p}_{+} + \mathbf{p}_{-}$ with respect to the Killing form K, and there exists a basis Y_{1}, \dots, Y_{s} of \mathbf{k}_{c} and a basis X_{1}, \dots, X_{n} of \mathbf{p}_{+} such that

$$\begin{split} K(Y_a, Y_b) &= -\delta_{ab} \quad a, b = 1, \cdots, s \\ K(X_i, \bar{X}_j) &= \delta_{ij} \quad i, j = 1, \cdots, n. \end{split}$$

Put $X_{\bar{i}} = \bar{X}_{i} \in p_{-} = \bar{p}_{+}$.

To $\omega \in \mathscr{H}^{\{a,b\}}(V)_{c}$ one can associate a coordinate function $\omega^{0}(g)$ taking values in $\Lambda^{b}(F_{c})^{*} \otimes \Lambda^{a}(p_{c})^{*}$. First identify $\Lambda^{a}(p_{c})^{*}$ with $\Lambda^{a}(p_{c})$ by means of the Killing form. Let $v: G \to X$ be the projection. For $I = (i_{1}, \dots, i_{a_{1}}), J = (j_{1}, \dots, j_{a_{2}})$, and $a_{1} + a_{2} = a$, define

(4)
$$\omega_{I\bar{J}}(g) = \rho^{(b)}(g^{-1})v^* \hat{\omega}_g(X_{i_1}, \cdots, X_{i_{a_1}}, X_{\bar{J}^1}, \cdots, X_{\bar{J}^{a_2}})$$

and let

$$\omega^{\circ}(g) = \Sigma \omega_{I\bar{J}}(g) X_{\bar{I}} \Lambda X_{J}.$$

Let C be the Casimir operator of G,

RITA HALL

(5)
$$C = \sum_{k=1}^{n} X_k X_{\bar{k}} + X_{\bar{k}} X_k - \sum_{a=1}^{s} Y_a^2,$$

and let $\rho^{(b)}(C)$ be the Casimir matrix of the representation $\rho^{(b)}$. Then one can show

PROPOSITION 1. $\omega \in \mathscr{H}^{(a,b)}(V)_{c} \Leftrightarrow$ (i) $\omega^{\circ}(\gamma g) = \omega^{\circ}(g) \forall \gamma \in \Gamma, g \in G$ (ii) $\omega^{\circ}(gk^{-1}) = \rho^{(b)}(k) \otimes \Lambda^{a} \circ Ad(k) \forall g \in G, k \in K$ (iii) $C\omega^{\circ} = \rho^{(b)}(C) \otimes 1\omega^{\circ}$

(for the proof, cf. [3]). (Ad is the adjoint representation of K on \mathbf{p}_{c} .) Let $V^{b_1b_2}$ be the $(b_2 - b_1)i/2$ -eigenvalue of $d\Lambda^b \begin{pmatrix} i/2 & 0 \\ 0 & -i/2 \end{pmatrix}$ in $\mathbf{C}^{(S)}$. Recall there exists $T \in GL(N, \mathbf{R})$ such that 'TBT = J and 'TST = 1, and that $\rho' = T^{-1}\rho T$. Let $L = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 1 \\ -i & 1 \end{pmatrix}$, and let $L_0 = TL^{-1}$. Then

$$Z_0 = -\frac{1}{2}B^{-1}S = L_0 \begin{pmatrix} i/2 & 0\\ 0 & -i/2 \end{pmatrix} L_0^{-1}$$

so that $F^{b_1b_2} = \Lambda^b(L_0)^*(V^{b_1b_2})$ is the $(b_2 - b_1)i/2$ -eigenspace of $d\Lambda^b(Z_0)^*$. Now take the $a_1a_2b_1b_2$ -component η of $\omega \in \mathcal{H}^{(a,b)}(V)_c$ and make the *F*-valued form $\hat{\eta}$ and *F*-valued functions $\eta_{I\bar{I}}$ as in (4). Then

PROPOSITION 2. $\eta_{I\bar{J}}$ takes values in $F^{b_1b_2}$ and

$$\eta_{I\overline{J}} = 0$$
 unless $|I| = a_1$ and $|J| = a_2$.

Proof. Since $\hat{\eta}$ is of type (a_1, a_2) and the action of $\operatorname{ad}(Z)$ on ρ determines, via the projection $G \to X$, the complex structure on X, one sees that $\eta_{II} = 0$ unless $|I| = a_1$ and $|J| = a_2$. Since

$$\begin{pmatrix} u\\ \bar{u}\end{pmatrix} = \begin{pmatrix} -1 & \tau'\\ -1 & \bar{\tau}' \end{pmatrix} T^{-1} d\xi \text{ and } \eta = {}^{\iota}\hat{\eta} \wedge \begin{pmatrix} \vdots\\ d\xi^{D_{\iota}}\\ \vdots \end{pmatrix},$$

one sees that the form

$$\zeta = \wedge^{b} \left(\begin{pmatrix} -1 & \tau' \\ -1 & \bar{\tau}' \end{pmatrix} T^{-1} \right)^{*} \hat{\eta}$$

takes values in $V^{b_1b_2}$. Now

$$\eta_{U}(g) = \Lambda^{b} \left(T\rho'(g^{-1}) \begin{pmatrix} -1 & \tau' \\ -1 & \bar{\tau}' \end{pmatrix}^{-1} \right)^{*} v^{*} \zeta_{g}(X_{i_{1}}, \cdots, X_{\bar{j}a_{2}})$$

Let $\rho'(g) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, $\tau' = \tau'(gk)$ and $j = (Ci + D)^{-1}$. Then using the relations

$$\operatorname{Im} \tau' = j^{-1} t_{\overline{j}},$$

$$\rho'(g) \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \tau' & \overline{\tau}' \\ 1 & 1 \end{pmatrix} \begin{pmatrix} t_{j}^{-1} & 0 \\ 0 & t_{g^{-1}} \end{pmatrix},$$

one finds

$$T\rho'(g)^{-1}\begin{pmatrix} -1 & \tau' \\ -1 & \bar{\tau}' \end{pmatrix}^{-1} = L_0\begin{pmatrix} \sqrt{-2}j^{-1} & 0 \\ 0 & \sqrt{-2}\bar{j}^{-1} \end{pmatrix}.$$

Since $V^{b_1b_2}$ is $\Lambda^{b} \begin{pmatrix} \sqrt{-2j^{-1}} & 0 \\ 0 & \sqrt{-2j^{-1}} \end{pmatrix}$ -invariant, $\eta_{IJ} \in \Lambda^{b}(L_0)^{*}(V^{b_1b_2}) =$

 $F^{b_1b_2}$, proving the proposition.

Since the representation ρ induces a holomorphic mapping $\tau: X \to X_0$, we have $\rho \mid_{p_+} : p_+ \to p_{0+}$ and $\rho \mid_{p_-} : p_- \to p_{0-}$, where p_{0+} (resp p_{0-}) is the +i (resp. -i)-eigenspace of ad Z_0 . Hence

$$\rho^{(b)}(X_k): F^{b_1b_2} \to F^{b_1-1,b_2+1}$$

and

$$\rho^{(b)}(X_{\bar{k}}): F^{b_1b_2} \to F^{b_1+1,b_1-1}.$$

From (5), one sees that $F^{b_1b_2}$ is invariant under $\rho^{(b)}(C)$. Furthermore, for any $k \in K$, $\rho^{(b)}(k) \otimes \Lambda^a \circ Ad(k)$ sends $F^{b_1 b_2} \otimes \Lambda^{a_1}(\mathbf{p}_{-}) \otimes \Lambda^{a_2}(\mathbf{p}_{+})$ to itself. This implies that conditions (i) thru (iii) of Proposition 1 are satisfied by the coordinate function

$$\eta^{\circ} = \Sigma \eta_{I\bar{J}}(g) X_{\bar{I}} \wedge X_{J};$$

hence the $a_1a_2b_1b_2$ -component of a harmonic form is harmonic. In summary:

PROPOSITION 3. Let $\omega \in \mathcal{H}^{\{a,b\}}(V)_{c}$. Then $\omega \in \mathcal{H}^{a_{1}a_{2}b_{1}b_{2}} \Leftrightarrow \omega^{\circ}$ takes values in $F^{b_1b_2} \otimes \Lambda^{a_1}(\mathbf{p}_-) \otimes \Lambda^{a_2}(\mathbf{p}_+)$.

The following theorem is now immediate.

THEOREM 1.

(1)
$$\mathscr{H}^{\{a,b\}}(V)_{C} = \sum_{\substack{a_{1}+a_{2}=a\\b_{1}+b_{2}=b}} \mathscr{H}^{a_{1}a_{2}b_{1}b_{2}}$$

(2)
$$\mathscr{H}^{(p,q)}(V) = \sum_{\substack{a_1+b_1=p\\a_2+b_2=p}} \mathscr{H}^{a_1a_2b_1b_2}.$$

3. In this section assume that the representation ρ satisfies the condition

$$\rho(Z) = Z_0.$$

This assumption allows the application of some results of Matsushima and Murakami ([5]) to the study of the spaces $\mathcal{H}^{a_1a_2b_1b_2}$.

Let Σ be the root system of $\mathfrak{G}_{\mathbb{C}}$ with respect to a Cartan subalgebra contained in $\mathbf{k}_{\mathbb{C}}$. Choose an ordering of the roots such that the roots belonging to \mathbf{p}_{+} are positive. Let Σ^{+} (resp., Σ^{-}) denote the set of positive (resp. negative) roots. Let ψ denote the set of positive noncompact roots and let θ denote the set of positive compact roots. Let W be the Weyl group of $\mathfrak{G}_{\mathbb{C}}$, and let W_{1} be the Weyl group of $\mathbf{k}_{\mathbb{C}}$, considered as a subgroup of \mathfrak{W} . Let R_{1} be the involution in W_{1} satisfying $R_{1}\theta =$ $-\theta$. For $T \in W$ put $\phi_{T} = T(\Sigma^{-}) \cap \Sigma^{+}$, and put $\langle \phi_{T} \rangle = \Sigma_{\alpha \in \phi_{T}} \alpha$. Let $\delta = \frac{1}{2} \Sigma_{\alpha \in \Sigma^{+}} \alpha$. Then $\langle \phi_{T} \rangle = \delta - T\delta$. Let $W' = \{T \in W: \phi_{T} \subset \psi\}$. Let $n(T) = \operatorname{Card}(\phi(T))$. There is a direct sum decomposition

(7)
$$\Lambda^{a_1}(\boldsymbol{p}_{-}) \otimes \Lambda^{a_2}(\boldsymbol{p}_{+}) = \sum_{\substack{n(S)=a_1\\n(T)=a_2}} P^{-\langle \phi_S \rangle} \otimes Q_{\langle \phi_T \rangle}$$

of $\Lambda^{a_1}(\mathbf{p}_-) \otimes \Lambda^{a_2}(\mathbf{p}_+)$ into a sum of \mathbf{k}_c -invariant submodules (with respect to the representation $\mathrm{ad}^{a_1} \otimes \mathrm{ad}^{a_2}$); the submodule $P^{-\langle \phi_s \rangle}$ (resp. $Q_{\langle \phi_T \rangle}$) is the (unique) irreducible \mathbf{k}_c -submodule of $\Lambda^{a_1}(\mathbf{p}_-)$ (resp. $\Lambda^{a_2}(\mathbf{p}_+)$) having highest weight $-\langle \phi_s \rangle$ (resp. lowest weight $\langle \phi_T \rangle$).

Let F now be a complex vector space and $\rho^{\Lambda}: G \to GL(F)$ an irreducible representation of G with highest weight Λ . Then the spaces $H^{a}(X, \Gamma, \rho^{\Lambda})$, and, when a suitable hermitian inner product is given on F, the spaces $\mathcal{H}^{a}(X, \Gamma, \rho^{\Lambda})$ of harmonic F-valued forms on V can be defined. To $\omega \in \mathcal{H}^{a}(X, \Gamma, \rho^{\Lambda})$ one can associate a coordinate vector ω° as in §1. For each $g \in G, \omega^{\circ}(g)$ determines a "harmonic representative" of a Lie algebra cohomology class. (See [5] for explanation and details.)

Now consider F to be a k_c -module by restricting the differential of the representation ρ^{Λ} to the subalgebra k_c of \mathfrak{G}_c . Let F^{μ} be irreducible k_c -submodule of F with highest weight μ . Let $\mathfrak{h}(\Lambda, \mu, S, T) = \{C \in F^{\mu} \otimes P^{-\langle \phi_S \rangle} \otimes Q_{\langle \phi_T \rangle}: C \text{ is "harmonic"}\}$. Let Λ' denote the lowest weight of the representation ρ^{Λ} . In [5], the following lemma is proved:

LEMMA 1. $\mathfrak{h}(\Lambda, \mu, S, T) = 0$ unless $\mu = S\Lambda = R_1^{-1}T\Lambda'$.

Identify $\mathscr{H}^{a}(X, \Gamma, \rho^{(b)})_{c}$ and $\mathscr{H}^{a}(X, \Gamma, \rho_{c}^{(b)})$, and fix a direct sum decomposition

(8)
$$\Lambda^{b}(F_{c})^{*} = \Sigma F_{i}(\Lambda)$$

of $\Lambda^{b}(F_{c})^{*}$ into a direct sum of irreducible \mathfrak{G}_{c} -submodules such that $\rho^{(b)}|_{F(\Lambda)} \sim \rho^{\Lambda}$, ρ^{Λ} being irreducible, with highest weight Λ . By the assumption (6), $\rho^{(b)}(Z) = d\Lambda^{b}(Z_{0})^{*}$, and so

(9)
$$F^{b_1b_2} = \Sigma F_i^{b_1b_2}(\Lambda)$$

where $F_{i}^{b_{1}b_{2}}(\Lambda) = F_{i}(\Lambda) \cap F^{b_{1}b_{2}}$. One can consider $F_{i}(\Lambda)$ as a representation space of K_{c} . Then one obtains a direct sum decomposition

$$F_{i}(\Lambda) = \Sigma F_{i}(\Lambda, \mu)$$

of $F_{\iota}(\Lambda)$ into irreducible k_c -submodules $F_{\iota}(\Lambda, \mu)$, μ being the highest weight of the representation on $F_{\iota}(\Lambda, \mu)$. Now define, for $S, T \in W'$ and fixed Λ and μ as above

(10)
$$\mathscr{H}^{\{a,b\}}(\Lambda,\mu,S,T,) = \{\omega \in \mathscr{H}^{\{a,b\}}(V)_{C}: \omega^{o} \text{ takes values}$$

in $\Sigma F_{ij}(\Lambda,\mu) \otimes P^{-\langle \phi_{S} \rangle} \otimes Q_{\langle \phi_{T} \rangle}\}.$

Since $F_{ij}(\Lambda,\mu) \otimes P^{-\langle \phi_s \rangle} \otimes Q_{\langle \phi_\tau \rangle}$ is $\rho^{(b)}(C)^-$ and $\rho^{(b)}(k) \otimes \Lambda^a \circ Ad(k)$ -invariant,

(11)
$$\mathscr{H}^{\{a,b\}}(V)_{\mathsf{C}} = \sum_{n(S)+n(T)=a} \mathscr{H}^{\{a,b\}}(\Lambda,\mu,S,T).$$

The subspace

(12)
$$V_{\iota}(\Lambda) = \{ \omega \in \mathcal{H}^{\{a,b\}}(V)_{\mathbb{C}} : \omega^{\circ} \text{ takes values in } F_{\iota}(\Lambda) \otimes \Lambda^{a}(\mathbf{p}_{\mathbb{C}})^{*} \}$$

is isomorphic to $\mathscr{H}^{a}(X, \Gamma, \rho^{\Lambda})_{c}$. If $\omega \in V_{\iota}(\Lambda) \cap |\mathscr{H}^{\{a,b\}}(\Lambda, \mu, S, T)$, then, letting $F = F_{\iota}(\Lambda)$, $\omega^{\circ}(g) \in \mathfrak{h}(\Lambda, \mu, S, T)$, and so Lemma 1 implies that this intersection is $\{0\}$ unless $\mu = S\Lambda = R_{1}^{-1}T\Lambda'$, where Λ' is the lowest weight of ρ^{Λ} . Let $d(\Lambda, \mu, S, T) = \dim V_{\iota}(\Lambda) \cap \mathscr{H}^{\{a,b\}}(\Lambda, \mu, S, T)$. (This dimension is independent of *i*.)

PROPOSITION 4. Let $a(\Lambda, b)$ denote the multiplicity of the irreducible representation ρ^{Λ} in the representation $\rho_{C}^{(b)}$, and let $S, T \in W'$. Then (1) $\mathscr{H}^{\{a,b\}}(\Lambda, \mu, S, T) = 0$ unless n(S) + n(T) = a and $\mu = S\Lambda = R_{\perp}^{-1}T\Lambda'$ (2) dim $\mathscr{H}^{\{a,b\}}(\Lambda,\mu,S,T) = a(\Lambda,b)d(\Lambda,\mu,S,T)$

(3) If $\mathscr{H}^{\{a,b\}}(\Lambda,\mu,S,T) \neq 0$, then $\mathscr{H}^{\{a,b\}}(\Lambda,\mu,S,T) \subset H^{a_1a_2b_1b_2}$ where $a_1 = n(S)$, $a_2 = n(T)$ and b_1 and b_2 are determined by the conditions: $b_1 + b_2 = b$ and $(b_2 - b_1)i/2 = \mu(Z)$.

(4) $\mathcal{H}^{a_1a_2b_1b_2} = \Sigma \mathcal{H}^{\{a,b\}}(\Lambda, \mu, S, T)$, the summation being taken over $S, T \in W'$ such that $n(S) = a_1$, $n(T) = a_2$ and μ satisfying the conditions of (1) and (3).

Proof. (1) and (2) follow form (10), (12) and the remarks preceding the proposition, and (4) follows from (3), (11), and Theorem 1. Now, (since Z belongs to the center of \mathbf{k}_c) $F_{ij}(\Lambda, \mu)$ belongs to the $\mu(Z)$ eigenspace of $\rho^{(b)}(Z)$. By assumption, $\rho^{(b)}(Z) = d\Lambda^b(Z_0)^*$ so $F_{ij}(\Lambda, \mu) \subset F^{b_1 b_2}$, where $b_1 + b_2 = b$ and $(b_2 - b_1)i/2 = \mu(Z)$. Use (7) and Proposition 3 to complete the proof of 3.

4. Now consider the special case where V is a fiber variety associated to $G = SL(2, \mathbb{R})^N$ (= the direct product of N copies of $SL(2, \mathbb{R})$), $K = SO(2, \mathbb{R})^N$, $\rho: G \to Sp(B)$ a representation equivalent to h copies of the identity representation, and Γ an irreducible subgroup of G satisfying the conditions given before. The quotient X = G/K may be identified with N copies of the upper half plane.

Denote by Z^k the complex coordinate on the k-th factor, and let $z = (z^1, \dots, z^N)$. The irreducible representations of G are of the form $\rho_{(m)} = \rho_{m_1} \otimes \dots \otimes \rho_{m_N}$ where ρ_{m_k} is the symmetric tensor representation of $SL(2, \mathbf{R})$ of degree $m_k + 1$. Denote the representation space of $\rho_{(m)}$ by $F_{(m)}$, and the highest weight of $\rho_{(m)}$ by $\Lambda_{(m)}$. In [6], the subspaces $\mathfrak{h}(k_1, \dots, k_p; l_1, \dots, l_q; \rho_{(m)})$ of $\mathcal{H}^{p+q}(X, \Gamma, \rho_{(m)})$ are studied. $\mathfrak{h}(k_1, \dots, k_p; l_1, \dots, l_q; \rho_{(m)})$ contains all the harmonic $F_{(m)}$ -valued forms

$$\omega_z = f(z) dz^{k_1} \wedge \cdots \wedge dz^{k_p} \wedge d\bar{z}^{l_1} \wedge \cdots d\bar{z}^{l_q}$$

which satisfy the condition: $(\omega \circ \gamma)_z = \rho_{(m)}(\gamma)\omega_z$ for all $\gamma \in \Gamma$. It is proved in [6] that dim $\mathfrak{h}(k_1, \dots, k_p; l_1, \dots, l_q; \rho_{(m)}) = 0$ unless $(m) = (m_1, \dots, m_N) = (0, \dots, 0), p = q$ and $\{k_1, \dots, k_p\} = \{l_1, \dots, l_q\};$ or unless $\{k_1, \dots, k_p, l_1, \dots, l_q\} = \{1, \dots, N\}$. In the latter cases, dim $\mathfrak{h}(k_1, \dots, k_p; l_1, \dots, l_q; \rho_{(m)}) = \dim \gamma_{(m)+2}(\Gamma)$, where $\gamma_{(m)+2}(\Gamma)$ is the space of holomorphic Γ -automorphic forms f(z) transforming by

$$f(\gamma z) = \pi_{k=1}^{N} (c_k z^k + d_k)^{m_k+2} f(z),$$

if $\gamma = (\gamma_1, \dots, \gamma_N) \in \Gamma$ and $\gamma_k = \begin{pmatrix} a_k & b_k \\ c_k & d_k \end{pmatrix}, k = 1, \dots, N.$

The coordinate vector ω° of $\omega \in \mathfrak{h}(k_1, \dots, k_p; l_1, \dots, l_q; \rho_{(m)})$ takes

values in $F_{(m)} \otimes p_{-}^{k_1} \wedge \cdots \wedge p_{-}^{k_p} \otimes p_{+}^{l_1} \wedge \cdots \wedge p_{+}^{l_q}$; note that $p_{-}^{k_1} \wedge \cdots \wedge p_{-}^{k_p} = p^{-\langle \phi_S \rangle}$ for the $S \in W'$ acting nontrivially on the k_1, \cdots, k_p th factors and trivially on the other factors. Similarly, $p_{+}^{l_1} \wedge \cdots \wedge p_{+}^{l_q}$ is a $Q_{\langle \phi_T \rangle}$, $T \in W'$. A G-module isomorphism $F_{(m)} \rightarrow F_1(\Lambda_{(m)}) \subset \Lambda^b(F_c)^*$ (notations as in §3) induces isomorphisms $\mathscr{H}^a(X, \Gamma, \rho_{(m)}) \cong V_1(\Lambda_{(m)})$ taking $\mathfrak{h}(k_1, \cdots, k_p; l_1, \cdots, l_{a-p}; \rho_{(m)})$ onto $V_1(\Lambda_{(m)}) \cap \mathscr{H}^{(a,b)}(\Lambda_{(m)}, \mu, S, T)$.

In this case, μ , S, and T are related by: $\mu = S\Lambda_{(m)} = -T\Lambda_{(m)}$. (When $\mathfrak{h}(k_1, \dots, k_p; l_1, \dots, l_q; \rho_{(m)}) \neq 0$, the condition $S\Lambda_{(m)} = R_1^{-1}T\Lambda'_{(m)}$ is automatically satisfied.) Since $\rho \sim id \otimes \cdots \otimes id$ and since ρ induces a holomorphic mapping on X, the condition (6) of §3 is satisfied. In view of Proposition 4 of §3 and the preceding discussion, one has

PROPOSITION 5. $\mathcal{H}^{a_1a_2b_1b_2} = 0$ unless $a_1 + a_2 = N$ or $a_1 = a_2$ and $b_1 = b_2$. Furthermore, from Theorem 1 and Proposition 5 we obtain

PROPOSITION 6. $\mathscr{H}^{(p,p)}(V) = \sum_{a+b=p} \mathscr{H}^{\{2a,2b\}}(V)_{c} + \sum \mathscr{H}^{a,N-a,p-a,p-N+a}$ where the second summation is taken over integers a with $\min\{a, N-a, p-a, p-N+a\} \ge 0$. In particular, if $p \le N/2$,

$$\mathscr{H}^{(p,p)}(V) = \sum_{a+b=p} \mathscr{H}^{\{2a,2b\}}(V)_{c}.$$

In Case N = 1, one can prove more. The irreducible representations occuring in $\rho^{(b)}$ are the ρ_m with $m \equiv b \mod(2)$ and $0 \leq m \leq b$. Also, $W = W' \approx \{\pm 1\}$. By Proposition 4, $\mathcal{H}^{0,1,p,p-1}$ is a sum of subspaces $\mathcal{H}^{\{1,2p-1\}}(\Lambda_m,\mu,S,T)$ and each such nonzero subspace must satisfy the conditions n(S) = 0, n(T) = 1, $\mu = s\Lambda_m = -T\Lambda_m$, and $\mu(Z) = [(p-1)-p]i/2 = -i/2$. But S = 1, T = -1 and so $\mu(Z) = \Lambda_m(Z) = mi/2$, with $m \geq 0$. Thus $\mathcal{H}^{0,1,p,p-1} = 0$. Similarly, $\mathcal{H}^{1,0,p-1,p} = 0$. This gives

THEOREM 2. In Case N = 1, $\mathcal{H}^{(p,p)}(V) = \mathcal{H}^{\{0,2p\}}(V)_{c} + \mathcal{H}^{\{2,2(p-1)\}}(V)_{c}$.

Application 1. Since the subspaces $\mathscr{H}^{\{a,b\}}(V)$ are defined over \mathbf{Q} , (see [1], [8]) $\mathscr{H}^{(p,p)}(V)$ is defined over \mathbf{Q} when $p \leq N/2$.

Application 2. The Hodge conjecture for V a fiber variety over an algebraic curve attached to an indefinite quaternion algebra over Q. — see [2].

REFERENCES

1. R. Hall, Thesis, SUNY at Stony Brook, 1972.

2. R. Hall and M. Kuga, Algebraic cycles in a fiber variety, Scientific Papers of the College of General Education, Univ. of Tokyo, Vol. 25, No. 1 (1975), 1-16.

3. M. Kuga, Fiber varieties over a symmetric space whose fibers are abelian varieties, I, II, Univ. of Chicago Lecture Notes, 1963-64.

4. ——, Fibred variety over a symmetric space whose fibers are abelian varieties, Proc. of U.S.-Japan Sem. in Diff. Geom., Kyoto, Japan, (1965), 72-81.

5. Y. Matsushima and S. Murakami, *Cohomology groups of vector valued forms on symmetric spaces*, Univ. of Chicago Lecture Notes, Summer 1966.

6. ——, On vector-bundle valued harmonic forms on symmetric riemannian manifolds, Ann. of Math., **78** (1963), 365–416.

7. Y. Matsushima and G. Shimura, Vector valued differential forms on the product of upper half planes, Ann. of Math., 78 (1963), 417-449.

8. I. Satake, Mountjoy's abelian variety attached to a holomorphic immersion, Number Theory, Alg., Geom., and Comm. Alg., in honor of Y. Akizuki, Kinokuniya, Toyko, 1973, 45-69.

Received February 12, 1976 and in revised form June 17, 1977.

STATE UNIVERSITY OF NEW YORK AT ALBANY, Albany, NY 12222

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, CA 90024

R. A. BEAUMONT University of Washington Seattle, WA 98105

C. C. MOORE University of California Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * AMERICAN MATHEMATICAL SOCIETY

F. WOLF

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate, may be sent to any one of the four editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$72.00 a year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS. A NON-PROFIT CORPORATION Printed at Jerusalem Academic Press, POB 2390, Jerusalem, Israel.

> Copyright © 1978 Pacific Journal of Mathematics All Rights Reserved

J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, CA 90007

R. FINN AND J. MILGRAM Stanford University Stanford, CA 94305

Pacific Journal of MathematicsVol. 75, No. 2October, 1978

Susan Jane Zimmerman Andima and W. J. Thron, <i>Order-induced</i> topological properties	297
Gregory Wade Bell, <i>Cohomology of degree</i> 1 and 2 of the Suzuki groups	319
Richard Body and Roy Rene Douglas, <i>Rational homotopy and unique</i>	
factorization	331
Frank Lewis Capobianco, <i>Fixed sets of involutions</i>	339
L. Carlitz, Some theorems on generalized Dedekind-Rademacher sums	347
Mary Rodriguez Embry and Alan Leslie Lambert, <i>The structure of a special</i>	
class of weighted translation semigroups	359
Steve Ferry, Strongly regular mappings with compact ANR fibers are	
Hurewicz fiberings	373
Ivan Filippenko and Marvin David Marcus, On the unitary invariance of the	
numerical radius	383
H. Groemer, On the extension of additive functionals on classes of convex	
<i>sets</i>	397
Rita Hall, On the cohomology of Kuga's fiber variety	411
H. B. Hamilton, <i>Congruences on</i> N-semigroups	423
Manfred Herrmann and Rolf Schmidt, Regular sequences and lifting	
property	449
James Edgar Keesling, <i>Decompositions of the Stone-Čech compactification</i>	
which are shape equivalences	455
Michael Jay Klass and Lawrence Edward Myers, <i>On stopp</i> ing rules and the	
expected supremum of S_n/T_n	467
Ronald Charles Linton, λ - <i>large subgroups of</i> C_{λ} - <i>groups</i>	477
William Owen Murray, IV and L. Bruce Treybig, <i>Triangulations with the</i>	
free cell property	487
Louis Jackson Ratliff, Jr., <i>Polynomial rings and H_i-local rings</i>	497
Michael Rich, On alternate rings and their attached Jordan rings	511
Gary Sampson and H. Tuy, <i>Fourier transforms and their Lipschitz</i>	
classes	519
Helga Schirmer, <i>Effluent and noneffluent fixed points on dendrites</i>	539
Daniel Byron Shapiro, <i>Intersections of the space of skew-symmetric maps</i>	
with its translates	553
Edwin Spanier, <i>Tautness for Alexander-Spanier cohomology</i>	561
Alan Stein and Ivan Ernest Stux, A mean value theorem for binary digits	565
Franklin D. Tall, <i>Normal subspaces of the density topology</i>	579
William Yslas Vélez, <i>Prime ideal decomposition in</i> $F(\mu^{1/p})$	589
James Chin-Sze Wong, <i>Convolution and separate continuity</i>	601