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Let S, and T, be nth partial sums of two independent
sequences of i.i.d. random variables. S, and T, may have
different distributions. Assume 0= ES; <o, ET;<>~ and
P[T,>0]=1. Let %, be the o-field generated by
Sy, Ty, - -+, S, T, and let R.. be the collection of extended-valued
stopping rules with respect to 3,,%,,---. It is shown that
E sup,=: S,/T, <» iff sup,er ES./T.<x if ES;log"S;<w®
and E(T;')<». The (random) cutoff points characterizing the
optimal rules are easily obtained as fixed points of certain
contraction mappings. A Markov walk generalization of the
Chow and Rebbins binomial stopping problem is viewed within
the S./T,. framework.

1. Introduction. LetU U, U, - --and V,V,, V,,---beinde-
pendent random variables defined on a common probability space
(Q,%,P). Assume the U’s are nondegenerate and identically distri-
buted with 0= EU <». Assume the V’s are identically distributed
with P[V>0]=1 and EV<®. Let S,=U,+:--+U, and T, =
Vi+:--+V, Define the o-fields B, =RBU, Vy, -, U, V,), B.=
BWU,---,U), Br=RB(Vy, -+, V,), and let R., R., R be the collec-
tions of extended-valued stopping rules (Definition 1 [8]) with respect to
{Btn-1, {B}a-1, {B}a-1, tespectively. That is, 7 € R. (R., R?) if and
only if[r = n] € B,.(RB,, Br)foralln =1and P[r = o]+ 25, P[r=n]=
1. In order that our expected rewards be well defined, we follow the
strong law and set S./©, ®/T., S./T. equal to EU, 1/EV, EU/EYV,
respectively. Unless otherwise mentioned, all suprema and infima are
over {n: n=1}. We write E supS,/T, for E[sup,=:(S./T.)].

It is well known (Burkholder [1] and McCabe and Shepp [9]) that

(1.1) EsupS,/n <o & EUlog' U <x & sup ES, /1 <,

TER&

and in this case an optimal stopping rule exists (Siegmund [10]), i.e., the
last supremum in (1.1) is attained by some 7 € R..

Operating under successively weaker conditions, Chow and Robbins
[2], Teicher and Wolfowitz [11], Dvoretzky [6], Thompson, Basu and
Owen [12], Davis [4], and Klass [8] have proved that the (unique)
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minimal optimal rule is to stop at the first time n such that S, = a,, where
{a,}»-1 is the strictly increasing sequence of positive constants satisfying
a,/n = sup,er. E[(a, + S.)/(n + 7)].

One purpose of this paper is to generalize the above results to the
reward sequence S,/T,. The independence suggests treating S, and T,
separately, via the elementary inequality

(E infn/T,)(E sup S./n)= E sup S./T,
(1.2)
=(Esupn/T,)(E sup S./n).

In light of (1.1) our attentions focus on n/7T,. In §2 is proved a general
result (Theorem 1) which implies that E supn/T, <« just in case
E(V™) <. Section 3 shows that E sup S,/T, < iff sup,er. ES,/T, <
o iff EUlog*U <® and E(V™) <.

For future reference and some immediate methodology we recall
here that

(1.3) {S./n},-. is a reversed martingale,

so that the conditional Jensen’s inequality and independence imply

(1.4) {n/T,}»-- and {S,/T,}.-. are reversed submartingales.

Application of a well known submartingale inequality (Doob [5], p.
317) to (1.3) yields the sufficiency of EU log* U <« in (1.1). A possible
approach to characterizing E sup S, /T, <« (or E supn/T, < ) might
then be to apply the same inequality to obtain the sufficient condition
E(U/V)log*(U/V)<® (EV7'log"(V')<®). As our results show,
these conditions are not “‘sufficiently” weak. Afterall, EV'log" (V)<
o precisely when E supn™' 2, V"<, and n™' 2}, V! almost surely
dominates n/T,, by the inequality of the arithmetic and harmonic
means. The underlying idea in the proof of Theorem 1 is the classical
inequality relating the arithmetic and geometric means.

In §4 we employ contractions to obtain the cutoff points which
characterize the optimal rules. The situation is somewhat novel in that
the optimal stopping times depend on the intrinsic times k only through
the values of T, at those times, and the cutoff points are themselves
random, owing to dependence on the T,. This section relies heavily on
§§1 and 2 of Klass [8].

In §5 we indicate how a Markov chain generalization of the Chow
and Robbins [2] example may be viewed as an S,/T, problem.
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2. Expected suprema of inverse generalized means.
For simplicity we now assume (w.l.o.g.) that V, (@) >0 for all k =1 and
all w €. Let

M,,(t,w)=<n-1§‘,(Vk(w))'>”' for 1#0;

k=1

i/n

M, (0, ©) = lim M,(;, ©) = (H Vk(w)>

For n and w fixed, M, (¢, w) is an increasing function of ¢ (Chapter 2 of
Hardy, Littlewood and Polya [7]).

For r >0 let || X[, = [E(X]|)]" if the expectation is finite; other--
wise let | X ||, = c.

THEOREM 1. Forallt=z0 and Nz 1
@.1) E (sup [M.(t, )]-1) <[ V' yw (2 + Nlog 2+ 1).
nzN
Consequently, for all ¢ =0

22)  E(VY)=<E (ai;l) M. (5, )]-') =3 +log 2)E(V,

whence E (sup,z:[M,(t, w)]™") <« for (all) t =0 if and only if E(V™') <
©, More generally,
E (sup [M.(2, w)]“) <o for (all) t >0
nzN
(2.3)
if and only if Elrsr}g}l (Vi) < oo,

whereas
Q4 E (sup (M, (0, )]-1) < if and only if E(V-N)<w.
nzN

Proof. First we establish (2.1). Since for n and w fixed and t =20
the [M,(t,w)]" are all majorized by the inverse geometric mean
[M,(0, )] = (IIi., Vi")'", it suffices to prove (2.1) for t = 0.

Fix N=1. We may assume | V7!||,y <». Let C=E(V"")and
B =[2E(V''™)]". Then
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E sup (H ””) = Lw [sup l_[ \ y] dy

n=N nzN ;=

=B +[E(VN) + %‘, fm P [1'[ vz y"’"] dy

B =1

sBA+20)+ 5 o[y

n=N+1

=V luw (" + Nlog2+1).

This proves (2.1), from which (2.2) and (2.4) follow readily. To
prove (2.3) note that for ¢t >0

NV max V, = My(t,w) = max V.

1=;=N

Hence for t >0

1=;=N

Emin (V;)=E (sup [M.(t, 0)] )
= N"E min (V;)+ E (sug M. (s, w)]“‘).

We may assume E min;g,=n (V) <o, in which case
lim,_..y(P(V™'>y))" = lim,_. yP[min,;5,=y V;'>y]=0. We may con-
clude that E(V /") <o forany @ > N. Take a = N +1 and use (2.1) to
complete the proof.

Taking ¢t =1 in (2.2) yields

CorOLLARY 1. Esupn/T, <o & E(V) <o,

RemMAark 1. To illustrate the (qualitative) sharpness of (2.1) for
t=1, fix N=2 and let V be a gamma random variable with mean and
variance both equal to 1/(N —1). Then En/T, = « for 1 = n < N, while
by (2.1) E sup,=nn/T, <.

To underline the distinction between (2.3) and (2.4), take N = 2 and
P[V'>y]=(y""log(ey))' for y=1. Then

E(v™)=1+ [ oNlog(e™y))dy =<,
1
while

E mm (Vi) = 1+f (P(V'>y)dy <.
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Whenever E(V')=wo>E(VN), Theorem 1 yields that
E sup,=;n/T, = > E sup,.nn/T, so that the infinite expected sup-
remum owes exclusively to the behavior of the first few terms. Our next
result sheds additional light on this.

THEOREM 2. Let V,V,, V,, --- be i.i.d. nonnegative random vari-
ables with P[V >0]>0. Then

(2.5) Esupn/(b+ T,)<w for each b > 0.

Proof. We use ladder variables to transform the given reward
sequence to an S,/n reward sequence.

There exists ¢ >0 such that P[V=c]=c. Let 7(0)=0. Having
defined 7(0),---,7(k), let 7(k+1)=1stn st. V,+:---+V, 2
ct+Vi+---+V, Then T,,=kc. The random variables (k)
(for k = 1) are sums of k i.i.d. ladder variables q,, -+, q;.. Note that
Plg:>n]=P[r()>n]=P[Nr{V,<c}]=[P(V<)]"=(1-¢), so
that all moments of q, are finite. Further,

Esupn/(b+ T,)=Esup sup n/(b+T,)

kz0 r(k)<n=r(k+1)

=E sup 7(k + 1)/(b + kc)

=(1/b)Er(1)+ (2/c)E sup T(k)/k,
which is finite by (1.1).

REMARK 2. We conclude this section by mentioning another con-
dition equivalent to E supn/T, <. One can show that

(2.6) [r/(r+ D]IEY sup Y;""’=Esup Y, =EY;sup Y,;**V

for any r >0 and any positive reversed martingale - - - Y,, Y; (the upper
bound is trivial; the lower bound follows from an integration by parts,
inequality (3.4") of Doob [5, p. 314], and Fubini’s theorem). It follows
from (2.6) and (1.3) that

(2.7 supn/T, € Ly(P) iff Ti*supn/T, € L,(P).
3. EsupS,/T, <o EUlog'U < and E(V )<

o, The following lemma is a consequence of the strong law. The
corollary follows from the lemma and (1.2).
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LemMmA 1. Plinfn/T,=0]=0 and 0<E infn/T, <.
COROLLARY 2. EsupS,/T, =~ whenever E sup S,/n = =,

THEOREM 3. The following are equivalent.
() sup,er.ES,/T, <o

(ii) EsupS,/T, <o

(iii) E supS,/n <o and Esupn/T, <o
(iv) EUlog*U<® agnd E(V) <o,

Proof. (iii) and (iv) are equivalent by (1.1) and Corollary 1. (iii)
implies (ii) by (1.2). (ii) implies (i) since E sup Y, = sup,er. EY., for any
reward sequence {Y,}-;. The chain will be completed by showing the
inverse of [(iv) = ()]

Suppose first that E(V')=x. Define r€ R, by 7=1 if
U,>0, 7 = « otherwise. Then ES,/T, = « since P[U,;>0]>0.

Now suppose EU log* U =«. Then sup,cr. ES,/t = [9]. It fol-
lows that for every m =1 there exists 7, € R. such that ES, /7, >
m/E inf(n/T,); Lemma 1 has been invoked here (0 < E infn/T, < x).
Because each 7, is independent of the V,, and #B(S,, T1,---, S, Tn) 2D
RB(S1, "+, S») for every m, we have

sup ES,/T, = sup ES,/T, = sup E [(S,,,,/T,,.)irg n/T,.]

TER= TER& mz

= sup [E(S,,,/r,,, )E 'l‘glf n/T,,] =sup m = o,

mz1

This completes the proof.

4. The form of the optimal rule. We assume throughout
this section that E(V™") and EU log*U are both finite. Our return
sequences Y,(a, b) are defined by Y,(a,b)=(a + S,)/(b + T.), a real,
b=0. Since Y,(a,b)—> EU/EV and T, 1  as., we set Y.(a,b)=
EU/EV and T.=®. By the results of §3, Esup Y,(a,b)<®». We
thus see that assumptions A,, A, A, of Klass [8] hold for our
Y.(a, b), so that the entirety of §1 there is applicable. In particular

@“.1) M,(a)=sup E(a +S,)/(b+ T.)

is well-defined, finite, and attained by some 7 € R. (Klass [8],
Theorem 1).
We omit the proof of the following lemma (EV < is used).
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LEmMMA 2. For each b =0 there exists e(b)>0 such that for any
T E€R,

0=E[l/(b + T,)] = E[1/(b + T)] = 1/(b + €(b)).
If P[7 <] >0 the leftmost inequality is strict.

REMARK 3. Inthe S,/r problem (7 € R.), the form of the minimal
strictly semi-optimal rule (Definitions 4 and 5 of Klass [8]) is dictated by
the fact that for each n =0 there is a unique a, such that M,(a,) =
a,/n. Our result, in addition to being more general, is obtained with a
considerable economy of effort over earlier ones through the observation
that the maps a — bM,(a) contract the reals.

THEOREM 4. Fix b=0. M,(a)>EU/EV =0 foreach a. M,(a)
is a continuous strictly increasing function of a. bM, is a contraction of the
reals, and so has a unique fixed point a,(bM,(a,) = as).

Proof. The theorem is proved with the appropriate modifications of
the proof of Lemma 8, page 729 of Klass [8]. Fix b =0.

For the first assertion, it suffices to show that P[sup(a + S,)/(b +
T,)>EU/EV]=1 for any a. But (a +S,)/(b+ T,)>EU/EV if and
only if 25, (U, — (EU/EV)V,)>b(EU/EV)—a. Since a nondegener-
ate mean zero random walk almost surely exceeds any real number
infinitely often, the first assertion is proved.

Again fix b =0, let a, < a,, and let 7, attain M,(a,), i =1,2. Then
P[7, <] >0 since M,(a,)>EU/EV, i=1,2, and two applications of
Lemma 2 yield

0<(a,— a)E[1/(b + T.)] = M,(a,) — M,(a,)

=(a,— a)E[1/(b + T)] = (a.— a))/[b + €(b)].

The continuity of M, follows, as does the last assertion of the
theorem:

| bM, (a,) — bM,(a,))| = la,— ail.

_b
b+e(b)

Lemmas 6 and 7 and Remark 2 of Klass [8] carry over in straightfor-
ward fashion to our case, culminating in
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Lemma 3. For b=0:

i a<a, > bM,(a)>a

(i) a>a, > bM,(a)<a

(ii) €>0> a5 > as

Rather than introduce randomization (which is ‘“‘unnecessary”; see
Theorem 5.3, p. 111 of Chow, Robbins and Siegmund [3]) and determine
up to equivalence the collection of all = which attain M,(a), we content
ourselves with exhibiting one such 7. The situation is somewhat novel in
that the optimal stopping time depends on intrinsic time k only through
the values of the T, at those times, and the cutoff points a; are
themselves random. Then g, in Theorem 5 are in accordance with those
of Theorem 4.

THEOREM 5. Given a real, b 20, define T € R.. by

r=min{k: a + S > a,. 1.}

=w if a+S=a,.5 forall k.
Then E(a + S,)/(b + T,) = M,(a).

Proof. Clearly T € R.. To show that 7 is optimal for the reward
sequence Y,(a,b), it suffices to show that 7 is minimal strictly semi-
optimal (Definitions 4 and 5 and Theorem 6 of Klass [8]).

Suppose S, = s, T, = ¢, and 7 instructs us to stop at time n for the
reward (a + s,)/(b + t,) > a,.,,/(b + t,). By continuing we would expect
to get at most M., (a + s,), which is strictly less than (a + s.)/(b + t,), by
(ii)) of Lemma 3. Hence 7 is strictly semi-optimal.

The proof that 7 is minimal (strictly semi-optimal) is as in the proof
of Theorem 7 of Klass [8, p. 734], with a,.. replaced by a,.r.

5. A Markov walk example. The following example
generalizes the fair coin tossing problem treated in Chow and Robbins
[2. Let {X.}-1 be a {0,1}-valued stationary Markov chain with
P[Xi1=1|Xy =0]=p=1-q and P[X,.,=0|X, =1]=p'=1—-¢q'. In
order that the chain have stationary initial distribution we must have
P[X,=1]=a=p/(p +p’). We consider the optimal stopping problem
with reward sequence S%/n = (X, +--++ X,)/n. Let v = sup,cr: ES*/7,
where Rz is the collection of stopping rules w.r.t. {B(X,, -, X, )};-1.

Clearly any optimal rule has 7 =1 if X;,=1 (otherwise 7 is not
regular; see Definition 2 and Theorem 2 of Klass [8]).

Now suppose X;=0. We thrust independence into the picture as
follows. Suppose the statistician gets to see the data, not a digit (0 or 1)
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at a time, but in blocks (more formally, instead of observing the original
X, he views the sojourn times V,, Uy, V,, Us, - - -, where V,(U;) is the
time spent in the ith visit to {0} ({1})). The idea here is that, in the
context of the original ““game”, it is clearly more profitable to stop at the
end of some string of 1’s as opposed to stopping in the middle of a 1-block
or somewhere in a 0-block.

So let U, U, U, --- be ii.d. geometric r.v.’s with P[U=k]=
(@)'p', k=1, and let V,V,, V,,--- be iid. geometric r.v.’s with
P[V =k]=q"*"'p. Then the foregoing heuristics show that

v=a+(1-a)Esup[S,/(S.+ T,)]
5.1)
=a+(1-a)EsupS,./T,)/(EsupS,/T, +1).

Here we have used Jensen’s inequality and the fact that f(x)=x/(x + 1)
is concave increasing for x >0. In this way an upper bound on
E sup S../T, may be employed in majorizing v.

For example, one may use Theorem 3.4, p. 317 of Doob [5], together
with the fact that {S,/T,}.-. is a reversed submartingale, to obtain

EsupS,/T, =[e/(e —D][1+ E(U/V)log*(U/V)].
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