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SEMISIMPLE NIL ALGEBRAS OF TYPE ¢

TiM ANDERSON AND ERWIN KLEINFELD

We prove that a finite dimensional semisimple nil algebra
over a field F' which satisfies the identity (1 + d)z(xey) +
A — 6)(xoy)z = x(yoz) + Yy(xoz), where 6 F and J=x —1/2, is
anti-commutative. This result permits a further reduction
in the problem of classifying those varieties of power-as-
sociative algebras over F' having the property that squares
of ideals are ideals and for which the nil algebras are not
pathological.

1. Introduction. Recently we gave a survey (see [1]) of those
varieties 77 of power-associative algebras over a field F which
satisfy the following condition:

(1.1) For each Ae 7; and ideal I of A, I* is also an ideal of
A. It is well-known that the varieties of alternative and Lie algebras
have this property. On the other hand, there are some basic struec-
tural differences between these two varieties of algebras. In par-
ticular, while every Lie algebra is a nil algebra, in the alternative
theory, nil algebras are usually regarded as pathological in the
radical sense. Consequently, in our classification [1] we had to ac-
count for those varieties 7, which satisfy in addition to (1.1) the
condition.

(1.2) 77 contains a nonzero semi-simple nil algebra, and we
showed that the classification of such varieties was largely reduced
to the problem of classifying algebras of type 6. The algebras of
type 6 satisfy, among other identities, the relation

(1.3) A+ 8)z@@ey) + L —0)(xoy)z =2yoz) + y®oz)
where 6 &€ F' and oy = 1/2(xy + yx).

We are now able to prove the following result:

(1.4) THEOREM. If A is a semisimple nil algebra satisfying
the identity (1.8) with 6 = —1/2, then A ts anti-commutative.

As we shall point out later, this allows us to complete the clas-
sification of semisimple algebras of type ¢ = —1/2.

2. Preliminaries. Throughout this paper all algebras are as-
sumed to be finite dimensional over a fixed, but arbitrary, field F
of characteristic not two. For an algebra A and element a € A, the
right multiplication R, is defined as the map R,: x — xa, x ¢ A. Fur-
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thermore, when n is a positive integer, A* will denote the linear
span of all products of n elements of A. The associator (a, b, ¢),
for a, b, ce A, is defined by (a, b, ¢) = (ab)c — a(bc). We shall always
assume the algebras to be power-associative, so that the identity
0 = (x, z, ) holds, as well as its linearization

2.1) 0 = Z(o(x), o(y), 0(2)) ,

where the summation is taken over all o€ 8S,, the symmetric group
on three letters.

For the basic notions of nil, solvable, and nilpotent algebras we
refer the reader to Schafer [2], with the understanding that in this
paper whenever an algebra is called semisimple that means that it
has no nonzero solvable ideal.

Given an algebra A, we may form the commutative algebra A*
by replacing the product ab of A with the symmetrized product
1/2(ab + ba). Clearly, A is power-associative or nil if and only if
A" is. Moreover, if A = 1/2 is any scalar from F, we may replace
the product ab of A with the twisted product hadb + (1 — \)ba to
get an algebra A4, which is called quasi-equivalent to A (see [2]).
It is well-known that power-associativity, ideals, and semisimplicity
are preserved under quasi-equivalence. Furthermore, A" = (A")* for
every = 1/2.

3. The structure of certain commutative algebras. We shall
show in next section that symmetrizing the product of an algebra
which satisfies (1.3) yields a commutative algebra in which

3.1 0 = (y, 2, wor) + (2, ¥, wx) + (W, 2, y2) + (*, w, Yz)

is an identity. The purpose of this section is to get some useful
preliminary results on such algebras. Consequently, we shall as-
sume throughout this section that A is a commutative algebra in
which the relation (3.1) holds.

It is easy to see that (3.1) is equivalent to the following identity
in right multiplications:

(3.2) 0 = R,R,R, + R,R,R, + R,.R, + Ry,... — 4R,R,, .

If B is any subalgebra of A then we shall denote by B* the sub-
algebra of Hom (A4, A) which is generated by the set {R,|bec B}. We
suppose further that B is a solvable subalgebra, and our object is
to prove that B* is a nilpotent algebra. As B? +# B (in the case
B =+ 0) we may find a subspace C of B of codimension one in B such
that C 2 B®. Clearly C is an ideal of B and for any (fixed) w ¢ C,
w € B, we have the decomposition B=C + Fw. We set T = B*C* + C*;
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the following sequence of lemmas is about 7.

(3.3) LEMMA. T s a left ideal of B*.

Proof. Obvious.

(3.4) LemMA. If ceC then R.R,R,c T for all x < B.

Proof. Follows immediately from (8.2) and B? < C.

(8.5) LEMMA. If ¢, deC then R.RR,eT for all x€B.

Proof. Follows immediately from (8.2), B* < C.

(3.6) LemMMA. If ¢ceC then R.R.R.R,cT for all x€ B.

Proof. From (3.2) we have 0 = 2R, R R, + R:R, + R,s — 4R R .
Multiplying this equation by R, and using the fact that C contains
2* and «°, it then follows from Lemma (3.5) that R.R,R.R,c T.

(8.7) LEMMA. If ¢, deC then R,R,R.R,c T for all x¢c B.

Proof. Using (3.2), 0=R,R.R,+ R.R.R, + R..R, + R,—4R.R..,
thus 0 = R,R,R.R, + R;R.R,R,+ R,R,.R, + R,R.,, — 4R,R.R,,. From
Lemma (8.3) and Lemma (3.5) it follows from this equation that
R,R.R.R, cT.

(3.8) LemmMA. R,R.R.R.R.cT for all x€B.

Proof. Using (3.2) we have 2R,R,R, = —R,:R, — R,s + 4R,R,.
Multiplying this equation of the right by R,R, yields 2R .R,R,R.R, =
—R,:R,R.R, — R:R.R, + 4R,R.:R,R,. Then using Lemma (3.4) and
Lemma (3.3), we conclude that 2R,R,R.E.R, = —R,:R,R,R, (mod T).
Now applying the identity (8.2) to the factor R,R,R,, we find that
2R,R,R.R.R,= —R,:(—1/2R,:R, — 1/2R,: + 2R,R,.) = 0 (mod T) because
of Lemma (8.5). Thus R,R,R,R.R.cT.

(3.9) LEMMA. If ceC, then R.R,R.R,R,c T for all x<c B.

Proof. Using (38.2), R.R.R.R,R.=R.R,(R,R.R,)=R,R,(—1/2R.R,—
1/2R,s + 2R, R,:) € T because of Lemma (3.7).

(8.10) LEmMA. If ¢, deC, then R.R.R.R,R.c T for all xeB.
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Proof. Using (3.2), R.R,.R.R;R,=R,(R,R.R)R,=R,(—R,R,R, —
Rdsz - R(dz)x + 4R2Rdau)R:c = _RaR:deR:cRa: - RcRdszRz - RcR(da:):;:R:c +
4R.R,R,,R,c T, because of Lemmas (3.3), (38.4), (3.5), and (3.7).

(8.11) LEMmMA. If ceC, then R, R.R.R.R,cT for all x€ B.

Proof. From (3.2), R,R.R.R.R, = (R,R.R,)R.R, = (—1/2RR, —
1/ZRQ3 + ZR,R;,Z)RGRZ = —1/2RZ2R¢R¢R, — 1/2R33R0Rx + 2Rsz2Rch eT,
because of Lemmas (8.7), (3.5), and (3.3).

Now we can prove

(8.12) THEOREM. Let A be a commutative algebra satisfying the
identity (3.1) and let B be a solvable subalgebra of A. Then B* is
nilpotent.

Proof. We use induction on the dimension of B, the result being
trivial for dimB=0. For dimB=1, set B=C+ Fw and T =
B*C* + C* as before. We claim that

(3.13) U=RRRRR,cT forall pg,rsteT.

To show this, we may suppose 9, ¢, 7, s, t are either in C or are = w.
If teC then UeT by Lemma (3.3). Thus we suppose U =
R,R,R,R,R,. Now if both » and s belong to C then Ue T because
of Lemma (3.5) and Lemma (3.3). Hence we may assume either
r =8 = w or exactly one of » and s belong to C. In the latter case,
if reC and s = w then Ue T by Lemmas (3.4) and (3.3). Thus we
may assume either U = R,R,R,R,R, or U=R,RRE,RR,, where
se(C. In the first of these cases, if ¢qeC, then Ue T because of
Lemmas (3.6) and (3.8). On the other hand, if ¢ = w, then Ue T
because of Lemmas (38.8) and (8.9). This leaves the case U =
R,R,R,R.R,, where scC. Now if geC, then UeT because of
Lemmas (3.7) and (8.3). Thus we suppose U = R, R, ,R,R,R,, where
seC. However then Ue T because of Lemmas (3.10) and (3.11).

Having verified (8.13), it follows from Lemma (3.3) that (B*)* C
B*C* + C*; whence (B*)* £ B*C*. Using induction on %, these last
two relations imply that (B*)** & B*(C*)*. As dim C < dim B, it
follows from the induction hypothesis that C** = 0 for some k; hence
B* ig nilpotent.

(3.14) COROLLARY. A commutative solvable algebra A satisfying
(3.1) is wmilpotent.

Proof. This follows from choosing B= A in the previous theorem.
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(3.15) COROLLARY. If = is a nilpotent element of a commutative
algebra satisfying the identity (3.1), then R, ts nilpotent.

(3.16) THEOREM. If A is a commutative nil algebra satisfying
(8.1) then A is nilpotent.

Proof. We use induction on the dimension of A. If A*=% A
then the solvability of A4/A? and A? imply A is solvable; hence A is
nilpotent because of Corollary (8.14). Thus we may suppose A = A2

For ue A we let v’ = {tc A|ut = 0}. Using (8.1), we find that
if tewu’, @ € A then 0=(¢, u, a*) + (u, t, a*)+2(a, @, tw)=(a*)(R,R,+ R,R,).
However, as A = A* and A is commutative, A is spanned by
{a*la € A}. Thus

(3.17) RR,+ RER,=0 forall teu’.

From this relation it follows that «’ is a subalgebra of A. Indeed,
is s, t € ® then u(st) = ()RR, = —(s)R,R, = —(su)t = 0; whence st ¢ u’.

Now among all the nonzero elements of A we choose w so that
%° is maximal with respect to inclusion. We shall first consider the
case that u’ = A. Here the induction hypothesis tells us that «’ is
solvable: hence by Theorem (3.12) we have that (#°)* is nilpotent.
By a well-known argument (see [2, p. 96]), this implies there exists
an element x ¢ u’ such that zu’ & u’. We claim that

(3.18) w = (R for all k.

To prove this, we use induction on k. Suppose k =1; let tewu’.
Then (ux)t = (®)R R, = — ()RR, = —(xt)u = 0. Thus 4’ & (ux)’. As
x ¢ u’, ux # 0; hence from our choice of u, u’ = (ux)’. This verifies
(8.18) in the case k =1. We show next that «’ = (uR:*™)’. Let
teu’ and v = wR:. Then (vx)t = (x)R,R,. The induction hypothesis
says that ¢e’; hence by (3.17), (va)t = xR, B, = —aR.R, = —(xt)v.
However, xteu’® = v’. Thus (ve)t = 0 and te (vx)’ = (wR:")’. This
shows that «° < (uREY)’. Moreover, as xzu = 0 and %’ = (uRk)’,
uR*™ £ 0. Hence from the maximality of « it follows that w’ =
(wR:™)?, which completes the induction proof of (3.18). Now as R,
is nilpotent (see Corollary (3.15)), it follows from (3.18) that ’ =
0° = A, a contradiction.

We have shown that u#’ cannot be a proper subalgebra of A,
Therefore u® = A, which implies w4 = 0. Then Fu is a nonzero
ideal of 4, and by the induction hypothesis, A/Fu is nilpotent. As
(Fu)® = 0, this implies A is solvable; hence A is nilpotent.

4, Main results.

(4.1) LEMMA. An algebra A satisfying the identity
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(1 + 0)z(@oy) + (L — 0)(xoy)z = x(yoz) + Y(we2)
s quasi-equivalent to an algebra satisfying
(4.2) 2@oy) + (Xoy)z = 2(yoz) + y(wez)
unless 6 = —1/2.
Proof. Let A? be quasi-equivalent to 4 via the product @y =

ey + (L — N)yx, where M= 1/2. As y Xz = (1 — Nxy + \yx, we
find

(4.3) oy =@y + 11—y

where gt = M2:x — 1)7'. Substituting (4.3) into (1.3) and keeping in
mind the fact that (AH" = A%, we find

(4.4) [A+pe+ Q-0 — W& @oy)
+[A+0)A -+ @A —)=oy) @2
=pr @ Weoz) + Yy ® ®oz) + 1 — NG, y, 2)

where G(x, ¥y, 2) = (oz) X2 + (®°2) X y. However, from (2.1) we
have

4.5) G@, 9, 2) = —(@ YRz +2Q@oy) + YR @eo2) + 2@ (Yyo2) .
Substituting (4.5) into (4.4) yields
46) I+ w2z@@@ey) + L —-0)(@eoy)®2=2QH2) + Y& @-2)

where w = —1 4+ ¢t — 0 + 26¢. Evidently, as long as ¢ # —1/2, we
may choose N so that @ = 0. However, when w = 0, (4.6) is simply
(4.2).

(4.7) THEOREM. If A satisfies (4.2) then
(4.8) 2aoy) =zo(@ey) — o 9, 2] — [y, 7, 2]
and
4.9) [w, @, yoz] + [x, w,yoz] + [¥, 2, wozx] + [2, 9, wex] =0
Jor all w, x, y, z€ A, where [a, b, ¢c] = (@ob)oc — ao(boc).
Proof. Interchanging y and z in (4.2) and then subtracting the
resulting identity from (4.2) yields
(4.10) Yy(woz) — z(xoy) = 2y, x, 2] .

Interchanging x and y in (4.10) we have
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(4.11) x(yoz) — 2(xoy) = 2[x, y, 2] .
Adding (4.10) and (4.11) we have
(4.12)  x(yez) + yxoz) — 22(xoy) = 2([y, «, 2] + [=, ¥, 2]) .
Now comparison of (4.12) and (4.2) yields (4.8).
CAs aoa = @?, setting z = xoy in (4.8) yields
(4.13) 0=1[xvy 2oyl +ly, o xy].

Moreover, as A' is power-associative, 0 = [, z, xox]. Linearizing
this we find 0=[y, x, xox]+[x, ¥, xox]+2[x, x, xoy]. Another lineari-
zation gives 0 = [y, ¥, xox] + 2[y, z, xoy] + [y, ¥, xox] + 2[x, ¥, xoy] +
2y, x, xoy] + 2[x, ¥, xoy] + 2[x, x, yoy]. Reducing this last relation
by means of (4.13) we get

(4.14) 0=1[x o yoyl + ¥, ¥, xox].

Linearizing (4.14) by replacing ¢ with x + w and ¥y with ¥ + z yields
the desired identity (4.9). The reader should note that (4.9) is
similar to (3.1) in the commutative case.

(4.15) THEOREM. If A 1is a semisimple nil algebra satisfying
the identity

1+ 0)z@ey) + (1 —0)xey)z = x(yoz) + ylwez),

where 6 + —1/2, then A is anti-commutative.

Proof. It suffices to prove A is quasi-equivalent to an algebra
which is anti-commutative. Thus, without loss of generality, and
on account of Lemma (4.1), Theorem (4.7), and Theorem (3.16), we
may assume that

(4.16) A" is nilpotent
and
4.17) 2(xoy) =zo(@oy) — [x, y, 2] — [y, =, 2]

where [a, b, ¢] = (@ob)oc — ao(boc).

As AT is nilpotent, there is an integer » such that A" % 0 and
Al"t1 = 0, where A®) denotes the linear span in the algebra A* of
all symmetrised products of n elements. We show n = 1.

If » > 1, choose ue A"l, As A"l = Al*1Uo A 4 A" %o 41 4 ...,
% is a linear combination of terms of the type 2oy, where x € A"
and y € A™. Using the relation (4.17), we see that z(xoy)e Al**1 =0
for all ze A. Thus 0 = Au; hence AA!"™ = (0. This shows A™ is a
left ideal of A. As A™oA =0, it follows that A™ is a 2-sided
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ideal of A. However, A"AM™ C AA™ = 0. Thus A™ is a solvable
ideal of the semisimple algebra A. Consequently, A!"™ = 0, contrary
to the choice of n. Thus n =1 and A-4 = 0, which means A is
anti-commutative.

In our paper [1] we introduced the class of algebras of type 0.
These satisfy the identity (1 + 6)z(xeoy) + A — d)(@oy)z = x(yc2) +
y(xoz), as well as

(4.19) (x,2,)x; = ay(22)%, + C(X,2)2, + Ax,(22,) + a,x,(2,%5)
+ O (52,) 0, + Ag(,2) %, + QL (H525) + O, (,5)
and

(4.20) 2(X,,) = By(X3%) %, + Lo, %)%, + Baa(5,) + Bio(@,205)
+ Bo(%)2, + Be(XaXa)®; + Bry (%) + Be, (24s)

where the coefiicients «,, «--, ,6’8 belong to the field F and satisfy
the relations

(4.21) l=—a t+ta,+a,—a, =0, —a, — & + &
:181—182——:83—*—184:'—185—‘_[86—!_67'—)88
:CK1+C¥2—|—-'-+C(8:,81+,32—]—---+68.

It was proved in [1] that if A is a semisimple algebra of type
0 # —1/2 then A is the direct sum A = A, + A,, where A4, is a direct
sum of fields and A4, is a semi-simple nil algebra. Now in view of
Theorem (4.15), we know that A, is anti-commutative. However, in
the anti-commutative case, the identity (4.19) reduces to the Jacobi
identity on account of (4.21). Therefore, we have the following
result:

(4.22) THEOREM. A semisimple algebra of type 6 = —1/2 is o
direct sum of fields and a semisimple Lie algebra.
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