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LINEAR OPERATORS FOR WHICH T*T AND
T+ T* COMMUTE III

STEPHEN L. CAMPBELL

Let © denote the set of all linear operators 7' acting on
a separable Hilbert space 52 for which 7*7T and T+ T*
commute. It will be shown that if 7€ © and T* is hyponor-
mal, then T is normal. Also if 7¢® and T is hyponormal,
then T is subnormal.

I. Introduction. Operators in @ need not be hyponormal [4],
but have many hyponormal-like properties [1]-[4], [7], [8]. Therefore
our first result is not surprising.

THEOREM 1. If Te€® and T* is hyponormal, then T is normal.

Let QA) ={T|T=Q+A4,[Q, Q*Q] =0, A = A* [A; Q] = 0} where
[X,Y]=XY—-YX. Then (QA)c® [2] and all operators in (QA)
are subnormal. In [4] an example of a hyponormal operator in @,
that is not in (QA), is given. That operator is a block weighted
shift. Given that it is much “easier” for a shift to be hyponormal
instead of subnormal, our second result is, at least to us, surprising.

THEOREM 2. If Te€® and T is hyponormal, then T is subnormal.

2. Proof. The proofs of Theorems 1 and 2 are closely related.
If A is a positive linear operator with spectral resolution A =

S)\;dE()\:), then A" is defined by At = S)»*dEO\,), where A =1/n if
» %= 0 and 0" = 0. Note that A*, while possibly unbounded, is self-

adjoint, and &2 (A") = R(A). Here <7, R denote domain and range.
The null space is denoted N.

Proof of Theorem 2. Suppose Te O and [T*T — TT*] = 0. Without
loss of generality assume ||T|| < 1. Let A= [T*T — TT*]*> be the
positive square root of [T*T — TT*]. Then T*A*= AT since Te
6 [1]. Thus A*T*A*= AT. Hence, A*T*Ax = ATA*x for all z¢
(A%). Let B= ATA*. Since AT is bounded, B* = A*T*A, and
BCB*. But A —A"T*A=A*(n— TYA+MI— AtA). Since (7 + T*),
(3— T*) are both invertible, both deficiency indices of B are zero. Thus
B=B* where B is the closure of B [5, p. 1230]. Now on 57 =57 @
¢ @ o7, define

17



18 STEPHEN L. CAMPBELL

T A 0
N=|0 B 4
0 0 T*

But for all xe 2/(B) = Z(A4"), AB = T*A. Hence AB = T*A for all
xe(B). Since A, T* are bounded, we also have B*A = BA = AT.
But then N is closed and N*N = NN*. Hence N is normal [5, 1258-
1259] and

(1) No = lim Sms%xﬂdx,)x , zeD(N)
for a resolution of the identity F(-) defined on the complex plane.
Z(N) is just those x for which the limit in (1) exists. Note that
N — N* is bounded and hence the support of F(-) lies in a horizontal
strip. Let 4= {\]|n]| = ||T]]}. We now wish to show that F(4)3# =
57 when 57 is imbedded into 57 by 5% — & P00, But xe
R(F(4)) if and only if both

(1) ze=z(N™) for all m = 0
and

(ii) [N"z|l/]| T||™ = [|z]| for all m = 0.

Since 57 clearly satisfies both (i) and (ii), we have F(4)5F = o~
But then NF(4) is a bounded normal extension of 7 and T is sub-
normal as desired.

Proof of Theorem 1. Suppose that T €6 and T* is hyponormal.
We shall first show that T* is subnormal. Let 4 = [TT* — T*T]*
be the positive square root of [TT* — T*T]. Again,

T*A* = A*T. Define B, B as in the proof of Theorem 2. This
time let

T 00
N=|4A4 B 0
10 A T

Again N is a possibly unbounded normal operator, and one can argue
that N*F(4) is a normal extension of 7%, Hence T™* is subnormal.
The remainder of the proof is a modification of the proof of Lemma

2 in [9]. )

Let M = [%w g] be the normal extension of T*. Let L =[13 8],
where D = [TT* — T*T] = 0. Then ML = LM* since T€®. Hence
by the Fuglede-Putnam theorem M*L = LM and LM = M*L. Thus

DT*=1TD,
DC=0.
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But T*D = DT since T €6. Hence
DTT* = T*TD,
or equivalently,
(TT* — T*TYTT*) = T*T(TT* — T*T) .
Simplifying gives
(TT*) + (IT*T) = 2T*TTT™) .

Hence [T*T, TT*] =0. But Te€® and [T*T, TT*] = 0 implies T is
quasinormal [6]. Hence T is subnormal. But then T is normal since
T and T* are both subnormal.

It should be noted that one has to consider the extensions of B
in the proofs since A* may be unbounded. Examples can easily be
constructed by taking direct sums of multiples of the block shift in

[4].
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