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It is proved that if K is a compact, connected polyhedron
such that H%K; Z) =0, then all the components in the space
of maps of K into the 2-sphere are homeomorphic. For K
a polyhedral homology 3-sphere the common homotopy type
of the components is identified and shown to be independent
of K.

1. Introduction and statements of results., Let K and X be
a pair of compact, connected polyhedra and let M(K, X) denote the
space of (continuous) maps of K into X. All mapping spaces will
be equipped with the compact-open topology. Corresponding to each
homotopy class of maps of K into X there is a (path-) component
in M(K, X). For each pair of spaces K and X there arises then a
natural classification problem, namely that of dividing the set of
components in M(K, X) into homotopy types. The present paper is
one in a series of papers, where we search through classical algebraic
topology for methods, which are useful in the study of such classifi-
cation problems.

In [4], information on certain Whitehead products was used to
tackle the classification problem for the set of components in the
space of maps of the m-sphere S™ into the nm-sphere S*, m =un =1,
and complete solutions were obtained in the cases m = n and m =
n + 1. If the domain in the mapping space is not a suspension, the
problem becomes more delicate, since normally, it is then difficult
to construct nontrivial maps between the various components. For
a mapping space with a manifold as domain it is sometimes possible
to solve the classification problem for the components using information
about a corresponding mapping space with a sphere as domain. As
an example, knowledge of the fundamental group of the various
components in M(S?% S?) was used in [5] to solve the classification
problem for the countable number of components in the space of
maps of an orientable closed surface into S°. In this paper, we shall
investigate spaces of maps into the base space of a principal bundle.
We will concentrate mainly on spaces of maps into S?, making use
of the fact, that S* is the base space in a principal S*-bundle, namely
the classical Hopf fibration p: S® — S

The main result in this paper is the following
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THEOREM 1. Let K be a compact, connected polyhedron and
suppose that the integral cohomology group HYK; Z) = 0. Then all
the components tn M(K, S*) are homeomorphic.

Theorem 1 generalizes substantially that part of ([4], Theorem
5.2), which states, that the countably many componts in M(S? S?)
all have the same homotopy type.

In case K is a polyhedral homology 3-sphere (i.e., K is 3-dimensional
and has the same integral homology as S? we can identify the
common homotopy type of the components in M(K, S*) and show,
that it is independent of K. Let MK, S?), respectively M (S? S?),
denote that component in M(K, S?), respectively M(S? S?), which
consists of the homotopically trivial maps. Then we shall prove

THEOREM 2. Suppose that K is a polyhedral homology 3-sphere.
Then the space of maps M(K, S*) has a countable number of com-
ponents all of which have the same homotopy type as the component
of homotopically trivial maps M(S? S?).

In the proof of Theorem 2 we show that a based map q: K — S?,
which induces an isomorphism between the 3-dimensional homology
groups, will induce a homotopy equivalence between M, (K, S?) and
M(S?, S?).

Motivated by the spectral sequence constructed by Federer [2],
it is natural to raise the question, whether the homotopy of a mapping
space is determined just by the cohomology of the domain and the
homotopy of the target, at least in favorable cases. Theorem 2
answers this question in the affirmative in a particular case. A
generalized version of Theorem 2 appears in Remark 3 below. It
would be interesting to know more examples of this kind.

Finally, the author would like to thank the referee for some
very valuable constructive [remarks, which helped to improve the
presentation of the paper.

2. Spaces of maps into a principal bundle. Throughout K
denotes a compact, connected polyhedron. All topological spaces shall
have the homotopy type of CW-complexes. According to Milnor [7]
any mapping space with K as domain will then also have the homotopy
type of a CW-complex. For any space X and any map f:K— X,
we denote by M(K, X; f) that component in M(K, X), which contains
f, i.e., the space of maps of K into X freely homotopic to f. When
necessary, a space will be equipped with a base point, and for any
pair of based spaces A and B, we denote by 7(A4, B) the set of based
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homotopy classes of based maps of A into B. For A = S", the n-
sphere, we use the standard notation #,(B) = n(S*, B).

For a topological group G, the space of maps M(K,G) is a
topological group under pointwise multiplication. Similarly, for any
right action of G on a space E, there is an induced right action of
M(K, G) on M(K, E).

Consider now a principal G-bundle p: £ — B. By definition G is
then a topological group acting freely and properly on K, and p is
a locally trivial fibration, which identifies B with the orbit space
for the action of G on E. Clearly the induced action of M(K, G) on
M(K, E) is free. For any map f: K — E we denote by f = pof: K— B
the composition of f and p. Composition with p induces a continuous
map p,: M(K, E) — M(K, B). It is easy to prove that p, is a Hurewicz
fibration over its image, and since M(K, B) has the homotopy type
of a CW-complex, and therefore is weakly locally contractible, it
follows by Fadell ([1], Proposition 4) that p, is an open map. This
is used in the proof of the following

PROPOSITION. Let p: E— B be a principal G-bundle. Suppose
that there 1s an M(K, G)-invariant homeomorphism ¢: M(K, E; f,) —
M(K, E; f,) between the components in M(K, E) defined by the maps
o e M(K, E). Then ¢ induces a homeomorphism p: M(K, B; fi)—
M(K, B; f)).

Proof. A map ¢: M(K, E; f,) — M(K, E; f,) is called M(K, G)-
invariant, if for any fe M(K, E; f,) and any g € M(K, G) such that
f-ge M(K, E; f,), the map o(f)-ge M(K, E; f,) and o(f-g9) = o(f)-g.
Clearly an M(K, G)-invariant map ¢ induces a map @ making the
following diagram commutative

M(K, E; f,) —— M(K, E; f,)

pikl lpi

MK, B; F) =2~ M(K. B: [.) .

In this diagram, p), and p% are restrictions of p,. Since the
diagram is commutative and p} is open and surjective, it follows,
that @ is continuous if ¢ is continuous.

A homeomorphism ¢: M(K, E; f,) — M(K, E; f,)is called an M(K, G)-
invariant homeomorphism if both ¢ and the inverse map to ¢ are
M(K, G)-invariant maps in the above sense. It is then clear, that
the inverse map to an M(K, G)-invariant homeomorphisms ¢ induces
an inverse map to @. This proves the proposition.
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3. Proof of Theorem 1. Consider S® as a topological group,
with S' as a subgroup, via the natural identification with the to-
pological group of unit quaternions. The action of S* on the right of
S® by multiplication defines a principal S-bundle p: S* — S* equivalent
to the classical Hopf fibration. As in §2 we get an induced structure
as a topological group on M(K, S®). For two components in M(K, S*)
corresponding to maps f,, f,€ M(K, S*) we define

P M(K, S f,) — M(K, 8% f.)

by o(f) = fo-f7'-f. All operations are defined pointwise using the
group structure on S® Since M(K, S?) acts on the right of M(K, S%),
it is obvious that @ is an M(K, S')-invariant homeomorphism. By
assumption H*(K; Z) = 0, and since the only possible obstruction for
lifting a map f: K—S* to a map f:K—S*® lies in HXK; Z), see
Steenrod ([9], Theorem 34.2), it follows, that any component in
M(K, S%) lifts to a component in M(K, S%). By the proposition in
§2 it follows now immediately that all the components in M(K, S?
are homeomorphic. This proves Theorem 1.

REMARK 1. Theorem 1 can be generalized as follows. Let & be
a Lie group and let H be a closed subgroup of G. Then p: G— G/H
is a smooth principal H-bundle. Proceeding exactly as in the proof
of Theorem 1 we can prove the

THEOREM. All the components in M(K, G/H), which are images
wnder p, of components in M(K, G), are homeomorphic.

4. Spaces of maps of a polyhedral homology 3-sphere into
S?. Throughout this section K denotes a polyhedral homology 8-
sphere, i.e., K is a compact, connected 3-dimensional polyhedron with
H(K; Z)=H,K; Z)=0and H(K; Z)= Z. By the universal coefficient
theorem for cohomology we get then equivalently HYK; Z) =
H¥K;Z)=0 and H*K; Z)=Z. Using elementary obstruction
theory for the first isomorphism and the Hopf classification theorem,
see Spanier ([8], Corollary 16, p. 431), for the second isomorphism
we get

oK, S)=nK,S)=HK;, Z)= Z .

Thus M(K, S* has a countable number of components.

Proof of Theorem 2. Due to Theorem 1, it suffices to consider
the component of homotopically trivial maps MK, S*. Evaluation
at the base point of K defines a Hurewicz fibration p*: M(K, S?) — S?,
the fiber of which is the space of based maps of K into S? homotopie
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to the constant based map, denoted F,(K, S?). See Spanier ([8],
Theorem 2, p. 97 and Corollary 2, p. 400). Similarly, we have the
Hurewicz fibration p%: M(S? S?) — S* with fiber F(S? S?).

Choose now a base point preserving map ¢: K — S?, which induces
an isomorphism q,: H(K; Z) — H,(S% Z). Composition with ¢ induces
a map between fibrations

FyS°, 8% -1 F(K, 87

l

M(S, 8% L MUK, S°)

psl ipK

Sz 1s? _ 5

If we take the constant based map as base point in all the
mapping spaces involved, then we get for each 7 = 1 a commutative
diagram

T(F(S*, 89)) — m(Fy(K, S)

= | =

RS, §) i WK, S -

In this diagram 3. denotes the ¢-fold reduced suspension functor.
The vertical maps are natural identifications. The horizontal maps
are both induced by q.

Congider the map >}q: >)' K — >.'S%. From the suspension iso-
morphism theorem in homology it follows that Y.*¢ induces an
isomorphism between homology groups in all dimensions. Since both
SV K and >°S® for ¢ =1 are simply connected, see Spanier ([8],
Corollary 3, p. 454), it follows by a theorem of J. H.C. Whitehead,
see Spanier ([8], Corollary 24, p. 405 in connection with Theorem
25, p. 406), that 3" ¢ is a homotopy equivalence. Hence

(XS, 8) — (XK, S

is an isomorphism for all 7 = 1.

In the above map between fibrations, the map between fibers
induces therefore an isomorphism between homotopy groups in all
dimensions. Using the 5-lemma on the induced map between homo-
topy sequences for the two fibrations, it follows that ¢*: M,(S? S*) —
MK, S?) induces an isomorphism between homotopy groups in all
dimensions. Hence by a theorem of J. H. C. Whitehead, see Spanier
([8], Corollary 24, p. 405), ¢* is a homotopy equivalence, and therefore
MK, S%) and M,(S? S*) have the same homotopy type.
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As already remarked this finishes the proof of Theorem 2.

COROLLARY. Let K be a polyhedral homology 3-sphere. For an
arbitrary map f: K— S* we have then

T (M(K, 82, f) = w,(S*) P 7,.,+(S?)
Jor all v = 1.

Proof. By Theorem 2 it suffices to consider My (S® S*) with the
constant map as base point. Observe now that the fibration »°:
My(S?, S?) — S* with fibre F,(S? S?) has a section, namely the section
8.8 — M(S% S?) of constant maps. Hence the homotopy sequence
for »° splits and we get

T (My(S? %) = 7,(S*) D m:(F(S°, S%)
= (8% D 7i.o(S?) .

REMARK 2. By appealing to results from infinite dimensional
topology we can substitute homotopy type by homeomorphism type
in Theorem 2. This follows, since Geoghegan [3] has shown that
almost all mapping spaces, and certainly the ones considered here,
have the structure of infinite dimensional, separable Hilbert manifolds,
and Henderson [6] has shown that two such manifolds are homotopy
equivalent if and only if they are homeomorphic.

REMARK 3. As pointed out by the referee, Theorem 2 can be
generalized as follows.

Let K and K’ be compact, connected polyhedra and suppose that
there exists a map ¢: K— K’, which induces an isomorphism q.,:
H,(K; Z)— H,(K'; Z) between homology groups in all dimensions
2= 0. Let also X be an arbitrary connected space. Using exactly
the same procedure as in the proof of Theorem 2, we can then
prove, that ¢ induces a homotopy equivalence ¢*: My(K’', X)— MK, X).
For X = S*and if HYK; Z) = H¥K'; Z) = 0, we get then immediately
a generalized version of Theorem 2.
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