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A continuous canonical form for the unitary equivalence
of 2 X 2 complex matrices is constracted and it is proved
that for n ^ 3 there does not exist a continuous canonical
form for the unitary equivalence of n X n complex matrices.
Both results have applications to the study of singly generated
C*-aIgebras of type In.

1* Introduction. Let Mn be the ring of n x n complex matrices
with its usual topology. We shall call a function / : Mn-+Mna canoni-
cal form for the relation of unitary equivalence on Mn if J satisfies:

( i ) J{A) is unitarily equivalent to A,
(ii) if B is unitarily equivalent to A, then J(A) = J(B).

In other words, a canonical form for the relation of unitary
equivalence is a rule for selecting a unique matrix from each unitary
equivalence class.

If the equivalence relation of similarity is considered instead of
the relation of unitary equivalence, then the map which sends each
matrix to its Jordan form is a well known and reasonably compu-
table example of a canonical form for the relation of similarity.
The problem of constructing a canonical form for the relation of
unitary equivalence does not have as satisfactory a solution as the
Jordan form yields for similarity. There are several reasons for
this. First, the problem of finding suitable invariants that determine
when two n x n matrices are unitarily equivalent was solved more
recently than the corresponding problem for similarity. A complete
set of unitary invariants for n x n complex matrices was first found
by Specht [30], but the number of invariants given was infinite.
Specht proved that if W denotes the free multiplicative semi-group
generated by the symbols x and y, then two n x n matrices A and
B are unitarily equivalent if and only if Tr (w(A, A*)) = Tr (w(B, B*))
for all w(x, y)e W, where Tr (•) is the trace function. A finite set
of invariants was given in [24, Thm. 2] where for n fixed but
arbitrary, a subset of W containing 4"2 elements which forms a
complete set of unitary invariants is explicitly constructed. The
sharpness of the above bound is not known, but a detailed analysis
of the cases n = 2 and n — 3 in [21] and [23], respectively, shows
that considerably fewer invariants are sufficient. The second diffi-
culty encountered in constructing a canonical form for the relation
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130 VERN PAULSEN

of unitary equivalence is that, in general, a given matrix is unitarily
equivalent to "fewer" matrices than it is similar to and hence a
much "larger" set of canonical forms is needed. This is amply
illustrated in [28]. Various authors have given inductive definitions
of canonical forms for the relation of unitary equivalence [5], [20],
and [28], but it is hard to visualize the final canonical form. Ex.
plicit canonical forms are constructed in [6] and [23] for the cases
n = 2 and n = 3, respectively.

More recent work was concerned with determining what addi-
tional properties a canonical form might satisfy. In [4, Cor. 4] it
is proved that the map which associates to each matrix its Jordan
form is a Borel measurable function from Mn to Mn, and thus is a
Borel measurable canonical forms for similarity. It is implicit in
[2, Cor. 3.4.1] and [4] that canonical forms exist for the relation of
unitary equivalence on Mn which are Borel measurable functions.
Further results concerned with performing similarity and unitary
transforms in a Borel measurable or continuous fashion are applied
to the study of von Neumann algebras of type I in [6], [10], [11],
[13], [14], [15], [17], [25], and [26].

The problem we wish to consider is whether or not canonical
forms for the relation of unitary equivalence exist which are conti-
nuous. Again, when similarity is considered instead of unitary
equivalence, the problem is easier and the answer is that there can
be no canonical form for similarity which is continuous (cf. Remark
1). Quite surprisingly, for unitary equivalence the answer depends
on n. We shall show that no continuous canonical form exists for
n ^ 3, but for n = 2 we shall construct a continuous canonical
form.

In the same way that the measurability of certain similarity
and unitary transforms is useful in the study of von Neumann
algebras, the continuity of unitary transforms and canonical forms
for unitary equivalence has applications to the study of C*^algebras.
In fact, the original motivation for studying such continuity problems
arose from questions concerning the structure of the algebras C*(Y)
which were introduced in [29]. These algebras are pertinent to
attempts to generalize the Brown-Douglas-Pillmore theory ([8] and
[9]) to the class of essentially ^-normal operators (cf. for example,
[27]). The applications of the results of this paper to the algebras
G*(Y) will be discussed in [22].

The main results of this paper appear in §3. To prove them
we shall need some preliminaries which will allow us to deduce the
existence of a continuous unitary transform from the existence of
a "pointwise" unitary transform. This is the content of §2.
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2* Selection theorems* Let X be a compact Hausdorίf space,
let C(X) be the C*-algebra of continuous complex-valued functions
on X, and let Mn(X) be the *-algebra of continuous functions from
X to Mnf where the algebraic operations are defined pointwise. If
we set

for AeMn(X), then Mn(X) becomes a C*-algebra (identifiable with
the C*-algebra of all n x n matrices with entries from C{X)). When
Xis a Stonian space (i.e., when the closure of every open set in X
is open), Mn(X) is an ^-homogeneous ATF*-algebra [18].

If X is Stonian and if A and B are elements of Mn(X) with A(x)
unitarily equivalent to B{x) for each x in X, then one knows from
[25, Thm. 3] that A and B are unitarily equivalent as elements of
Mn(X), i.e , that there is a unitary U in Mn(X) with U*AU = B.
Various examples in [11] show that if one drops the hypothesis that
X be Stonian, then this result is not generally true. To establish
the assertions of § 3 we will need a variation of this theorem which
is valid for spaces which are not Stonian. To prove such a theorem
we will make some additional hypotheses and establish a theorem
concerning the structure of certain *-homomorphisms of Mn(X). In
[7], [9], and [31] different versions of this structure theorem are
referred to, but the version we shall present here is quite accessible
and so we include its proof. We begin with some relevant definitions.

An element A of Mn is called irreducible if the only (Hermitian)
projections in Mn that commute with A are the trivial ones. Equi-
valently, a matrix A in Mn is irreducible if and only if the algebra
of all polynomials p(A, A*) in A and A* is equal to Mn.

If E is a nontrivial complex line bundle over a compact Hausdorff
space X (cf. for example, [3]), but the direct sum of n copies of
E, nE, is trivial, then we will call E an n-torsion line bundle. We
shall call X n-torsion free if there does not exist an ^-torsion line
bundle over X.

We are now in a position to state our theorems.

THEOREM 2.1. Let X be a compact, Hausdorff space, and let φ
be a *-algebra homomorphism from Mn(X) into Mn(X) which is ele-
mentwise center-preserving. If X is n-torsion free, then there is a
unitary U in Mn{X) with φ(A) = U*AU.

THEOREM 2.2. If X is n-torsion free and if A and B belong to
Mn(X) with A{x) and B(x) unitarily equivalent, irreducible matrices
for each x in X, then A and B are unitarily equivalent elements
of Mn(X).
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Proof of Theorem 2.1. We shall regard n x n matrices as
operators on the Hubert space Cn and regard elements of MJJK) as
giving rise to an operator on Cn for each a; in I without further
comment.

For 1 ^ i, j ^ n, let Eil3- be the element of Mn(X) whose value
at each point is the matrix which has a 1 in the (i, i)th position
and is 0 in all the remaining positions. If for 1 ^ i, j ^ n we set
Pi)3- — φ(Eiti)9 then it is easy to see that for each x in X the set
{Pitt(x)}i=i is a collection of mutually orthogonal rank one projections.
Furthermore, each Ptj(x) is a partial isometry with initial space the
range of Py,y(a?) and final space the range of Pilt(x). For 1 g i <; n,
let Hi be the subset of X x C% consisting of all points (x, v) with
v in the range of Ptti(x). Since each PiΛ is continuous, this insures
the local triviality of Ht and so Hi becomes a complex line bundle
over X.

If i Φ j , then PitS defines a vector bundle isomorphism from Hs

to Ht via the mapping (x, v) —> (x, Piiά(x)v). Thus, nH^ is vector
bundle isomorphic to Σ*=i Θ Sif which is in turn vector bundle
isomorphic to XxCn. Thus, since X is ^-torsion free by hypothesis,
JHΊ must be a trivial bundle, and so there exists a continuous func-
tion ut from X to Cn such that ||Wi(»)|| = 1 and such that (x9 n^x))
for each x in X. If for 2 ^ i ^ π, we define Ui by (̂αc) = Pi,i
then each ut is a continuous function from Xto Cn with ||u<(ίc)|| = 1,
and (x, ut(x)) € jfft for each x in X If U is the element of Mn(X)
whose ith column is ui9 for 1 ^ i ^ w, then Ϊ7 is a unitary element
of ikfw(X). We assert that φ(A) = J7AΪ7* for every A in Mn(X).

To verify this assertion, notice that if {ek}l^ is the standard
orthonormal basis for Cn, then UEuύek — δStkUi and Pi>3-Uek = δy,^,
where δyffc is the Kronecker delta. Thus, we have UEί}jU* — P<f i.
If A is in Mn(X), then we may write

A = Σ Diag (αify)JS?ify

where αt,y is in C(X) for 1 ^ if j ^ n and Diag (αifί ) is the element
in the center of Mn(X) which is the diagonal matrix having the
function aiti for each diagonal entry. We have

φ{A) - Σ Diag (attj)φ(Eu)
ί,y=i

= Σ Tfi*g (atJ)UEtίiU* - UAU* ,

which completes the proof of Theorem 2.1.

When X is Stonian, all line bundles over X are trivial (since
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we may find a finite cover of X by compact, open subsets with the
bundle trivial above each subset) and so Theorem 2.1 generalizes
the part of [19, Thm. 3] which says that any elementwise center-
preserving *-algebra automorphism of an ^-homogeneous A T7*-algebra
is conjugation by a unitary element of that algebra.

We will now prove a lemma from which Theorem 2.2 follows.

LEMMA 2.2. // A and B are elements of Mn(X) such that A{x)
and B(x) are unitarily equivalent, irreducible matrices for each x
in X, then there exists an elementwise center-preserving *-algebra
homomorphism of Mn(X) into itself which maps A to B.

Proof. For each a; in 1 there exists a unitary matrix U{x)
with U(x)* A(x)U(x) = B(x). Since A(x) and B(x) are irreducible
matrices, U(x) is uniquely determined up to multiplication by a
scalar unitary matrix. Let Eifj be defined as in the proof of Theorem
2.1 and for 1 ^ i, j ^ n, define Pu(x) = U(x)*Eitj{x)U(x). Notice
that the definition of Pifj(x) is independent of the choice of the
unitary U(x) satisfying U(x)*A(x)U(x) — B(x).

We assert that for 1 <> i, j <* n, Pij3 eMn(X), i.e., that each Pij3

is a continuous function of X. To establish this assertion, let us
fix x0 in X and show that Pi)3 is continuous in a neighborhood of
x0. Since A(x0) is an irreducible matrix, there exist polynomials
PiΛVt z) m th e noncommuting variables y and z, 1 ^ i, j ^ n, such
that Eij(xQ) = ptlj(A(xo)f A(x0)*). If we set Aitί = ptj(A, A*) and
Bi}j = Pi,j(B, B*) for 1 <̂  i, j <; n, then {Aifj(xo)}lj=1 is a linearly in-
dependent set. Hence, in some neighborhood V of xOf {Aifj(x)}ld=:1

will be linearly independent for all x in ψl Thus we can find
ditStktι e C(3 )̂ for 1 ^ i, i, k, I <, n, such that

#i,i(&) = Σ rf<,i,fc,/(»)Λ,i(*)

for all x in T. Since P<fi(a;) = U*(x)Ettj(x)U(x) = Σ ,i=id*,i.*.ϊ(*)-Bi.i(»)
for 1 tiί i, j ^ n and a? in 77 the functions P t > i are continuous at x0.

We are now in a position to define a *-algebra homomorphism
0 from Mn(X) into itself. Recall that if F is in Mn(X), then J?7 =
Σ£;=i Diag (fu)Eu for certain /<fi in C(X), 1 ^ i, j ^ n. We define
(̂•P7) = ΣL=i Diag (fi,j)Pij. It is easy to check that φ is a *-algebra

homomorphism which is elementwise center-preserving and that
φ(A) = 5; thus the lemma is proved.

Theorem 2.2 now follows by applying Theorem 2.1 to the
*-algebra homomorphism obtained in Lemma 2.2.

The hypothesis that X be a topological space that is ^-torsion
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free is not vacuous. In [1] a 2-torsion line bundle is constructed
over RPZ. Furthermore, if we let Gn be the group of ^automor-
phisms of Mn with the topology of pointwise convergence, then in
[31] an elementwise center-preserving non-inner *-automorphism of
Mn(Gn) is constructed, and so Gn has w-torsion. Using Theorem 2.1
it is possible to exhibit an w-torsion line bundle over Gn.

In order to determine when we may apply Theorem 2.1 or
Theorem 2.2 we make a calculation using Chern classes which
provides us with conditions a space must necessarily satisfy in order
to have ^-torsion. The author acknowledges his indebtedness to
Dave Simen for introducing him to the theory of Chern classes. We
refer the reader to [16, Chap. 1, §4] for results on Chern classes.

Let X be locally compact, the countable union of compact sub-
sets, and of finite topological dimension. If E is a vector bundle
over X, then the Chern class of E, c(E) = 1 + Σ2U c»(2£), is an ele-
ment of the graded ring ΣϊU H**(X, Z), where Hj(X, Z) is the ith
Cech cohomology group with integer coefficients. One knows that
the value of c(E) depends only on the vector bundle isomorphism
class of E, that c(E © F) = c(E) c(F), and that if E is a trivial
bundle, then c(E) = 1. Furthermore, if E is a line bundle, then
c(E) = 1 + Ci(-E), and cλ{E) = 0 implies E is a trivial line bundle.
Thus, if F is an w-torsion line bundle over X we have

1 = c(nF) = (1 + Cl(F)) - 1 + nc,{F) + + c^F)* .

Since by the hypothesis F is not trivial, ct(E) Φ 0 and hence c^F)
must be an element of H\X, Z) of order n. We summarize this as
follows:

PROPOSITION 2.3. Suppose that X is a locally compact, σ-compact,
Hausdorff space and that X has finite topological dimension. If in
addition H2(X, Z) has no elements of additive order n, then X must
be n-torsion free. In particular, every compact subset of R2 is n-
torsion free for n ^ 2.

3* Continuous canonical forms* We begin this section with
our construction of a continuous canonical form for the relation
of unitary equivalence on M2. We shall use the result from [21]
that two elements A and B of Mz are unitarily equivalent if and
only if Tr (A) = Tr (B), Tr (A2) = Tr (£2), and Tr (A*A) = Tr (B*B).

THEOREM 3.1. The function J: M2 -> Mz defined by

/Tr(A)/2 δ(A)

U(A)/4δ(A) Tr(A)/2
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where

d{A) - 2 Tr (A2) - Tr (A)2

b(A) = l/l/T[Tr (A*A) - |Tr (A)|2/2

+ ((Tr (A*A) - |Tr (A)|2/2)2 - |d(A)|2/4)1/2]1/2,

and d(A)/b(A) is defined to be zero for all A such that b{A) = 0, is
a continuous canonical form for the relation of unitary equivalence
on M2.

Proof. We begin by showing that
(1) Tr (A*A) - |Tr (A)|2/2 ^ 0, and
(2) (Tr (A*A) - |Tr (A)|2/2)2 - |d(A)|2/4 ^ 0

for every A in M2, from which it will follow that 6(A) is well defined
and continuous. Next, we will show that although there are matrices
A for which δ(A) = 0, the quotient d/b can be extended continuously
at such points by defining the quotient to be zero there.

If A and B are unitarily equivalent, then J(A) = J(B) since all
the terms in the definition of J are preserved by unitary equivalence,
which shows that J has property (ii) of a canonical form. Thus to
verify the inequalities (1) and (2) we may replace A by any matrix
unitarily equivalent to A. Since every matrix is unitarily equivalent
to an upper triangular matrix, we may assume A is upper triangular.
Thus we may set

To simplify notation we set Tr (A) = tlf Tr (A2) = t2, and Tr (A*A) = t8

Then

Zl + z2 = tx and z\ + z\ = t2 ,

from which it follows that

\zλ - z2\
2 = 12*2 - t\\ and

Since

t. = k l 2 + W2 + M2 ,

we have

t3- it, 172 = kl 2 + N 2 + |s|2

- 1/2(4 Re (2^) + |2ί2 - t\\)

= |s|2 + 12ί2 - ίJI/2 ̂  0 ,
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and thus inequality (1) is established. To establish inequality (2),
one simply squares both sides of the equation

ί8 ~ UI2 = \s\2 + \2t2 - ίί|/2

and subtracts the appropriate positive terms.
Turning our attention to the quotient d(A)/b(A) for b(A) Φ 0,

we see that

\d(A)\lb(A) ^ V~2\2t2 - tt\/(\s\> + \2t2 - £2|/2)1/2

^ 2\2t2 - tl\1/2 .

Since δ(A) = 0 implies \2t2 — t\\ = 0, if we define d(A)/b(A) to be zero
for every matrix A such that 6(A) = 0, then it is clear from the
above inequality that this extension of d/b is continuous on all of M2.
Hence we have verified that J is a continuous function from M2 to M2.

All that remains to complete the proof of Theorem 3.1 is to
verify that J satisfies property (i) of a canonical form, i.e., to show
that J(A) is unitarily equivalent to A. We accomplish this by show-
ing that Tr (J(A)) - Tr (A), Tr (J(A)2) - Tr (A2), and Tr (J(A)*J(A)) =
Tr(A*A). The first two calculations are straightforward and so we
only do the final one, i.e., we show that Tr (J(A)*J(A)) = tz. If
b(A) = 0, then

Tr (J(A)*J(A)) = UI2 = ί, .

Thus we may assume b(A) Φ 0, and so

Tr (J(A)*J(A)) = [2|iJ26(A)2 + 4δ(A)4

Setting

we have

Tr (J(A)*J(A)) - [ITO - 1̂ 172 + /)
+ (ί, - U/2 + f)2 + (t3 - UJ2f - /2]/46(A)2

= [2t\ + 2dtz - |it|
2y/46(A)2 = ί3,

which completes the calculation.

The definition of the function J given in Theorem 3.1 is perhaps
better motivated by the following observation. If A is an element
of M2, then there exist at most two matrices of the form

z

W 2



CANONICAL FORMS FOR MATRICES 137

with r nonnegative real, that are unitarily equivalent to A. It is
easily checked that J(A) is the unique matrix of the above form for
which r is a maximum.

It follows from [24, p. 1408] that the function J defined in
Theorem 3.1 when restricted to the 2 x 2 real matrices becomes a
continuous canonical form for the relation of orthogonal equivalence.

We proceed now to the proof that there is no continuous canoni-
cal form for the relation of unitary equivalence on Mn for n^tZ. We
shall write Qn for the space of unitary equivalence classes of ele-
ments of Mn with the induced quotient topology. We will denote
the quotient map from Mn to Qn by pn. It is obvious that for a
fixed n the problem of finding a continuous canonical form for the
relation of unitary equivalence on Mn is equivalent to the problem
of finding a continuous section of pn, i.e., a continuous function sn

from Qn to Mn such that sn o pn is the identity on Qn. Indeed, given
such a section sn, we can define a continuous canonical form on Mn

by setting J(A) — sn o pn(A) for A in Mn. Similarly given a continu-
ous canonical form J we obtain a continuous section [12, VI. 1, 4.2]
by defining sn = J°p~\

THEOREM 3.2. If n^Z, then there is no continuous section of
the map pn: Mn -> Qn and thus there is no continuous canonical form
for the relation of unitary equivalence on Mn

Proof Let n ^ 3 be a fixed positive integer. In order to prove
that there is no continuous section of the map pn, it is sufficient to
exhibit a subset of Qn such that no section of pn can be continuous
when restricted to that subset.

With this in mind, for the closed unit disc D we define A and
B to be the elements of MJJD) given by:

A(z) =

0 z

- M o
0 1 - \z\

0 0

o

1

1
0

0

o
0
1

0
••

0

0

1

0

0

a

. . . ()

' • 0
•0 1

. . . o
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0 1 z O

O O I O

0

We shall show that if we define hx(z) = pn(A(z)) and hz(z) = pn(B(z)),
then h^ and h2 are homeomorphisms of D into QΛ, and furthermore
h^z) = fta(s') if and only if 2 = zf and |g| = 1. The union S of the
ranges of ht and /?-2 is the subset on which we shall show that there
can be no continuous section of pn defined.

Since hγ and h2 are continuous functions on the closed disc, to
prove that they are homeomorphisms it is sufficient to prove that
they are one-to-one. To this end, recall that if two matrices P and
R are unitarily equivalent, then for any polynomial q(x, y) in the
noncommuting variables x and y, Tr (q(P, P*)) = Tr (q(R, 12*)). A
calculation shows that Tr {B(z)*B{z)2) — z and hence h2 is one-to-one.
Further calculations show that Tr(A(z)2) = (1 - \z\)(2 + 2z), Tr(A(z)3) =
3(1 - M)2, and Tr (A(z)*A(z)2) = z(l - \z\) + z. If K(z) = hL(z'), then
Ύτ(A(z)z) = Tr(A(^')3), and so \z\ = \z'\. If \z\ Φ 1, then consideration
of the equation Tr(A(^)2) = Tr(A(^')2) shows that z—z'. Similarly, when
\z\ = 1, consideration of the equation Ίτ(A{z)*A(zf) = Ίτ{A{zTA{zJ)
shows that z — z'.

If for z in D and \z\ = 1 we define the unitary matrix U(z) by

z 0

0 1

0

* .°
0 1

then U(z)A(z)U(z)* = B(z) for each z in D with \z\ = 1. Thus, wehave hx{z) = h2(z) when |«| = 1.
we must have Tr (A(z')2) = 0,
have Tr (B(z)*B(z)*) = Tr

If h,(z) = Λ2(»'), then since Tr (-B(z)2) = 0
and so \z'\ = 1. Since we must also
*^.(^)2), it must be the case that z = z\

Thus, ^(2;) = h2(zf) if and only if z, = 2' and |^| = 1.
Let us suppose now that we have a continuous map s from S

into Mn such that pΛ ° s is the identity on S. If we set Ax{z) = sQi^z))
and JSί(jδ) = s(h2(z)), then Ax and Bx are elements of Mn(D). Further-
more, for each z in D, A^z) and B^s) are unitarily equivalent to
A(z) and B(z), respectively. As we shall soon show, A{z) and B(z)
(and hence A^z) and Bt{z)) are irreducible matrices for each z in Zλ
Since, as is well known, H\D, Z) = 0, by Proposition 2.3 the hypo-
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theses of Theorem 2.2 are satisfied, and thus there exist unitary
elements V and W of Mn{D) with V*AV = At and W*BW= B,.
Since for \z\ — 1 we have A^z) = B^z), this implies

W(z)V{z)*A{z)V(z)W(z)* = B(z)

for |#] = 1. We define continuous functions / and g from the unit
circle to itself by f{z) = det (W(z)V(z)*) and g(z) = det ([/(«)) = z.
The Brouwer degree of g is 1, and the Brouwer degree of / is zero
since / is homotopic to a constant function. To define the homotopy,
if for 0 ^ t ^ 1 and \z\ = 1 we let F(z, t) = άet(W(tz)V(tz)*)f then
F(z,ϊ)=f{z) and F(z, 0) - det (W(0)V(0)*). We also have that
U(z)*W(z)V(z)*A(z)V(z)W(z)*U(z) = A(z) for |«| = 1, and since A(z)
is an irreducible matrix, it must be that U(z)*W(z)V(z)*, is a scalar
unitary matrix for each z with \z\ = 1. But this implies that the
function άet(U(z)*W(z)V(z)*) from the unit circle to the unit circle
has Brouwer degree a multiple of n. On the other hand,

άet(U(zTW(z)V(zr) = g(z)f(z)

which has Brouwer degree — 1. This contradiction completes the
proof of Theorem 3.2 except for the verification of the claim that
A{z) and B{z) are irreducible matrices for all z in D.

If B(z) was not an irreducible matrix for some z in D, then the
Jordan form of Biz) would have more than one block. If we define
an element of Mn(D) by

1 z 0

0 1 0

0

0

0

\0
0 1

then for all z in D, S~\z)B(z)S(z) is the n x n elementary Jordan
block with eigenvalue zero. Hence, by the uniqueness of the Jordan
form, B(z) must be irreducible for all z in D.

We shall prove that A(z) is irreducible for all z in D by induction.
To this end, for each k9 Z^Lk^n, let Ak be the element of Mk(D)
obtained from A by deleting the last n — k rows and columns, so that

Ak(z)

JO":
i

1°
ί l

o i o j
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It is possible to show by a direct calculation that the only self-
adjoint matrix which commutes with A5(z) for any z in D is a scalar
matrix. So by induction we may assume that for any z in D and
3 ^ j ^ k, Aj{z) is an irreducible matrix. Now let z be an arbitrary
but fixed point in D and assume P is a (k + 1) x (fc + 1) self-adjoint
matrix which commutes with Ak+ι(z) We may write

Γ)

p *

with Pk a, k x k self-adjoint matrix. Since P commutes with Ak+1(z),
performing the block matrix multiplication yields

\Ak(z)

Pί.

u

O'Π

Pf

Ak(z)Pk +

" 0 "

•
0

_ 1 _

-Pί

0

Ak(z)Pl +

~0~

0

_ 1 _

P 2

0

Comparing the lower right entries, we see that the last entry in Pι

must be zero. From the equation P?Ak(z) = 0, it now follows that
P t = 0. Thus we have PkAk{z) = Ak{z)Pk and it follows from the
inductive hypotheses that Pk must be a scalar matrix. Finally,
comparing the upper right entries in the block matrices, we see that
P itself must be a scalar matrix. This completes the proof of the
last claim and of Theorem 3.2.

4* Remarks*
(1) To prove that there is no continuous canonical form for

the similarity of n x n matrices for n ^ 2, one observes that it is
possible to construct a convergent sequence of matrices {Ak}ΐ=1 with
limit A such that any two matrices belonging to the sequence are
similar, but no matrix belonging to the sequence is similar to A.

(2) If we let <?„ denote the set of irreducible matrices in Mn

and let &n denote the corresponding subset of Qn, then ^ is actually
a fiber bundle over &% with fiber equal to Gn. In this context
Theorem 3.1 shows that ^ 2 is a trivial fiber bundle, while the proof
of Theorem 3.2 shows that ^ is not a trivial fiber bundle over &n

for any n ^ 3.
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