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Let T be a positive linear operator on L. (X, &, ) sat-
isfying sup, ||(1/n) Zr= T, < oo, where (X, & 1) is a finite
measure space. It will be proved that the two following
conditions are equivalent: (I) For every f in L (X, &, p) the
Cesaro averages of T**f converge almost everywhere on X.
(IT) For every f in L,(X, &, ) the Cesaro averages of T"f
converge in the norm topology of L,(X, &, ). As an ap-
plication of the result, a simple proof of a recent individual
ergodic theorem of the author is given.

Let (X, Z, 1) be a finite measure space and T a positive linear
operator on L,(X, &, p). If T is a contraction, then we denote by
C and D the conservative and dissipative parts of T, respectively
(cf. Foguel [4]). In [5] Helmberg proved that if T is a contraction
then the two following conditions are equivalent: (I) For every fe
L.(X, &, 1t) the Cesiaro averages

LS pwip
n i=o

converge a.e. on X. (II) lim, T*"1, = 0 a.e. on X and there exists
a function 0 < ue L (X, &, 1) satisfying Tu = and {u > 0} = C.
It is easily seen that condition (II) is equivalent to each of the fol-
lowing conditions. (III) For every u € L,(X, ., pt) the Cesaro averages

n—1 .
=3 T
n i=o

converge in the norm topology of L,(X, .#, ). (IV) For every Ae #
the Cesdro averages

3|~

g ST*ilAdp

converge. (Cf. Lin and Sine [6].)

The main purpose of this paper is to prove that the equivalence
of conditions (I), (III), and (IV) holds, even if T is not a contraction
but satisfies sup, ||(1/n) 3i= T¢]l, < . That is, we shall prove the

THEOREM 1. Let (X, &, ) be a finite measure space and T a posi-
tive linear operator on L(X, F, 1) satisfying sup, ||(1/n) St T, < oo.
Then the three following conditions are equivalent:
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(I) For every feL. (X, &, ), (1/n) 3t T*f converges a.e.
on X.

(II) For every ue L(X, &, 1), (1/n) X2 Tu converges in the
norm topology of L.(X, Z, 1.
(IV) For every Ae. .z, (1/n) St gT*ilAd)u converges.

Proof. (I)= (IV): Immediate from Lebesgue’s bounded con-
vergence theorem.

(IV) = (III): The Vitali-Hahn-Saks theorem shows that the se-
quence

n—1
1=0

L3

n =|

converges weakly in L,(X, &, p). By this and the fact that
lim, ||(1/n)T"*1|}, = 0, due to Derriennic and Lin [2], we see that
(1/m) 32 T'1 converges in the norm topology of L,(X, .7, p) (cf.
Theorem VIII.5.1 in [3]). Thus (III) follows easily from a standard

approximation argument.
(III) = (I): Define a function 0 <te L. (X, .#, 1) by the relation:

tz) = lim sup =3} T*1(x) weX).
Since T*t = ¢t, if we set
s(@) = lim 5 T*it() @eX),
n n i=o0

then we have
(1) s=T*s.
Let us put
Y={s>0} and Z ={s=0}.
Then, by [2] and [7], we have:
weL(X, &, ) and {u#0}cCZ imply

(2) {Tu +0}Cc Z and li,l,n ll(l/’n)g Tw ;1 =0.

Using condition (III), take a function 0 < h e L,(X, &, p) so that

lim Hh — Un) z T1

Since Th = h, for all 0 < fe L.(X, &, 1) we have
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\THhap = (fmap = (fnap.

By this, T* may be regarded as a positive linear contraction on
L,(X, &, hdp), and therefore for every feL.(X, &, ¢) (cL/(X, &,
hdp)) the limit

(3) lim L5 7 7(@) = lim s(o) iz T~ S@)
n | i=0 n 2o T*%s(x)

exists a.e. on {h > 0} N Y, by the Chacon-Ornstein theorem (cf. [4]).

To prove the almost everywhere existence of the limit (3), we
now define

f(®) = lim sup —Z, T*f(x) (xe X)
and

f@) = lim inf - 13 z‘, T*if(x) @eX).

Since T*f = f = f= T*f, if we set

f*@) = lim %g T*F(z) @eX)
and
fu(@) = lim %g T*f(x) @eX),

then: 0 < f* — foeL.(X, &, ) and T*(f* — f,) =f* — fi. This
and (2) imply f* — f, = 0 a.e. on Z, and thus f = f a.e. on {h > 0}.
Hence f* = f, a.e. on {h > 0}, because T*1,_, =0 a.e. on {h > 0}.
Consequently we have

(" = fodp = (25 T1)0* - £odp
= \n(r* = fdu =0,
and so f* — f, a.e. on X. This completes the proof.
As an easy application of Theorem 1, we shall show the fol-
lowing individual ergodic theorem due to the author [8]. His argu-

ments given in [8] are rather long and complicated.

THEOREM 2. Let (X, .7, 1) be a finite measure space and T a
bounded (not mecessarily positive) linear operator on L,(X, Z#, p).
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Let 7 denote the linear modulus of T in the sense of Chacon and
Krengel [1]. Assume the conditions:

(4) sup |[/m) 5 7| < e,
(5) ngﬂm<m,

Then, for every fe L.(X, &, 1), A/n) X2zt Tf converges a.e. on X.

Proof. Let fe L.(X, &, p). Since |[T*f| <7"|f]| for each n =1,
we have lim, ||A/n)T*f||, < lim, || A/n)z"| f]|l, = 0, and by (5), the set

{mmngn;q

is weakly sequentially compact in I,(X, &, ¢). Hence, a well-known
mean ergodic theorem (cf. Theorem VIIL.5.1 in [3]) implies that
lim, ||g — A/n) 37 T*f]l, = 0 for some ge L,(X, . &, p) with Tg = g.
Condition (5) 1mphes g€ L.(X, &, 1), and hence f— ge L.(X, &, .
It is easily seen that f— g belongs to the L,-norm closure of the
set {h — Th:he L. (X, &, )}, because L (X, &, ) is a dense sub-
space of L(X, . &, ). So, given an ¢ >0, we can choose an he
L. (X, &, 1) so that

N(f—g —(h—Th, <e.
Write k = (f — g) — (b — Th). Then

LS — o) = LSkl + 2R+ o)
n i=o0 n =0 V(2
and

limi—(lhl + 7*|h]) =0 a.e. on X,

because Theorem 1 implies that the Cesiro averages of z"|h| con-
verge a.e. on X. Thus

lim sup ‘inilT"(f — g)‘ < lim if?__fr”'lkl ,
n n +=0 n N i=0
and by Fatou’s lemma,

n—1 .
zw).
=0 1

Hhm (U%)ZT lle = e<sgp “(l/n) _

Consequently we have
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lim (1/n) S, T(f — ¢) = 0 a.e. on X,
and this establishes Theorem 2.

REMARK. It is known (ef. [2]) that Theorem 2 need not hold in
general if we replace feL.(X, &, ) by feL/(X, &, ¢). But the
author does not know whether, in Theorem 2, fe L.(X, .Z, ¢) can
be replaced by fe L, (X, &, 1) with 1 < p < oo,
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