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This paper is concerned with a class of algebraic sur-
faces of general type constructed from indefinite division
quaternion algebras whose centers are totally real number
fields. These surfaces are quotients of the product of two
upper half planes by Fuchsian groups obtained from the unit
groups of maximal orders of such algebras. In the case
where the field is real quadratic, we give smoothness condi-
tions for the resulting surfaces and list all smooth surfaces
of geometric genus 0. Finally, we give a lower bound for
the torsion part of H2(Z).

()• Introduction* From the unit group of a maximal order in
a suitable quaternion algebra A over a totally real number field k,
one can construct certain Fuchsian groups Γ which can be identified
with discrete subgroups of GL}(R)n. Γ acts via fractional linear
transformation on the product of n copies of the upper half plane
to yield a quotient which is known to be a protective algebraic
variety. If one takes A to be the total matrix algebra M2(k), then
one obtains the Hubert modular group of k and the corresponding
Hubert modular variety.

In [4] Hirzebruch studied Hubert modular surfaces as algebro-
geometric and number theoretic objects. The present investigation
is primarily geometric, and is concerned with the case where A is
division. Unlike Hubert modular varieties, if A is division the
varieties are automatically compact. This avoids the necessity to
first compactify and then resolve the resulting cusp singularities.

By a surface we mean a nonsingular, two-dimensional protective
algebraic variety. The present surfaces are of general type and
have irregularity 0. Those of geometric genus 0 have c\ — 8, which
distinguishes them topologically from previously known geometric
genus 0 general type surfaces which all had c\ ̂  3.

In §1 we describe the basic objects, and in §§2 and 3 we
determine the numerical invariants of the surfaces. Necessary and
sufficient conditions for smoothness are given in § 4. In § 5 we give
a lower bound for the torsion part of H\Z), and in the final section
we list all examples of geometric genus 0 surfaces of this type
arising from real quadratic fields.

This paper is in part based on the author's doctoral dissertation
submitted to the State University of New York at Stony Brook. I
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1* Preliminaries* Let A be a division quaternion algebra with
center a totally real number field k of degree m over Q. Fix a
maximal order O of A and let o denote the ring of integers of k.
For a prime p of k, kp will denote the £-adic completion of k, and
Ap will denote the ^-algebra A (&k kp. A is determined up to
isomorphism by its center k and a finite set S(A) of prime divisors
of k for which Ap is division. A is said to ramify at these primes.
For all other p, Ap is isomorphic to M2(kp). Denote this algebra by
A(h, S(A)).

Assume that the first n infinite primes are not in S(A)9 while
the remaining m — n are in S(A). We then have an isomorphism
/ of A®QR with M2(R)n φ Hm~n the direct sum of n copies of
M2(R) and m — n copies of the Hamiltonian quaternions H. The
subgroup A+ of A consisting of those units of A having totally
positive reduced norm can be identified via / with a subgroup of
GLt(R)n x fiΓ*m~Λ and projecting to the first n factors gives an
injection of A+ into GLi(R)n. Identify A+ with its image in GLt(R)n.
Let U(D) denote the units of O and Γ(l) denote those units of On

having reduced norm (nr) 1. Γ(ϊ) is a discrete subgroup of SL2(R).
Let E = U(D) Π A+ and let B denote the normalizer of O in 4 + .
The centers of Γ(l), E and B are {±1}, Uk the units of o, and fc*,
respectively. Let j denote the map "modulo center." The i(Γ(l)),
j(E) and j(B) act faithfully on Hn the product of n upper half planes
via fractional linear transformation in each component. If A is
division, that is, if S(A) is nonempty, the quotient space is compact.
Moreover, since Hn is complex analytically homeomorphic to a bound-
ed domain in Cn, the quotient is a projective algebraic variety.
When there is no danger of confusion we write Γ for j(Γ).

The following theorem is fundamental.

THEOREM 1.1 (Eichler-Strong Approximation). Let % be a two-
sided integral Ό-ideal. Let b be an element of o whose images via
all embeddings of k into R corresponding to ramified infinite primes
of A are positive. Let a be an element of O such that nr{a) =
b (mod* Sί Π o). Then there exists β in D such that β = α(mod SI) and
nr(β) — 6. (Recall that mod* is multiplicative congruence.)

Proof. See Eichler [2].

COROLLARY 1.2. For k a real quadratic field and a quaternion
algebra over k unramified at both real primes nr(U(O)) — Uk.
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Proof. Put 81 = © and a = 1. Then, for any beUk, 1 - 6 e o =
©Πo and there exists βGO such that nr(β) — b completing the proof.

For the remainder of this section assume k to be real quadratic
and n = 2. Let Uk be the units of k and let Ui be the totally
positive units of k. j(Uk Γ(l)) = j(Γ(ΐ)). Therefore, j(E)/j(Γ(l)) ^
E/Uk Γ(l). Consider the following exact sequences in which the first
maps are inclusions and the second are reduced norms.

—>E >Ut >1
—> Uk-Γ{l) > UI >1

Thus, j(E)/j(Γ(l)) = E/Uk-Γ(l)= Ut/Uξ. Uk is isomorphic to the
product of {±1} and an infinite cyclic group generated by a funda-
mental unit εk of Uk. Thus we have:

PROPOSITION 1.3. Let k be a real quadratic field. If εk can be
chosen to be totally positive then i(Γ(l)) is an index 2 subgroup of
j(E). If εk cannot be chosen to be totally positive then j(Γ(l)) and
j(E) coincide.

The elements of B normalize © and are therefore generators of
two-sided principal ideals of ©. The set of all (two-sided) ©-ideals
forms an abelian group generated by the maximal ideals, and the
decomposition of an ideal as a product of maximal ideals is unique.
Corresponding to each maximal o-ideal p there is a unique maximal
©-ideal such that w(5β) = p. In addition, if p e S(A), pD = φ2 and if
p ί S(A)f £© = Sβ. Thus, an ©-ideal has a unique expression of the
form ?fii?βi2' ^βirα where α is an ideal of k, the ϊβt correspond to
pt in S(A), and {ί19 •••, %} is a subset of {1, •••, |S(A)|}.

Assume that k has class number 1. This implies that the class
number of A is also 1. Choose generators 77̂  for the %. For aeB,
aD = 77̂  Πir a © with some aek*. Thus, a = Πh ΠirXe where
εe Z7(©) and λe&*. Then B has the description:

B = {Πh ΠirXε I λ e k*, ε e U(Ό) and

nr{nix Πirέ) is totally positive} .

From this it follows that j(B)/j(E) is isomorphic to a finite direct
product of groups of order 2.

Choose generators πt of the pt e S(A) such that nr(Πt) = πt. If
all of the π, are totally positive, then j(B)/j(E) has order 2ιS{A)K If
εk is totally positive and some 77* is not totally positive, then exactly
half of the products of the 77* will be admissable coset representative
for j(B)/j(E). Therefore, the order will be 2|5M)1~1. Corollary 1.2
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guarantees the existence of ε0 and η in U(O) with nr(εQ) = εfc and
nrirj) = — 1. If εk is not totally positive and some nrfJΊ^ •• Πir) is
not totally positive, then either nr(Πh Πίrε0) or nr{Πiγ Πirεoη)
will be totally positive. Thus, all possible products of the 77* lead
to admissable coset representatives and j(B)/j(E) has order 2|/SM)I.

Summarizing we have:

PROPOSITION 1.4. j(B)/j(E) is isomorphic to the product of I
cyclic groups of order 2 where I is given by:

\S(A)\ if εk is not totally positive, or if εk

is totally positive and so are all of the

1 =

\S(A) — 1 if εk is totally positive and some

πt is not totally positive.

2. The numerical invariants. Throughout this section, Γ will
be a discrete subgroup of GLf(R)n commensurable with Γ(l) acting
freely on H*. U{Γ) will denote the surface Γ\H\

Let Ωp be the sheaf of germs of holomorphic p-forms on U(Γ)
and let hp>q be the (complex) dimension of Hq(U, Ωp). Since U(Γ) is
Kahler, by the Hodge theory one has hp'q = hq>p and br = ΣP+g=r hp'g.
As a consequence of the universal coefficient theorem and Poincare
duality bι = ¥. The geometric genus pg, irregularity q, and arithmetic
genus pa of U{Γ) are h°>\ h0'1 and h°>2 - h0'1 + Λ°'°, respectively.

As a transformation group Γ can be identified with an irreduci-
ble subgroup of SL2(R)n (see Shimizu [7]). This allows us to apply
the following proposition which is a corollary of a theorem of Matsu-
shima and Shimura [6].

PROPOSITION 2.1. Let Γ be a discrete irreducible subgroup of
SL2(R)n acting freely on Hn with compact quotient. Then for Γ\Hn:

(a) hp>q = 0 for p Φ q and p + q Φ n,

where y \ is the qth binomial coefficient and δi3 is the Kronecker

delta symbol.

COROLLARY 2.2. For U(Γ), h°>1 = 0 and h1Λ = 2pg + 2.

Thus, b2 = Apg + 2 and 61 = ί>3 = 0. Since U(Γ) is connected and
orientable, 64 = 6° = 1. To summarize:

THEOREM 2.3. For U(Γ), the Euler number E = Apg + 4, pa =
pg + 1, b2 = Apg + 2 and q — 0.
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Let T* be the holomorphic cotangent bundle over U(Γ) and K
the canonical line bundle Λ2T* over U(Γ). Let F be a complex
analytic line bundle over a complex manifold U. Let c(F) denote its
Chern class and let ct denote the ith Chern class of U. For simplicity,
put HP(U, F) for the pth cohomology group of U with coefficients
in the sheaf of germs of local holomorphic sections of F. The mth
plurigenus of U(Γ) Pm is the dimension of H\ U(Γ), mS).

THEOREM 2.4. (Riemann-Roch-Kodaira-Hirzebruch) For an alge-
braic surface V and a complex analytic line bundle F over V

h\V, F) - h\V, F) + h\V, F)

(c(F) + c(F)cJ + hot + c2)
Δ LΔ

where hp(V, F) is the dimension of HP(V, F).

Proof. See Hirzebruch [3].

For V = U(Γ), c(K) = - d and c2 = E(U(Γ)) = E. Putting F = K
we have:

h\U{Γ\ K) - h\U(Γ), K) + h\U(Γ), K)

± + c{K).cx) + hcl + E)

h\U(Γ), K) = h2'* for i = 0, 1, 2. Thus, pg + 1 = pa = l/12(c? + E)
a n d c\ •=• &pa.

To determine the plurigenera, apply the Reimann-Roch theorem
to the line bundle mK for m ^ 2, and note that for the quotient V
of a discontinuous group of automorphisms acting freely on a
bounded domain in C2, h\Vf mK) and /&2(F, m ϊ ) both vanish for
m ^ 2.

Pm - hXmn mK) = i(c(miί) 2 ^

= —(m2c2 — mcϊ) +

= ipa(m2 — m) Λ- pa

= (2m - l)2ί?α .

We summarize:
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THEOREM 2.5. For U(Γ)

(a) ct = 8pa

(b) Pm = pa(2m - I)2, m ^ 2.

COROLLARY 2.6. £7(Γ) is of general type.

Proof. c\ and P2 are both positive. U(Γ) has no exceptional
curves of the first kind. In fact, U(Γ) is a minimal model. To see
this, suppose there were a rational curve on U{Γ). Such a curve
would be given by a nonconstant holomorphic map of P\C) into U.
This would lift to a holomorphic map into H2 which would, by
Liouville's theorem, be constant. Thus, there can be no rational
curves on U(Γ), and by Kodaira's definition U(Γ) is of general type.

3. The Euler number• Let A have center k a totally real
field of degree m and let S(A) be nonempty. Assume further that
A is unramified at the n real primes corresponding to the n em-
beddings ψ^Λ - tyooyn of k to R, and ramifies at the remaining m — n
real primes corresponding to ψ«,,n+l ψo,,m.

The Gauss-Bonnet form on Hn is

2π! y\

Under the assumption that Γ(l) acts freely on Hn, the Euler number
of the quotient variety Γ(ϊ)\Hn can be computed from the Gauss-
Bonnet formula

(1) E(Γ(1)) = \ ω
J F

where F is a fundamental domain for the action of Γ{1). It suffices
to determine E(Γ(1)), since the Euler number is multiplicative in
finite unramified covers, i.e., if Γ=>Γ(1), Γ acts freely and [Γ: Γ(1)] = Z,
then IE{Γ) = E(Γ(1)). The calculation of the integral in (1) is given
explicitly by Shimizu [7] in terms of the value of the Dedekind zeta
function ζk(s) at 2:

( 2 ) l3T/ΐry^ Π
π2m[Uk: Uk]h(A) 9eS'

where h(k) is the class number of k, h(A) is the class number of a
maximal order of A, d is the absolute discriminant of k, Uk are
the units ε of k for which ^^(ε) > 0, n + 1 <, ί ^. m, S'(A) is the
subset of S(A) consisting of the finite primes, and N is the norm
map from k to Q. h(A) is the same for all maximal orders and
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coincides with the order ho(k) of the Ray class group of k modulo
S(A) - S\A). ho(k) [Uk: Uk] = h{k)'2r~n. Using this (2) becomes

( 3 ) ^
π peS'U)

For the remainder of this section, let k be the real quadratic
field QO/ΊΓ) and put m = n = 2. ζk(s) = ζ(s) L(s, χ), where ζ(s) is
the Riemann zeta function and L(s, χ) is the Dirichlet L-series with
real numerical character χ having conductor d. For positive integral
values of s, Leopoldt [5] gives the following formula:

L(2n, χ) = ψ(^
2 \ d

where τ(χ) is the Gauss sum Σ?=ί χ(r)e27tir/d and 2?χ,2n is the generalized
Bernoulli number which is given by the MacLaurin expansion

Noting that E{Γ(1)) is a positive integer (see Theorem 2.3), using
the fact that |r(χ)| —Vd and taking absolute values of both sides
of (3) we obtain

THEOREM 3.1. If k = (QVT), d > 0 ami Γ(1)\H2 is nonsingular
then the Euler number is given by:

Π

1 2 ρe5T(

Expanding the exponentials in (4) we have:

rί + (rt)2/2! + ••

feί Π dί + (dί)2/2! + (dtγ/Sl +
(5)

ΣlW + ί Σ rχ(r) + t*
- dt/2] -

Since χ is nontrivial,

Σ χ ( r ) = 0 and

d - 1 d-1 d-1 d-1

t Σ ^z(^ ) = * Σ (d - ^ )χ(d - r) = - £ Σ ^%(^ — r) = —ί Σ ^z(-^ )
r=l r=l r=l r=l

Noting that χ( —1) = 1 we have:
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t Σ rχ(r) = - 1 Σ rχ{r) and ί Σ rχ(r) = 0 .
r=l r=l r=l

Putting this in (5) and comparing coefficients yields:

( 6 ) B — — 5 J T2Ύ(T)

Using this formula and a PDP-10 computer at SUNY-Stony Brook,
James Maiorana computed BXt2 for all d < 750. The following table
gives Bχ>2 and d for all cases where B12 is less than 200.

d

5

8

12

13

17

21

24

28

29

33

37

40

41

44

53

56

57

60

61

65

69

73

76

77

85

B
χ
,

2

0.8

2

4

4

8

8

12

16

12

24

20

28

32

28

28

40

56

48

44

64

48

88

76

48

72

d

88

89

92

93

97

101

104

105

109

113

120

124

129

133

136

137

140

141

149

152

157

165

173

197

Bχ,2

92

104

80

72

136

76

100

144

108

144

136

160

200

136

184

192

152

144

140

164

172

176

156

196

The next proposition gives upper and lower bounds for |JBZf2| in
terms of d. As a consequence of the lower bound, it is only necessary
to look at fields with fairly small discriminants to find all Γ(l)-type
surfaces having small geometric genus.

PROPOSITION 3.2.

50
<\B:'Z,2l <f
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Proof. 1,(2, χ) = (τ(χ)/ef )π2J3χ>2. Since L(2, χ) < ζ(2) = π /6, \BχJ <
d '76. ζ,(2) = ζ(2)L(2, χ) > 1, that is, |L(2, χ)| = t Γ 3 ^ 2 ! ^ > 6/τr2.
Thus,

4. Smoothness* In this section we give necessary and sufficient
conditions for subgroups of B which contain Γ(l) to yield smooth
surfaces. We begin by assuming that k is totally real.

For 7 e A* — &*, &(7) is a maximal subfield of A, and is there-
fore, a quadratic extension of k. Moreover, for an element 7 e A+,
i(7) is the identity automorphism of H2 if and only if 7efc*.

LEMMA 4.1. Let K be a totally imaginary quadratic extension
of k, and let φ be a k-linear isomorphism (an embedding) of K
into A. Then, for α e F - &*, φ(a) = Ύ is an element of A+, and
i(7) has a unique fixed point on H2 which is the same for all
aeK* — &*. Conversely, if j(7)ej(A+), j(7) Φ 1, has a fixed point
on H2, then k(Ύ) is isomorphic to a totally imaginary quadratic
extension of k.

Proof See Shimura [8]

The next two propositions are well known.

PROPOSITION 4.2 (Hasse). A is isomorphic to M2(k) if and only
if A is isomorphic to M2(kp) for all primes p of k.

PROPOSITION 4.3. A quadratic extension K of k splits A, that
is K(x)kA = M2(K), if and only if K can be embedded in A.

PROPOSITION 4.4. A quadratic extension K of k can be embedded
in A if and only if Kp — K® kkp can be embedded in A9 for all
primes p of k.

Proof If K can be embedded in A then it is clear that Kp can
be embedded in Ap for all p.

Put C—A®kK. By the last proposition, to demonstrate the other
implication it is sufficient to show that Cq ~ M2(Kq) for all primes q
of K. The Hasse invariant inv [ ] of a simple algebra over a local
field is an element of Q/Z. For quaternion algebras inv [ ] ΞΞ
0 (mod Z) if the algebra is nondivision and = 1/2 (mod Z) if the
algebra is division. If C is an algebra over L and U is a finite
extension of L of degree I then inv [C® LL'] — i inv [C]. In the
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present situation there are three cases to consider:
( a) pi S(A). inv [A] = 0 so for q lying above p, inv [CJ = 0.
(b) peS(A) and only one prime of K lies above. [Kq: kp] = 2,

so inv [Cq] = 2 inv [Ap] = 0.
(c ) pe S(A) and only one primes of K lie above p. Then Kq ~

kp and inv [Cq] = 1/2. Thus, Cq is division but by assumption Kp ~
^φfcp can be embedded in C. This is impossible since Kp has zero
divisors.

Thus, only the first two cases are possible and, therefore, for
all q Cq is isomorphic to M2(Kq). By Proposition 4.2 C ^ M2(K) and
by Proposition 4.3 if can be embedded in A.

PROPOSITION 4.5. A quadratic extension K of k can be embedded
in A if and only if only one prime of K lies above each prime in
S(A).

Proof In the proof of the last proposition, it was shown that
if a quadratic extension of k can be embedded in A, then no prime
of S(A) can have two primes of K lying above it. Now, suppose
there is only one prime of K lying above each p e S(A), then Kp is
a quadratic extension kp. Since inv [Ap] = 1/2, any quadratic extension
of kp splits Ap. Thus, Kp can be embedded in Ap for all primes
p e S(A). For p £ S(A), Ap = M2(kp). Kp is either isomorphic to kp 0 kp

or is a quadratic extension of kp. In the first case Kp can be
embedded in M2(kp) on the diagonal, and in the second case it can
be embedded via (left) regular representation. Thus, Kp can be
embedded in Ap for all p and applying Proposition 4.4 yields the
desired result.

PROPOSITION 4.6. Assume that k has class number h(k) — 1.
Then Γ(l) has a fixed point on H2 if and only if there is an
integer N > 2 such that k(ζN) can be embedded in A, where ζN is a
primitive Nth root of unity.

Proof. If 7 Φ ± 1 has a fixed point on H2, then 7 is an element
of a finite subgroup of Γ(l) and there is a minimal integer N such
that ΎN = 1. Conversely, let φ be an embedding of k(ζN) into A and
put 7 = ψ(ζN). 7 is in some maximal order D' of A. h(k) = 1
implies that all maximal orders in A are conjugate, i.e., there is an
x e A* such that x^D'x = £). XΎX"1 also has order N, so we may as
well assume that 7 is in £). nr(ΊN) — nr(y)N = 1. Thus, nr(7) = ± 1
and either 7 or 72 is in Γ(ΐ). This completes the proof.

For the remainder of this section k will be a real quadratic field.
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If Q(ζN) can be embedded in A then [Q(ζN): Q] divides 4 and so Ne

N=3 or 6, Q(ζN) .= Q(χ/-3)

N = 4 , Q(ζN)

N=5 or 10, Q(ζN)

N=8, Q(ζN) = Q(VΊΓ, i) =) QO/T)

N=12 Q(ζN) = Q(VΊΓ, i) => Q(l/Ϊ2) .

fc(ζ^) is not a subfield of R. Thus, if Q(ζN) can be embedded in A,
[Λ(ζ )̂: A;] = 2. For N== 5 or 10 αtjnust be 5, and for N = 8 or 12
k coincides with Q(V 8) or Q("i/Ϊ2), respectively. Therefore, for
cZ ̂  5, the only possibilities for N are 3, 4, and 6, and elements of
order 8 or 12 can only occur for d = 8 or d = 12, respectively.

PROPOSITION 4.7. Assume k has class number 1. Tfcew Γ(l)
freely on H2 if and only if all of the following hold:

(a) Some prime in S(A) splits in k(λ/—Z)/k.
(b) Some prime in S(A) splits in k(V—l)/k.
(c) If d = 5, some prime in S(A) splits in k(ζ6)/k.

Proof. JΓ(1) has an element of order 3 if and only if it has an
element of order 6, and this is the case if and only if Q(ζ8) can be
embedded in A. Q(ζ3) can be embedded in A if and only if fc(τ/—3)
can be and by Proposition 4.5 this is equivalent to none of the primes
in S(A) splitting in k(V—3)/&.

Γ(l) contains an element of order 4 (resp. order 8) if and only
if Q(ζ4) (resp. Q(ζ8)) can be embedded in A, which is the same as
k{λ/^Λ) admitting an embedding into A. This is equivalent to none
of the primes in S(A) splitting in /c(τ/—l)/fc.

If Γ(l) contains an element of order 12 then it also contains
elements of orders 3 and 4, and fc(τ/—3) and fc(l/—1) can be
embedded in A. Conversely, if k(V—3) and k{V—1) can both be
embedded in A, then Γ(l) contains elements of orders 3 and 4 and
hence an element of order 12.

Finally, if d = 5 there exists an element of order 5 or 10 if and
only if fc(ζ5) can be embedded in A.

K — k{V—3) (resp. k{V—1)) is a biquadratic extension of Q and
has the three quadratic subfields k, kx — Q(τ/—3) (resp. Q(i/ — 4)) and
fe2 = Q{VD) where D is the discriminant of Q(l/ —3d) (resp. ι
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K

/ l \
( 1 ) kt k k2

\ l /
Q

In view of the last proposition, we would like to determine how
primes split in K/k in terms of the three quadratic extensions of Q.
Let G — Gal (K/Q), q be a finite prime of K lying above p of k and
pZ of Q, Gz be the decomposition group of q and Gτ be the inertia
group of q. Put Kz — the decomposition field of q and i£Γ = the
inertia field of q. Kz is the largest field contained in K in which
pZ splits completely, and i£ is the largest field contained in K in
which pZ is unramified. Moreover, Kz is contained in Kτ. In a
relative quadratic extension a prime either ramifies (β), splits (#) or
remains prime (/).

The possibilities for diagram (1) are:

(I) Kτ — Kz = Q.

e\\

Kτ — Kz

(II) Kτ = some intermediate field (say kx) and Kz = Q.

/ /| \

κz
(III) Kτ = Kz — some intermediate field.

Kz

 := iζn

(IV) iΓΓ = K, Kz is an intermediate field.

f/\\g
/ o\ \

\ /I /
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(V) KT = KZ = K.

Kτ — Kz

g/\\

/ Ί

(VI) Kτ = K, Kz = Q. This situation does not occur
because Gz/Gτ must be cyclic.

Examining these diagrams we conclude that p splits in KJk if
and only if pZ splits in kx or k2.

In the case d = 5 we have the diagram

Q

£ splits in Q(ζβ)/fc if and only if pZ splits completely in Q(ζ5)/Q and
this is the case if and only if p = 1 (mod 5).

Combining these results with Proposition 4.7 yields:

THEOREM 4.8. Assume that k is a real quadratic field and
h{k) = 1. Then Γ(ϊ) acts freely on H2 if and only if all of the
following hold:

(1) (-3/p) = lor {Dip) = 1 for some p 6 S(A), where pZ = p Π Z
and D is the discriminant of Q(y^ — 3d).

( 2 ) ( - 1 / p ) = 1 o r ( J / p ) = 1 f o r s o m e p e S ( A ) w h e r e p Z = p π Z
and Δ is the discriminant of the field Q(τ/—d).

(3) If d = 5, ίfcere βxίsίs £ 6 S(A) such that pZ = p Γ\ Z and
p = 1 (mod 5).

THEOREM 4.9. Assume k has class number 1 and assume further
that a fundamental unit εk of k greater than 0 is totally positive.
Then E acts freely on H2 if and only if both of the following hold:

(1) Γ(l) acts freely.
( 2) Some p e S(A) splits in k{V—ek)jk.

Proof. Suppose i(7) e j(E)9 j(7) Φ 1, has a fixed point on H2.
By Lemma 4.1 k(Ύ) is totally imaginary quadratic extension of k.
nr(Ύ) = εΐ, and we may assume m is nonnegative. We can find
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Ύt e E with i(7x) = i(7) and nr(7j) = ε* or 1. To see this suppose
m = 21 (resp. 21 + 1) and let Ίι == 7ε^z. Then wr(7j = nφ)-nr(εk

ι) =
1 (resp. εfc). If m is even j(Ύ) is in /"(I) and has a fixed point on
H2. If m is odd then Ί\ — ±εk for some s since 7 has a fixed
point. Choose s to be minimal. nr(Ί\) = ε2/ = w r ^ ) ' = εj. Put
y2 = vl- 3(^2) = iOΊ) and k(Ύ2) = k(Ύ). By the minimality of s,
72£&* but 7g= ±εjke&*. Since this must be a totally imaginary
extension of k, k(Ύ2) = h(V^¥k). If t is odd then fc(72) =
can be embedded in A and by Proposition 4.5 this is equivalent to
none of the primes in S(A) splitting in fc(τ/—εk)/k. If t is even then
k(Ύ) = fc(i/ — 1) can be embedded in A and Γ(l) has a fixed point.

Conversely, suppose φ is an embedding of fc(τ/ — εfc) in A. Put
7 = ^(T/—ε t). 7 is in some maximal order of A which, because k
has class number 1, may be assumed to be D. Moreover, 7 is a
unit of O, and by Lemma 4.1 it has totally positive reduced norm.
Thus, 7 is in E and has a fixed point. This completes the proof.

LEMMA 4.10. k(']/ — εk) is an extension of Q with Galois group
Z/2Z x Z/2Z. Moreover, we have the following diagram of subfields:

\
\
_ \

Q(V-tτεk + 2) k = Q0/d) Q(τ/-tr6 f c - 2)

Q

where tr is the trace map from k to Q.

Proof Let a denote 1/—εk and β denote V—ε'k where prime
denotes Galois conjugation in k and the square roots are chosen such
that Im (a) > 0 and Im (β) > 0. (ctβf = 1, therefore aβ = ± 1 , but
a and β are purely imaginary, and Im (a) and Im (/S) are both posi-
tive. Therefore aβ - - 1 and a = (-1//9). Put £ = a + £ and 77 =
a- β. Then

(1) ί2 = (α + /S)2 = - ε 4 - ei + 2α/S - - t r e 4 - 2 V
(2) ^2 - (a - β)2 = -εk - ε'k - 2α^ - - t r e * + 2

Adjoining £ and η to Q give two distinct intermediate quadratic
extensions of Q neither of which is k, whose compositum coincides
with Λ(Ί/—εfc). Therefore, k{λ/—εk) is a biquadratic extension of Q
and the lemma follows.
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THEOREM 4.11. Assume ft has class number 1, and let εk be a
fundamental unit of ft greater than 0. Then B acts freely on H2

if and only if all of the following hold:
(1) E acts freely on H2.
( 2 ) For all totally positive πhπi2 πiv there exists p e S(A)

such that p splits in the extension k(V'—π^ π )̂/ft, where

( 3 ) For all totally positive πhπi2 πuek9 there exists p e S(A)
such that p splits in the extension k(v/— πil •• π^ε^/k, where
{i19 . . . , i j c { l , •-., \S(A)\}.

Proof. Fix a set of generators for the maximal ©-ideals 5β,
which correspond to the pt in S(A), and choose a set of generators
%t for the pi for the ft in S(A) such that πt > 0 and nr(/7t) = πt.
Suppose 7 e B has a fixed point on H2. Recall that 7 is of the
form Πiί ΠtfiX where ε 6 U(Q)9 λ 6 ft* and nr(Πh i7ΐzελ) is
totally positive. For simplicity, denote the product Πh ΠH by
77! 77Z Replace 7 by 7X = T^ Π&. By Lemma 4.1 k{Ί^) is a
totally imaginary quadratic extension of k. Let r be the least
positive integer for which 7ίe&*. Form the two-sided D-ideals
7XO = 5βx φzα and 7[O = 5βΓ ^ r where α is an ideal of ft. Since
7Γeft*, r must be even. Put r = 2s and 72 = Ί\. ft £ k(Ύ2)c:k(Ύ1)
and [ft: ft(7:)] = 2. Thus, ft(72) = ft(71) and i(72) and i(72) have the
same fixed point.

If s is even then 72 = aεs where a e ft* and w(e) is totally
positive. Therefore, E has a fixed point. If s is odd, say s = 2t + 1,
then 72 - 77f+1 Πf+1a = Π, 7Zzε

2ί+16 where a and 6 e ft*. nr(7j) =
w(72)

2 = 72 since Ί\ e ft*. Thus,

= ±nr(Π1)

where εoeUk. ε0 = εg

k. Therefore, ft(72) — ft(τ/—^ πt(€k)) where
εk appears only if q is odd, and the minus-sign is chosen because the
extension must be totally imaginary. Thus, if j(y) has a fixed point
on H2, ft(τ/~π1 ••• πι(ek)) can be embedded in A which is equivalent
to none of the & in S(A) splitting in k{λ/~πι ••

Conversely, suppose φ is an embedding of ft(i/—πx n^k)) in
A. Put 7 = ^(τ/~τrx nt(ek))m By Lemma 4.1, 7 has totally positive
reduced norm. Consider the ideals 7D and 72D. Noting that
φ(jη = 72 we have 72O = πx πx£) = φ2 . . 5βf. Thus, 7 θ is a two-
sided D-ideal and 7 normalizes O. Therefore, 7 is in 5 and has a
fixed point on H2.



236 IRA H. SHAVEL

5* The torsion part of H\Z). Let Γ be a subgroup of B
acting freely on H2 and put U = Γ\H2. π^U) is isomorphic to j(Γ)
and, therefore, H^ U, Z) is isomorphic to j(Γ)/j(Γ)' where j(Γ)' is
the commutator subgroup of j(Γ). The exact sequence

0 >z >R >R/Z >0

induces a long exact cohomology sequence. Consider the following
fragment of that sequence:

> H\U, R) > H\U9 R/Z)
(1) δ

> H\U, Z) > H\U, R) > . . . .

By the universal coefficient theorem

( 2) H3( U, R/Z) = Ext {H\ U, Z), R/Z) φ Horn (iJ3( U, Z\ R/Z) .

Since H\ U, Z) is free, the Ext term vanishes, and the right hand
side of (2) is just the Pontryagin dual of H% U, Z) which, since
&3 — 0, is isomorphic to itself. Applying Poincare duality to both
sides of (2) then yields:

H\U, R/Z) 9* HX(U, Z) .

In (1) δ is injective because δ1 - 0, and since H\U, R) ~ R4pQ+2,
the image of 3 is precisely the torsion subgroup of H\U, Z). Thus,
H\U, Z)tOΐ = H^U, Z).

We now specialize to the case where Γ = Γ(l) and k is real
quadratic. The strategy is to build a normal subgroup M of Γ(l)
which contains Γ(ϊ)' for which Γ(l)/M is known.

For a maximal ideal p of o and the corresponding 5̂ of ©, let
Φp and Φφ denote the maps reduction mod:p and ^3, respectively.
When the context makes it clear which map we mean, we will
simply write Φ.

LEMMA 5.1. Let Np = q = pf and Fq = the field having q ele-
ments. Then

( a) For p $ S(A) the following diagram commutes:

© -£-> M2(Fq)

Idet\nr dφ ί
o > Fg .

(b) For p 6 S(A) the following diagram commutes:
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nr \N= norm from Fqz to Fq .

Φ
FcQ

Proof, (a) O can be taken to be M2(ό). By definition, the
reduced norm coincides with determinant and the diagram com-
mutes.

(b) Take xeD. k(x) = K is either a quadratic extension of k
or coincides with k. Since x is integral over o, xeoκ the ring of
integers of K. If K = k, Φ^(x) = Φp(x) e Fq and nr{x) = x\ Then
N(Φχ(x)) = Φp(x)2 and Φp(nr(x)) = Φp{x2), and the diagram commutes.
Suppose K Φ k. The canonical involution c of A induces Galois con-
jugation on K and nr(x) = xx' = Nκ/k(x). Put q = o^ Π ̂ β. Then Φ%
restricted to oκ is Φq and the following diagram commutes:

oκ > oκ/q

\Nκ/k \N
Φ l

This completes the proof.

LEMMA 5.2. ( a ) For p$S(A), Φ(Γ(1)) = SL2(Fq).
(b) For pe S(A), Φ(Γ(1)) = {xe Fq2 \ N(x) = 1} = U(q) where N

is the norm map from Fq2 to Fq.

Proof. Φ(Γ(l))aSL2(Fq) (resp. U(q)). To shown the equality take
x 6 SL2(Fq) (resp. U(q). By Lemma 5.1 nr{Φ~\x)) = 1 (mod p). Since A
is totally indefinite and nr{Φ~\x)) is integral, we can apply Theorem
1.1 to obtain aeD such that Φ~\x) = α: (mod^5) and wr(α) = 1.
Moreover, since nr{μ) is a unit of k, a is a unit of D. This
completes the proof.

Let Γ(«β) denote the kernel of the restriction of Φ to Γ(l). For
ϊ> in S(A)

1 > U{q) >F*2-^Fϊ >1

is an exact sequence of abelian groups, and F*2 and F* are cyclic of
orders q2 — 1 and g — 1, respectively. Thus, U(q) is cyclic of order
? + l.

Put Mo = Γipes{A) Γ(φ). Since the 5β4 are pairwise relatively
prime, Mo = Γ ( ^ 5βr) and O/5R . . . ξβr = D/φx x D/φ2 x x
The following lemma is an easy extension of Lemma 5.1.
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LEMMA 5.3. For ft e S(A)

D φ*v"*r > o/s^ x . . .

nr

ΦPV J—>
 Q/PI x x

commutes where N = the product of the norm maps from Fq2 to Fg..

Since Γ(l)/Γ($p,) = Ufa) for ft e S(A), Φ,r..,r(Γ(l)) = tf(?1) x x
J7(?r). Thus, Γ(l)/Λf0 = Ufa) x x tf(gr) is abelian and Γ(l) Z)

Γ(?β)

For p g S(A)

is exact. SL2(F2) is isomorphic to S3 and has a normal subgroup A3

of index 2. For simplicity, let A3 also denote the copy of A3 in
SL2(F2). For a prime £2 lying above 2Z with i\φ2 = 2, put
φ-*(A3). The sequence

is exact. Thus AT(fc)/Γ(5ft) = A3. Since Γ(1)/Γ(5R) = S8,
is of order 2.

PSL2(F3) is isomorphic to A4 and A4 contains the Klein 4-group
F a s a normal subgroup of index 3.

1 > {±1} > SL2(FB) — PSL2(FZ) > 1

is exact where J is the map "modulo {±1}." Let V also denote the
copy of V in PSL2(F3). J~\V) is a normal subgroup of SL2(F3) of
index 3. Put M(p3) = φ-^J-^y)). The sequence

1 > Γm > Λf(h) - ^ J-X F) > 1

is exact. Thus, Γ(l)/M(p3) = SL2(FΛ)/J-\V) is of order 3.
For I = 2 and 3 we make the definition:

MQp) if there is only one prime p lying above
IZ having norm I which is not in S(A).

M(p) Π M(p') if there are two distinct primes lying
above IZ neither of which is in
S(A).

JΓ(1) otherwise.
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Finally, define M to be Mo Π Λf(2) Π M(Z).
For p and $>' two distinct primes lying above 2Z (resp. ZZ) and

having norms 2 (resp. 3), the quotient of Γ(l)/(Λf(ί>) Π M(p')) by
M(p)/(M(p) Π Λf(ϊ>')) is isomorphic to Γ(ΐ)/M(p) which has order 2
(resp. 3). The order of M(p)/(M(p) Π Λf(ί>')) is 2 or 1 (resp. 3 or 1).
It is of order 2 (resp. order 3) if and only if M(p) M(p') properly
contains M(p) which is the case if and only if M(p) Φ M(p'). Since p
and p' are distinct ideals, M(p)/(M(p) Π Λf(t>')) has order 2 (resp. 3) and
Γ(l)/(M(p) n M(p')) has order 4 (resp. 9).

We have calculated the order of Γ(l)/M, but we are interested
in the order of j(Γ(l))/j(M). If M contains - 1 then j(Γ(l))/j(M) is
isomorphic to Γ(ϊ)/M. If M does not contain —1 then j(Γ(l))/j(M)
is isomorphic to Γ(l)/{±l}Λf, and \j(Γ(l))/j(M)\ = 1/2|Γ(1)/Λf|. - 1 $ M
if and only if — 1 g some Γ(%). This is equivalent to some Ufa)
containing —1 and this is the case if and only if some <̂  is odd.

We summarize this discussion as:

THEOREM 5.4. Suppose k is a real quadratic field and Γ(l) acts
freely on H\ Put U = Γ(1)\H\ Then the order of H\ U, Z)toτ is
divisible by a*b c Y[pesU) (Np — 1) where

(1/2 if for some peS(A) Np is odd.
a = ]

(1 otherwise.

(A if there are two distinct primes lying above 2Z
neither of which is in S(A).

b — \2 if there is only one prime lying above 2Z having
norm 2 which is not in S(A).

otherwise.

if there are two distinct primes lying above ZZ
neither of which is in S(A).

c = -{z if there is only one prime lying above ZZ having
norm 3 which is not in S(A).
otherwise .

6* Examples* In this section we will determine all pg = 0 (non-
singular) surfaces arising from groups lying between Γ(l) and B and
algebras over real quadratic fields of class number 1.

In practice it is a simple matter to apply the conditions of
Theorems 4.8 and 4.9, but the conditions of Theorem 4.10 are
considerably more difficult to verify partly because the extensions
are not always Galois. The following lemmas are helpful in this
regard.
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LEMMA 6.1. The primes pi — πto, 1 ̂  x 5* I, all ramify in
kίV-π, π%(βk))lk.

Proof. For any p = πo among the pίf , pt consider the :p-adic
valuation | |p of k and the corresponding value group Vp. The p-
adic completion kp of k also has value group Vp. Let q be the ex-
tension of p to k(y'—πι •• 7Γι(efc)). Put α = l/—^ TΓ̂ Sfc). The
q-adic valuation of a is vΊiVα|, = vVl*- Thus IVyVJ = 2 and
ramifies in k(cc)/k.

LEMMA 6.2. Lβ£ if be an algebraic number field with minimal
polynomial f(x)eZ[x], Then the discriminant d(f) of f(x) divides
the absolute discriminant d(K) of K and the quotient is the square
of an integer, i.e., d(f) = m2d(K). Moreover, if p does not divide m
then the number of distinct irreducible factors of fix) in Z[x]/pZ[x]
is the same as the number of primes of K lying above (pZ).

Proof See Borevich and Shafarevich [1].

In cases where Lemma 6.2 is not applicable one can either factor
the polynomial p-adically or use the following lemma.

LEMMA 6.3. Let F be a local field with prime element π and
let f(x) be a monic polynomial in F[x] with integral coefficients.
Put r = oτdπ (c?(/)). Then, if f(x) factors modulo πr+1 as a product
of t irreducible polynomials then f factors in F[x] as a product
of t irreducible polynomials.

Proof. See Borevich and Shafarevich [1].

The integer r in Lemma 6.3 is sometimes fairly large. In these
cases the following observation is useful.

LEMMA 6.4. The minimal ofk{V—πx πr(εk))/Q is of the form
f(x) — x4 + ax2 + 6. f(x) can factor as a product of quadratic poly-
nomials in only the following three distinct ways:

(*. -a + T/V - 46 V . - α - W - 46

(x2 + V2VT -ax + Vb )ix2 - VϊV b -ax + Vb)

(a;2 + τ/_2τ/T - ax - VT)(x2 - V-2VT - ax - VT) .

Moreover, if it factors in any two of these ways then it must factor
completely.
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As was remarked earlier, the lower bound for |J3χ,2| given in
Proposition 3.2 provides an upper bound for the possible discriminants
that can lead to surfaces of any given geometric genus. For example,
if we are interested in pg = 0 surfaces Γ(1)\H2, then |i?*,2| <; 24 since
the Euler number is 4. In this case d < 55.

For simplicity we write Aid) ft, ft, , ft) for the algebra having
center k = Q(τ/ώ~) and S(A) = {ft, ft, , ft}. We denote a prime of
k lying above pZ by ft,. If there are two distinct primes lying
above pZ we denote these ft, and p'p. Finally, put U(Γ) = Γ\H\
We identify a group Γ lying between E and B with the primes of
k corresponding to a complete set of coset representatives for
j(Γ)/j(E). For example, if the representatives are Π and 1 with
Π2Ό = t>D, then we denote this group by Γp or more compactly by
Γ, (and Γ9, by Γ'p).

EXAMPLE 1. A(12; ft, ft).

2Z ramifies and 5Z remains prime in Q(τ/Ϊ2). Thus, E(U(Γ(1))) =
(4/12)(25 - 1)(2 - 1) = 8. (-1/5) = 1. Therefore, by Theorem 4.8
U(Γ(ΐ)) is smooth.

εfe = 2 + i/ 3 which is totally positive has trace 4. Since 5Z
splits in Q(V — 6), ft splits in &(τ/—eΛ) (see Lemma 4.10). Thus,
k(λ/—sk) cannot be embedded in A and by Theorem 4.9 Ϊ7(i7) is a
smooth pg = 0 surface.

EXAMPLE 2. A(13; ft, ft3) and A(13; t>;, ft3). 13Z ramifies and 3Z
splits in Q(τ/Ϊ3). E(U(Γ(1))) = 4/12(13 - 1)(3 - 1) - 8. Thus, C/(Γ(1))
is a candidate for a smooth pq = 1 surface. To check for smoothness,
note that (-1/13) = 1 and (-3/13) = 1. Then, by Theorem 4.8,
U(Γ(1)) is smooth.

εk = 3/2 + τ/13/2 and is not totally positive. Therefore, j(Γ(l))
and j(E) coincide.

To find pg — 0 surfaces we must look for index 2 subgroups of
j(B). The possible sets of coset representatives are {7713, 1}, {Π'3, 1}
and {Π[Πιz, 1}. In view of Lemma 6.1, the last group cannot lead
to a smooth surface.

Let us begin by considering Γz and the algebra A(13; ft, ft3)
where 7Γ3 = 1/2 + τ/Ϊ3/2. 7Γ3 is not totally positive. By Theorem 4.11
we must check whether k(V—π3ek) = Q(V—(4 + τ/13)) = iΓ can be
embedded in A. The minimal polynomial of K/Q is f(x) = cc4 + 8cc2 + 3
and d(/) = 28 132 3. 132 divides d(JBΓ) because 13Z ramifies in k/Q.
f(x) = (x + 3)2(# — 3)2(mod 13) and by Lemma 6.2 there are two primes
of K lying above 13Z. Since ft3 is the only prime of k lying above
13Z, ft3 must split in K. Therefore U(Γ3) is smooth.
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Now consider A(13; p3, ft3) and Γ3. ττ13 = - 1 / 2 + τ/Ϊ3/2). JSΓ =

- 5 - T/I8)/2). /(x) - x> + 5x2 + 3 and d(f) =

24 3.132. /(z) = (a? - 2)2(α -f 2)2(mod 13) and U(Γ'Z) is smooth.
Consider Γ13. 7Γ13=*ι/Ϊ3. We must check whether K—k(v/—π13εk) —

Q("l/(-13- 3l/Ϊ3)/2) can be embedded in A. /(cc) = x4 + 13α2 + 13
and d(f) — 24 34 132. In this case we cannot use Lemma 6.2. Instead
we will factor/(cc) 3-adically. 13 is a 3-adic square because (13/3) = 1.
In fact Vl8 = (1, 7, 16, . .). 2l/Ϊ3 - 13 = (1, 1, 19, •) which is
again a 3-adic square and thus, fix) factors in the second way listed
in Lemma 6.4. a2 — 4ύ = 117 = 32 13. Again, this is a 3-adic square
and by the lemma f(x) factors completely. Thus, there are four
distinct primes of K lying above 3Z and K cannot be embedded in
A for either choice of A. This leads to two more smooth pg = 0
surfaces U(Γ13).

EXAMPLE 3. A(Π; p2, ^ 3 ^ ( 1 7 ; ρ'if ριs), A(17; p2, p[3) and A(17;p'2, p[s).

Both 2Z and 13Z split in Q(τ/17). E{U(Γ(1))) = 8/12-(13 - 1)(2 - 1) - 8.
(-1/13) = 1 and (-3/13) = 1. Thus, U(Γ(1)) is a smooth p, = 1
surface.

εk = 4 + τ/17 and is not totally positive. The possible coset
representatives for index 2 subgroups of B are {Π2, 1}, {Π[3, 1} and
{Π'2Π[3, 1}. As before we can immediately eliminate the last case.

Let π2 = ((3 + τ/Ϊ7)/2), TΓJ = ((-3 + τ/Ϊ7)/2), ττ13 = 2 + τ/Ϊ7 and
ττί3 = — 2 + τ/l7. None of these are totally positive.

Consider Γ2 and the appropriate algebras. K — k(v/—π2εk) =
Q(T/(-29 - 7l/Ϊ7)/2). /(a) = x4 + 29x2 + 2 and d(/) - 25 74.172. /(α;) =
(x2 + 2)(x — 5)(» + 5) (mod 13). Thus, three primes of K lie above
1ZZ and either p13 or # 8 splits in KJk. We would like to factor

g(x) = α;2 - (29 + 7τ/Ϊ7)/2 ft3-adically and Radically. By Lemma 6.3
it suffices to factor g(x) mod 7Γ13 and mod π[3.

-(29 + 7τ/Ϊ7)/2 = -(29 + 7i/Ϊ7)/2 + (2 + l/Ϊ7)(l + 3l/Ϊ7)/2 (mod ττ13)

= 12 (mod 13)

12 is a square modulo 13 and thus, g(x) factors. Therefore, there
are two primes of K lying above pl3 and U(Γ2) is smooth if the
algebra is chosen to be A(17; p2, p13).

- (29 + 7τ/Ϊ7)/2 = - (29 + 7i/Ϊ7)/2 + (2 - τ/Ϊ7)( - 1 + 3l/Ϊ7)/2 (mod π[3)

= 11 (mod 13)

11 is not a square modulo 13. We conclude that U(Γ2) is not smooth
if the algebra is chosen to be -4.(17; p2, tQ.

Consider Γ2. K = k{V^rtβk) = Qθ/(-5 - τ/Ϊ7)/2). /(α) - ί»4 +
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25.172. f{x) = (x2 - 5)(a? + 4)(α - 4) (mod 13). Thus,
there are three primes of iΓ lying above 13Z. Again to factor
g(x) = #2 — (—5 — l/l7)/2 #3-adically it suffices to factor #(#) modulo
7Γί3.

( - 5 - τ/Ϊ7)/2 Ξ= ( - 5 - τ/Ϊ7)/2 + (2 + τ / Ϊ 7 ) ( - l + vΊΫ)/2 (mod π13)

Ξ 5 (mod 13)

Thus, flr(a?) does not factor £13-adically. We conclude that Γ2 and
; p'2, ft8) do not lead to a smooth surface.

(-5 - τ/Ϊ7)/2 Ξ (-5 - τ/Ϊ7)/2 + (2 - τ/Ϊ7)(l + τ/Ϊ7)/2 (mod π[z)
ΞΞ 3 (mod 13)

Thus, g{x) factors modulo π[s and U(Γ2) is smooth if the algebra is
chosen to be -4(17; p2, p[3).

Consider Γl8. K = k(V-πlzek) = Q(l/-25 - 6τ/Ϊ7), /(ίc) = x4 +
50cc2 + 13 and d(f) = 212 34 13 172. /(α?) factors 2-adically as a product
of three irreducible polynomials. Thus, one of p2 or p[ splits in K/k,
but this provides no information about which of these primes splits.
Instead we factor g(x) = x2 — (25 + 6τ/l7) t)2-adically and Radically.
d(flr) = 4(25 + 6 Ί / Ϊ 7 ) . By Lemma 6.3 it is sufficient to factor g(x)
modulo π\ and modulo π'2

z. π\ = (45 + lΓl/Ϊ7)/2 and

-25 - 6τ/Ϊ7 Ξ -25 - 6VT7 + (-3 + τ/Ϊ7)(45 + lli/Ϊ7)/2 (mod πj)

Ξ I (mod 8).

Thus, g(x) factors ί)2-adically. We conclude that ί7(Γ13) is smooth if
the algebra is chosen to be 4(17; p2, pis). π'2

z = (45 — llτ/Ϊ7)/2 and

-25 - 6vΊ7 Ξ -25 - 61/Ϊ7 + (3 + i/Ϊ7)(45 - llτ/Ϊ7)/2 (mod π;3)

ΞΞ 5 (mod 8).

Thus, flf(a?) does not factor Radically. We conclude that Z7(Γ13) is
not smooth if the algebra is chosen to be 4(17; p[, p^

Finally, consider Γ[3. K = k(V-π[£k) = Q(i/-9 - 2i/Ϊ7) and
d(/) = 212.13 172. Let (/(α?) = x2 - (-9 - 2α/Ϊ7). Again, we factor
g(x) modulo π\ and modulo π2

3.

- 9 - 2Ί/Ϊ7 == - 9 - 2l/Ϊ7 + (-16 + 4Vl7)(45 + lli/Ϊ7)/2 (modπS)

ΞΞ 5 (mod 8)

- 9 - 2VΪ7 Ξ - 9 - 2VΊ7 + (-29 - 7l/Ϊ7)(45 - llτ/Ϊ7)/2 (mod TΓ̂ 3)

ΞΞ 1 (mod 8)

Thus, Ϊ7(Π8) is smooth if A = (17; fe tf8) and is not smooth if 4 =
4(17; ft, ft',).
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The following are all pg — 0 (nonsingular) surfaces arising from
Γ lying between Γ(l) and B.
(I) Smooth Γ(l)-surfaces having geometric genus 0.

(1) A(8;p2,pδ)
(2) A(12; ft, ί>13)
(3) A(12; ft, p[3)

(II) Smooth JS'-surfaces (E Ξg Γ(l)) having geometric genus 0.
( 1 )
( 2 )
( 3 )
( 4 )
( 5 )
( 6 )
( 7 )

4(12; ft, ft)
A{12; ps, ft,)
^ ( 1 2 ; pit pU)
4(21; ft, ft)
.4(21; ft, ft')
4(24; ft, ft)
4(24; ft, ft')

ÎΠ) Smooth geometric genus 0 surfaces from Γ, E £i Γ cB.

( 1 )
( 2 )
( 3 )
( 4 )
( 5 )
( 6 )
( 7 )
( 8 )
( 9 )

(10)
(11)
(12)
(13)
(14)
For

primes.

Algebra
A(5; ft, ftj
4(5; ft, ft,)
4(5; ft, ft',)
4(5; ft, ft',)
4(5; ft, pa)
4(5; ft, ft,)
4(5; ft, ft\)
4(5; ft, ft',)
4(8; ft, ft)
4(8; ft, ft')
4(13; ft, ft3)
4(13; ft, ft,)
4(13; ft', ft3)
4(13; ft', ft,)

the next 4 examples

Group

A
Γu

A
A,
A
r41A
n
A
A
A
As
A
As

it is necessary to specify the particular
In Q(VΉ) both 13Z and 2Z split. Let ft be the ideal

generated by (3+τ/Ϊ7)/2 and
Similarly
VΉ.

(15)

(16)

(17)
(18)

ft' be the ideal generated by (-3+τ/17)/2.
r, ft3 is generated by 2 + τ/17 and ft'3 is generated by — 2 +

4(17; ft, ft,)
4(17; ft, ft3)
4(17; pi PU)
4(17; pi PU)

As

A
A
As
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Ryōtarō Satō, Positive operators and the ergodic theorem . . . . . . . . . . . . . . . . . 215
Ira H. Shavel, A class of algebraic surfaces of general type constructed from

quaternion algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Patrick F. Smith, Decomposing modules into projectives and injectives . . . . . 247
Sergio Eduardo Zarantonello, The sheaf of outer functions in the

polydisc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Pacific
JournalofM

athem
atics

1978
Vol.76,N

o.1

http://dx.doi.org/10.2140/pjm.1978.76.1
http://dx.doi.org/10.2140/pjm.1978.76.9
http://dx.doi.org/10.2140/pjm.1978.76.17
http://dx.doi.org/10.2140/pjm.1978.76.17
http://dx.doi.org/10.2140/pjm.1978.76.21
http://dx.doi.org/10.2140/pjm.1978.76.21
http://dx.doi.org/10.2140/pjm.1978.76.33
http://dx.doi.org/10.2140/pjm.1978.76.33
http://dx.doi.org/10.2140/pjm.1978.76.43
http://dx.doi.org/10.2140/pjm.1978.76.43
http://dx.doi.org/10.2140/pjm.1978.76.51
http://dx.doi.org/10.2140/pjm.1978.76.51
http://dx.doi.org/10.2140/pjm.1978.76.61
http://dx.doi.org/10.2140/pjm.1978.76.69
http://dx.doi.org/10.2140/pjm.1978.76.69
http://dx.doi.org/10.2140/pjm.1978.76.83
http://dx.doi.org/10.2140/pjm.1978.76.109
http://dx.doi.org/10.2140/pjm.1978.76.117
http://dx.doi.org/10.2140/pjm.1978.76.123
http://dx.doi.org/10.2140/pjm.1978.76.129
http://dx.doi.org/10.2140/pjm.1978.76.129
http://dx.doi.org/10.2140/pjm.1978.76.143
http://dx.doi.org/10.2140/pjm.1978.76.157
http://dx.doi.org/10.2140/pjm.1978.76.169
http://dx.doi.org/10.2140/pjm.1978.76.169
http://dx.doi.org/10.2140/pjm.1978.76.185
http://dx.doi.org/10.2140/pjm.1978.76.201
http://dx.doi.org/10.2140/pjm.1978.76.201
http://dx.doi.org/10.2140/pjm.1978.76.215
http://dx.doi.org/10.2140/pjm.1978.76.247
http://dx.doi.org/10.2140/pjm.1978.76.267
http://dx.doi.org/10.2140/pjm.1978.76.267

	
	
	

