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THE SHEAF OF OUTER FUNCTIONS
IN THE POLYDISC

SERGIO E. ZARANTONELLO

Let U” be the unit polydisc in C*. Define a presheaf by
assigning to each relatively open subset W of U» the multi-
plicative group of outer functions in the intersection Wn U~
If & denotes the associated sheaf, we prove that Hy(T~, &)=0
for all integers q=1.

1. Introduction. Classically, the outer functions in the open
unit disc U are functions of the form

X exp STg + zk(w)dm(w) ,

where m is the Haar measure on the unit circle T, k is an absolutely
integrable real-valued function on T, and )\ is a complex number of
modulus one. Closely related to the class of outer functions is the
Smirnov class N*(U), which consists of all functions that are holo-
morphic in U and admit an inner-outer factorization. The class
N*(U) is an algebra, and the outer functions are precisely the in-
vertible elements of this algebra. An alternative characterization
of N*(U), considered by Rudin in [5], where it was extended to
the polydise U", is that a holomorphic function f in U belongs to
N*(U) if and only if there exists a strongly convex function ¢
(depending on f) for which ¢(Log®|f|) has a harmonic majorant.
This definition can be extended naturally to arbitrary polydomains
W, x W, X ««- X W,, the requirement now being that ¢(Log™ |f|)
have an n-harmonic majorant in W, x W, X --- x W,. We define
the outer functions in W, X W, x --- x W, to be the invertible
elements of the algebra N*(W, x W, x .-+ x W,). (For the polydisc
Ur, this definition can easily be seen to agree with the one given
by Rudin in [5, Def. 4.4.3, p. 72].)

The correspondence that assigns to each polydomain W in C*
the group O(W N U™ of outer functions in the intersection W n U~
defines a sheaf & on the closure U" of U", which is locally deter-
mined in the sense that I'(U”, &) is canonically isomorphic to the
group of outer functions in U”. OQOur aim, in this article, is to show
that the cohomology groups HYU" «?) are trivial for all integers
q=1

Sheaves of a similar type (sheaves of germs of holomorphie
functions satisfying boundary conditions on polydomains) have been
studied by Nagel in [4], where a unified approach to many types of
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boundary behavior was given. Nagel’s methods, however, do not
appear to be applicable in our case. Instead, we use the methods
developed by Stout in [7], which we also used in [8]. Indeed, the
proof of Lemma 3.1 closely follows that of Lemma 1.2 of [7], and
part of our conclusion is that the multiplicative Cousin problem with
N*-data can be solved in the polydisc.

II. Preliminaries, We denote the open unit disc {zeC: |z| <1}
by U, and its boundary, the unit cirele, by 7. The ecartesian product
of n copies of U will be denoted by U". More generally, a poly-
domain in C* will be a cartesian product W, X W, X «+- X W, of n
domains (open connected sets) in C. Similarly, T* will be the car-
tesian product of % copies of T.

Let W be an open set in C", a continuous function h: W —
(— oo, +o0) is m-harmontc if it is harmonic in each complex variable
separately; an upper semicontinuous function s: W—[— oo, + ) is
n-subharmonic if it is subharmonic in each complex variable sepa-
rately. If h and s are as above, and if s(z) < h(z) for all ze W,
we say that h is an n-harmonic majorant of s in W.

The following proposition ([8, Th. 2.10, p. 301], see also [2])
shows that having an n-harmonic majorant is a local property under
certain conditions.

ProrosITION 2.1. Let W,, W,, ---, W, be bounded domains in
C such that the boundary of each W; consists of finitely many
mutually disjoint Jordan curves. Let W= W, X W, X ««+ X W,
and let {U,} be a relatively open covering of the closure W of W.
If s is a positive n-subharmonic function tn W with “local” n-
harmonic majorants h, in each intersection U, N W, then s must
have an n-hormonic majorant in all of W.

Let W be a polydomain in C*. We define N*(W) to be the
class of all holomorphic functions f in W such that ¢(Log*|f|) has
an n-harmonic majorant for some strongly convex function ¢. We
recall that a function ¢: (— oo, +0) — [0, + o) is strongly convex if
it is convex, nondecreasing, and if lim,... ¢(t)/t = + . Given two
(or finitely many) strongly convex functions ¢,., it is always possible
to find a strongly convex ¢ such that ¢ < ¢, for all @. This, together
with the arithmetic properties of Log®, shows that N*(W) is closed
under pointwise addition and multiplication, and is therefore an
algebra. The class O(W) of outer functions in W is defined to be
the group of all invertible elements of the algebra N*(W). If W
is simply connected, then fe O(W) if and only if f = expg, where
g = % + v is holomorphic and where ¢(|u|) has an n-harmonic ma-
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jorant in W for some strongly convex function ¢. The additive
group formed by such functions g will be denoted P(W).

Let 2 be the family of all cartesian products W, x W, x .-+ x W,
where each W; is connected and relatively open in U”. The pres-
sheaves W—P(WNU*, W—O(Wn U, defined for W in 2, induce
sheaves .7 and «” on U". There is a canonical map P(U") — I'(U*, &)
which is clearly one-one and a group homomorphism. To see that
it is also onto, suppose {W,} is a finite covering of U" (by members
of 2) and suppose that f=u + iv is a holomorphic function in U
whose restriction to each intersection W, N U*is in P(W, N U"). For
each « let ¢, be a strongly convex function such that ¢,(Ju|) has
an n-harmonic majorant in W, N U". Choose a strongly convex ¢
such that ¢ < ¢, for all @. The n-subharmonic function ¢(ju|) has
n-harmonic majorants in the intersections W, N U" Consequently,
by (2.1), it has an n-harmonic majorant in U”. The function f then
belongs to P(U™), and the canonical map P(U") — I'(U", &) is there-
fore an isomorphism. In a similar way we show that O(U*) and
the group I'(U" &) of global sections of &7, are canonically isomor-
phic. More generally, if W is a member of 2, I'(W, &) and (W, &)
can be naturally identified with the class of holomorphic functions
in W whose restriction to any Ve 2 such that Vc W, is in P(V 0 U?)
and in O(V N U™ respectively.

In §IV we prove that HY(U", &) =0 for all integers ¢ = 1.
First we need some technical results.

III. A generalized Cartan lemma. The following lemma is
the crux of our work. It is a modified version of [7, Lemma 1.2,
p. 380].

Let », and ), be disjoint closed ares on the circle T, and let S?
be the extended complex plane. For j =1, 2, define V; to be the
union of the disc U, its exterior S* — U, and the interior (relative
to T) of ;.

LemMmA 38.1. If feP(U*"), there exist fumctions f; which are
holomorphic in V; x U™, and such thot:

(@) f=A/+1 on U

(b) f;eP(U",

(e) [fieP((S*— U") x U™,

(d) fieP(D; x U"), for some open disc D; containing \;.

Proof. We use the notation and terminology of [5]. In partie-
ular, m, will be the Haar measure on 7" Z" will be the set of all
n-tuples of integers, Z% the set of all @€ Z” such that @, = 0, o, =
0,-+-,a,=20,and Y, =Z2U(—2Z"). Forz = (2,2, *+-, 2,) € U"and
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w = (W, Wy, *+-+, W, €T" Pz, w) will be the n-dimensional Poisson
kernel; i.e.,

(1) Pz w) = 3 14(Z5),
where

We define K,(z, w) to be the summation in (1) restricted to the
lattice points of Y,. It can be verified that K,(z, w) is the real
part of

2 —

H,(z, w) =

In what follows, we will use an alternative characterization of
P(U™". It is a consequence of |5, Th. 3.1.2, p. 37] and [5, Th. 3.2.4,
p. 41] that a holomorphic function f belongs to P(U") if and only
if its real part w is the Polisson integral of some function u*e
LY T™); if this is the case, then uw*(w) = lim,_ - u(rw, 1w, + -+, rW,)
for almost all we T (with respect to the measure m,).

Suppose now that feP(U"), and write f= f + f”, where
7y 29y 00y 2,) = f(0, 2, «++, 2,). The function [’ is clearly in
P(8* x U""); therefore it suffices to prove the lemma for /' instead
of f. Let u be the real part of f” and let u* be the radial bound-
ary values of u. Since the Fourier coefficients

a*(a) = S T u* (w)dm,,(w)
T
vanish for all ¢¢ Y,, we can write:

w@) = | Pule, wpurwidm,w) = | K.( wpw)dm,(w) .
T'IZ T/ﬂ

The kernel H,(z, w) is holomorphic in z, H,(0, w)=1, and K, (z, w) =

Re H,(z, w). Therefore, since f”(0) = 0, we have

1@ =\ Hale, wurwidm,w) .
T
Choose an infinitely differentiable real-valued function y on the
circle T, such that y is identically zero on an open connected subset
T, of T which contains \,, and identically one on a similar neigh-
borhood T, of N\, in T. Define
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(@) = | e, i w)dm,w) ,
(@) = || Hle w1 — gw)lu(w)dm,(w) .

It is clear that f7 is not only holomorphic in V; x U"™* but at all
points in T; X U*' as well, and that fi'(z) + f7(z) = f”(z) for all
ze U".

We first prove that f, € P(U™) (a symmetric argument will show
that fi e P(U™).

The function y(w,) is the sum of its Fourier series >.'Zc¢,w?,
which converges uniformly and absolutely in 7. Since y is real-
valued, we have ¢_, = ¢,; also |¢,| = O™ for all integers q = 1.

If w, is the real part of fi, we have

(@) = | Kule wpgtw ) w)dm,(w) .

To show that f.’e P(U") it suffices to find a function Ae LYT™
such that

a1y | K wiwwr@idm,w) = | P wAwdn,w) .

This is trivially verified, with A(w) = y(w)u*(w), if u(z, 25 ***, 2,)
depends only on z,; for instance, if the radial boundary values of
u(z, 0, - -+, 0) take the place of u*. It therefore suffices to establish
(8.1.1) with »* replaced by the radial boundary values of u(z,, 2, *+,2,)—
(2, 0, -+, 0). We assume then, without loss of generality, that
u(z,, 0, + - -, 0) is identically zero, or equivalently, that #*(e,, 0, +++,0)=0
for all integers «,. Write

ui(2) = ¢ S K. (z, wyu*(w)dm,(w)
(3.1.2) !
+ 2 S K(z, wlewt + 807w (w)dm,(w) .

Let ¢, and v, be identically zero on 7", and define, for £ = 2,3, ---,
and for almost all we T",

pmw) = | wrwg, w, -, w) X Pdm) ,
k—1
vi(w) = gzvu*(wlﬂ, Wy =0y W) 2, Pdm(y)
where m, is the Haar measure on the circle T. The functions g, v,

belong to LYT"), and have L'-norms no greater than (b — 1)|ju™|.
A simple calculation shows that the Fourier coefficients g (a0, a,, - - -, @,)
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are zero unless 1 — k< a, < —1, in which case they agree with
w* (e, &, -+, a,). We now recall that f7(0, 2, ---z,) =0, and con-
sequently that the Fourier coeflicients 4*(0, «,, ---, @,) are all zero.
This, together with the assumption that #*(a, 0, ---, 0) = 0 for all
integers «,, and the series expansion of K,(z, w), shows (as in [7,

p. 384]) that

[, Kata wywtu awydm, ()

(3.1.8)
- SMPM wywiu*(w) — p(w)ldm,(w) .
Similarly
|, Ke, wymtu wydm, (w)
(3.1.4) "

= |, Pale, w)mtTur(w) — v(w)dm,(w) .

If we define A,(w) = c,wu*(w) — p(w)] + €@ [u*(w) — v (w)], and
combine (3.1.3) and (3.1.4), we have

S K(2, w)cawt + 6,08 Tu* (w)dm,(w)
(3.1.5) o
= |, Puta, w)Aw)dm, w)

The estimates |/l = (b — Dw*ll, vl = (B — D)[|w*[;, show
that || A.ll, = 2||u*]||,|c.|k. Since 3.7, |c.|k converges, the series
S A, converges absolutely in L(T". If A= cu* + S, 4,, (8.1.2)
and (3.1.5) show that (3.1.1) is verified. Consequently fi € P(U™).

Next we prove that f' and f) are in P((S* — U") x U™™).

A direct caleculation yields

) . " 1 ...
[ 2oy 20 = S (3 2 o )
(3.1.6) )
*
(1 — 2,%,) »++ (1 — zmn)X(wlm (w)dm,,(w)

= S P1(z19 w1>
Tr

for all ze U". (Here, P,(z,, w,) is the one-dimensional Poisson kernel.)
Taking real parts in (3.1.6), we get

u1<zlv z’) - u1<_i; z’>

2
= |, Pilay wllL + Ky (&, 0w (w)dm, )
(3.1.7) i
= |, Pe wor(w)urwdm,(w)

+ |, Plew WK, (&, witwu (w)dm,w)
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where 2’ = (2, +++, 2,) and W’ = (w,, ++-, W,).
Since the Fourier coefficients of y(w )u*(w) = D,*2 c,wiu*(w) are
zero for all lattice points not in Z x Y,_,, and since

Pl(zu w1)Kn—1(z,’ w') = Z Izllal(@>a ’

aeZ XY, 4 I A l
we can write
|, P WK (&, w)(wu (w)dm, (w)

(3.1.8)
- ngP'"’(z’ ’W)X(wx)“*(w)dmn(w) *

On the other hand, if we define

v¥(w,) = S w*(w,, wHdm,_(w'),
T’n—l
then

|, Pz wtwu w)dm, (w)
(3.1.9) = |, Pa worw)v @ dm,(w,)
= |, P wirw)o(w)dm,w) .

Substituting (3.1.8) and (3.1.9) in (3.1.7) yields

(e #) = (3 7 ) = || Pute, wilatwo ) + g w)ldm,w) ,

1
which allows us to write

w22 ) = | Pule wlur@) = 2o (w) — rw)uw)ldm,w) .

2

The above exhibits u,(1/z,, 2’) as the Poisson integral of a fune-
tion in L(T™). This implies ([5, Th. 3.2.4, p. 41]) that there exists
a strongly convex ¢ and an m-harmonic function h in U™ such that

1, /
= <
¢(’u1<§1, z )l) = h(zy 2)
for all (z,, 2’) e U". Consequently

@) = h(3 7)),

1

for ze (S — U) x U**. Since h(1/z, 2') is n-harmonic in (S*— U) x
U™, f! must belong to P((S*— U) x U*?). Similarly, we show
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that £ e P((S* — U) x U*™).
Finally, we prove part (d) of the lemma.

Denote by h, and hg_7 the least n-harmonic majorants of |u,|
in U” and (S® — U) x U™ respectively. (That h, and hge_p exist
is a direct consequence of parts (b) and (¢) of the lemma.) As funec-
tions of the single variable z,, h,(z,, 0, ---, 0) and hg_z(2, 0, ---, 0)
are positive harmonic functions (in U, and in S* — U). Therefore,
as is well known, they must have nontangential boundary values at
almost all points of T. Choose in each of the two connected com-
ponents of T, —)\, a point where both hy(z,, 0,---, 0)and hg_z(z,0,---,0)
simultaneously have a nontangential boundary value. Call these
points ¢’ and {”, and let C be a circle which intersects the circle T
precisely at " and (”. If C has center a¢ and radius o we write
C=a+ pT. Let D, be the disc bounded by a + poT, and let W, =
UUT,U(S*— U). As we mentioned earlier, f!' is holomorphic in
W, x U**. Thus, for each 2’ = (2, -+, 2,) € U*™", the function 2z, —

"(z,, ') 1s holomorphic in W,. Since the closure of D, is contained
in W,, the function u,(z,, 2’) can be represented there as the Poisson
integral of its values on the circle a + o7, i.e.,

(3.1.10) Uz, 2') = gTul(a, + pw,, ZI)P1<Z1 ; CL, w1>dm1(w1) ’

for all z = (2, 2')e D, x U™,
Similarly, for each z, in U or in S*— U, the function 2’ —
V'(2,, 2) is holomorphic in U™, and belongs to P(U"!) by parts (b)
and (¢) of the lemma. Thus 2’ — u,(z, 2’) has radial boundary values
u,(z, w') in L'(T*"), and

GLID  w, ) = | | @ w)P @ w)dm, ),
for all z = (z, 2’) either in U™ or in (S* — U) x U™,

A point @ + pw, on the circle @ + 0T will be contained in U or
in §* — U, or will be one of the two intersections ¢’ and {” of
a + oT with T. In the first two cases, by (3.1.11), we have

w(a + pw, 2') = STn_lul(a + pow,, w)P,_ (¢, w)dm,_(w') .

Substituting the above in (3.1.10), we obtain

U, (2, 2") = ST{SM_IuI(a + pw, w)P,_ (7, w’)dmn_l(w’)}
(3.1.12) P(% —a

, w1>dm1(w1) ,



THE SHEAF OF OUTER FUNCTIONS IN THE POLYDISC 275

for all z = (2, 2")e D, x U\

The function u,(@ + pw,, w’) is measurable on 7", and for each
w, € T belongs (as a function of w') to LYT™). We next show that
u, (e + pw, w') is in LYT™).

For a fixed point @ + pw, in ¢ + o7, the function

Ia + pw, #) = | _|u(a+ ow, w)| Py (&, w)dm, (w)

is the least » — l-harmonic majorant of 2’ — |u,(a + pw, 2')| in U
Since |u,| has n-harmonic majorants h, and hg_y in U, and S* — U
respectively, we have the inequalities

3.1.13) Ila + pw, ?') < hyla + pw, 2"), if a+ pw,eU,
and
(8.1.14) Ila + pw, 2') < hg_zla + pw, 2'), if a+ poweS—U.

Recalling that hy(z,, 0) has limits as z, approaches {’ and {” non-
tangentially, it follows that h,(z,, 0) is bounded on the intersection
a + T NU (since the circle @ + poT meets T nontangentially at {’
and ). Similarly, he_z(2, 0) is bounded on ¢ + pT N S* — U. Thus
there exists a constant M such that ky(a + pw,, 0) < M if a + pw, € U,
and hg_g(a + pw, 0) £ M if ¢ + ow,€S? — U. Therefore, if we let
2’ =0 in (3.1.13), we get

[, Jw(@ + ow)w) dm, () < M,
for all w,eT. Hence
L1, Jw@ + ow, w)ldm, (w)imw) < M,

which shows that w,(e + pw,, w') is in L'(T"). In conjunction with
(3.1.12), we can now assert that u,(z, 2') is the Poisson integral of
#, (@ + pw, w') in D, x U, Consequently, f'e P(D, x U*™). A
parallel argument shows that there is a disc D, containing , such
that 1, € P(D, x U*™).

For the next proposition consider the open intervals J,=(—1, 1/2),
J,=(—1/2,1), and J =(—1,1). Let K be an arbitrary bounded
open interval. Define the rectangles @, = J, + 1K, @, =J, + K,
Q=J+ 1K, and let L = L, x Ly X .- X L, be an arbitrary poly-
rectangle (open) in C™.

ProPOSITION 3.2. (Generalized Cartan lemma). If ge P(Q, N
Q.) X L), there exist ¢, € P(Q, X L) and g,€P(Q, x L) such that
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g=0+9 on (@ NQ, X L.

Proof. Without loss of generality, assume that the rectangles
L, are all equal. Let ¢ be a conformal mapping from the disc U
onto L,, and 4 be a conformal mapping from U to @, N Q,. Extend
4 to a homeomorphism between the closures U and @, N @, Let
4 ={-12 +wy:ye K}, 4, ={1/2 + iy: y€ K}, and )\, )\, be the pre-
images of A, A4, under +. Let V,, V, be the domains constructed
from M\, )\, as in (3.1). By the reflection principle, we can extend
W to a conformal mapping +, from V, onto the rectangle S, =
(—1/2, 8/2) + iK; i.e., given |z| > 1 define ~(z) =1 — ¥(1/z). Simi-
larly, 4 can be extended to a conformal mapping +, from V, onto
S, = (—3/2,1/2) + iK.

Define @: U — (@, N Q) X Ly @(z, 2, +-+, 2,) = (Y(2), 6(2s), =+,
#(z,)), and let @;: V; x U~ — S; X L be the extension of @ obtained
replacing + by «;, for 7 =1, 2.

Suppose ge P((Q, N Q,) X L). Since the composition f= go®@ is
in P(U™), there exist functions f, f, satisfying the properties (a),
(b), (¢), and (d) of (8.1). If g; = f;0@;, the following can be verified:

@) g=g+9 on (NK) x L,

(") g;e P(Q:NQ,)) x L,

(') g;eP((S; — Q. N Q) X L,

d) g¢;e P(@yD; x U*™)), for 7 =1, 2.

We claim that g; e P(Q; x L).

The set +,(D,) is the intersection of an open subset of C, that
contains \,, with S,, and @,(D,x U*™") =«~(D,)x L. Consequently, we
can find a relatively open polydomain W, in the closure S, x L such
that W, N (S, x L) = @,(D, x U*"). It is also clear that there are
relatively open polydomains W, and W, in @, X L such that W; N
(@XL)=@N&)xL,and W, N (Q, X L) = (€ — & NQ,) X L. Thus
we have a covering W,, W,, W, of Q, x L with the properties:

(") g€ P(W, 0 (Q, x L)),

") g.e P(W,N(Q, X L)),

@) g.€ P(W,;n(Q x L)).

The hypotheses of (2.1) are satisfied, so g, € P(Q, x L). A parallel
argument shows that g, € P(Q, X L).

IV. The Cech cohomology of U" with coefficient in & Our
goal is that HY(U*, &) = 0 for all integers ¢ = 1. The standard

exact sequence 0— Z —.F expm, & — 0 reduces this to proving

H«(U", &) =0. If X is the cartesian product of 7= bounded open
rectangles in C, we have analogous shea_ves “Z and & on X,
and the vanishing of the cohomology of U" with coefficients in &
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is entirely equivalent to the corresponding result for X. In the
sequel, we work with X instead of U”. The reason for this pre-
ference is that it allows for the systematic partitioning into smaller
polyrectangles used in (4.4).

Let I =(—1,1). Define R =1+ ¢, and set X = R*. Let %7  be
the family of all cartesian products of open rectangles whose edges
are parallel to the real and imaginary axes of C.

Fix an open covering %2 c % of X. A q-simplex 0 of Z is a
g+1-tuple (U, U, ---, U,) of sets in %/ ; its support |o| is the in-
tersection U,NU, N ---NU,. If We? is contained in X, define
C(z (W), P) to be the group of all alternating functionals ¥ (g-
cochains) that assign to each ¢-simplex ¢ of % a function (o) in
P(jo| N W) (the zero function if the intersection is empty), and let
0: C(Zz (W), P)—C""(Z/ (W), P) be the standard coboundary operator.
The groups C(z/ (W), P) together with the homomorphisms ¢ form
a cochain complex with cocycles Z(Z (W), P), coboundaries B(Z/ (W),
P), and cohomology groups HW(Z/ (W), P). It is an immediate con-
sequence of (2.1) that H°(Z/ (W), P) equals P(W). We define
H(z (W), P)=0if ¢ <0.

If V is a polyrectangle in %7  such that Vc W, we have re-
striction homomorphisms 0,: C(Z (W), P)— C(z/(V), P) which can
easily be seen to commute with the coboundary operators. (If 7e
C(Z (W), P) and ¢ is a ¢-simplex of %/, p,,Y(0) is the restriction
of the function Y(o) to |¢|NV.) When clear in the context, we
shall denote p,,7 also by 7, and refer to it as the restriction of 7
to zZ (V).

For (4.1), (4.2), (4.3), let I, = (—1,1/2), I, = (—1/2,1), R, = I, +
il, R, =1, + iI, and set X! =R, X R**', X! =R, X R*\.

LEMMA 4.1. If ¢ =0 and if 7eC(z (X! N X3), P), there exist
7. € C(z (X3), P) and 7,eC(Z (X2, P) such that 7 =7, — 7, with
the appropriate restrictions to /(XN X?).

Proof. We first observe that (3.2) remains valid if J,, J,, J are
arbitrary open intervals such that J, UJ, = J, and such that either
J cd, or J,CJ, or length J, = 1/2 length J, and length J, = 1/2
length J. If o is a ¢-simplex of %/, the polyrectangles |o| N X},
lol N X3, o] N XN X3, will satisfy the modified hypotheses of (3.2);
they can be taken as the polyrectangles Q, X L, Q, x L, and (Q, N
Q,) X L of (3.2).

Let 7eC(zZ/(Xin X?), P) and let ¢ be a g-simplex of %. Since
Y(o)e P(lo| N XiN X?), we can decompose it as a difference 7,(o) —
7,(0) of functions 7;(o)€ P(la| N X{). Repeating this for each ¢-
simplex we construct 7, € C(Z%(X?}), P), 7,€C(Z(X?), P) such that



278 SERGIO E. ZARANTONELLO
Y, — Y = 1.

LEMMA 4.2, Let q=0. If 7, e C{(Z/(X}), P) and 7, € C(Z (X?), P)
have identical restrictions to Z7(XiN X?), then 7, and ¥, must be
the restrictions to Z (X)) and Z/(X?), respectively, of some ¢
C(z (X), P).

Proof. Let o be a ¢-simplex of %. Then 7(0)e P(o| N XD,
(o) e P(lo] N X?), and 7,(0) agrees with 7,(o) on the intersection
lo| N XiNn X% Let Y(o) be the analytic continuation of 7,(¢) given
by 7(0). It follows from (2.1) that v(6)e P(Jo| N X). Repeating
this procedure for each g, we define 7veC{(Z/(X), P) with the re-
quirements of the lemma.

DEFINITION 4.3. For each integer ¢ = 0, we construct the se-
quence of homomorphisms 0 — CY(Z/ (X! U X2, P) 5 cuz (X, P) @
Cz (X3), P) f>C"’(7/(Xi N X%, P)— 0, where ¢(7) = (7, 7) and (7,
Y)) = 7, — 7, (with obvious restrictions). Lemmas (4.1), (4.2) assert
that it is an exact sequence. It can be verified that the homomor-
phisms ¢, 4 commute with the coboundary operator 6. Consequently,
the above is a short exact sequence of the cochain complexes
{C(zr (X1U XD), P), 6}, {CH(z (XD), P)D C(Z (X}), P), Do}, {C(Z (XN
X?), P), 0}. As is well known ([1, Th. 3.7, p. 128]), there is an as-
sociated long exact sequence

00— voo — H"Y {7/ (X' N X3), P)
2, H(%(X: U X3, P)
2, H(7 (X3, P) @ H(% (XY, P)
2, H(z(Xin X, P) -2 -

(4.3.1)

Since, by (3.2), 0— P(X!U XD 5 P(Xh) @ P(X) L P(Xin X3 —0 is
exact, we can assume that in (4.3.1) the first term following zero is
HY(z (X1 U X?), P).

PROPOSITION 4.4. For any polyrectangle X in 9%, for any
covering Z — " of X, and for any integer q =1, the cohomology
groups H(Z/(X), P) are trivial.

Proof. We argue by induction. Suppose that either ¢ =1, or
that ¢ > 1 and the proposition is true for all positive integers <
g — 1. Let X be a member of %7; assume without loss of generality
that X = Xi U X? is the polyrectangle of (4.3.1).
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If ¢ > 1, the inductive hypothesis, applied to XN X2, implies
Hr{z(Xin X%, P) = 0. Hence, the homomorphism

4.4.1)  HY(Z(X'U XY, P) 20 Huz (XY, P) @ H(% (X?), P)

is one-one for all ¢ = 1 (the case ¢ = 1 is trivial).

Suppose that HY(Z/(X), P) =0, and let { be a cocycle in
Z(#z (X), P) that does not cobound. Since ¢* in (4.4.1) is one-one,
the restrictions of { to Z/(Xi), and to Z/(X?), cannot both cobound.
Let X' Dbe the polyrectangle on which ¢ fails to cobound. The
procedure that led to (4.8.1) can be repeated for X%, a subdivision
Xk = Xt U X3 and the same covering Z/. As before, if we apply
the inductive hypothesis to X; N X3i, the homomorphism

HY7(X3U X3, P) £ H(7 (XY, P) ® HY% (X3, P)

will also be one-one. Iterating this procedure, proceeding cyclicly
through the real and imaginary coordinates of C”, we obtain a nested
sequence XD X%2D .. DX}tm> ... of polyrectangles with diameters
eventually decreasing to zero, on none of which the cocycle induced
by { cobounds. This leads to a contradiction: % = {U,} is an open
covering of X, so for some integer m and some U, in the covering,
we will have X}» cU,; if m is so chosen, the restriction of { to
Z/ (Xkn) trivially cobounds, i.e., if 7 is defined by Y(U,, -+, U,_) =
¢uo,, U, «--, U,_,), then o7 = ¢.

COROLLARY 4.5. Let X be a polyrectangle in C™ and U™ be the
unit polydisc im C*. Then, for all integers q = 1,

(a) HYX, &) =0,

(b) HYU", &) =0,

() HY(U" «)=0.

Proof. As was noted earlier, (b) and (c) are direct consequences
of (a).

To prove (a) it suffices to show that HY( 7; &) =0 for any
covering 7" c % of X (since such coverings are cofinal in the class
of all open coverings of X). Choose such a covering ¥; and let
7 %" be a refinement of 7 such that the closure of each member
U of Z is contained in some polyrectangle p#U of 70 Let o =
(U, U, +++, U, be a simplex of % and let po = (pU, pU, «--, U,
be the corresponding simplex of 9. Recall that a section 7e
I'(|po|, &°) can be naturally identified with a holomorphic function
Sy in |po| N X, and that the restriction of f; to |¢| N X will be in
P(jo] N X). With this in mind, we construct, for each integer ¢ = 0,
a one-one homomorphism
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co( 7 ) 5 cuz (X), P)

defined by letting p*(7)(g) be the function f, restricted to |o|N X.
A straightforward calculation shows that p* commutes with the
coboundary operators; consequently it induces a one-one homomorphism

H( 7, &)t H(# (X), P) .
It follows, by (4.4), that HY 7; £?) = 0, which completes the proof.

V. Remarks, In [7]Stout proved that the multiplicative Cousin
problem with bounded data can be solved in the polydisc U". If,
as in [6], we let &~ be the sheaf of germs of locally bounded
holomorphic functions, and & be the sheaf of multiplicative groups
of invertible elements of 27, this is equivalent to the assertion that
HY(U" %) is trivial. If we apply the methods of §IV to the sheaf
7, (defined in [6]) of locally bounded pluriharmonic functions on U,
it follows that HY(U* ) = 0 for all ¢ > 1, as well.

The methods used for the study of the sheaf & can be also
applied to obtain similar results for the sheaves 5#°?, induced by
assigning to each relatively open polydomain W U” the Hardy
space SZ*(WNnU". If p>1, Lemma 3.1 holds word for word if
everywhere we replace the letter P by the symbol 2#°7; it then can
be proven, as was done for the sheaf &7 that HY(U" £#*) = 0 for
all ¢ =1. A simpler procedure, however, is to show that the sheaves
27 ? correspond to a particular case of the boundary conditions studied
by Nagel in [4].

Finally, we mention that as a consequence of HY(U", &) = 0, it
is possible to solve the multiplicative Cousin problem with N*-data
in U” (in [8], the corresponding problem for the Nevanlinna class
N was shown to be solvable). By standard arguments (such as in
[3, Cor. 2, p. 47]) it can be shown that H' (%, &) = 0 for any
covering % = {U,} of U”. If % consists of relatively open poly-
domains, and if for each a we are given f,€ N*(U, N U" such that
f.f7" is an outer function in the intersection U, N U; N U" ( a cocycle
in ZX%, «)), there must exist F'e N*(U") with the property that
Ff;t is an outer function in U, N U™ for each a.
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