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SPECTRAL SYNTHESIS IN HYPERGROUPS

AJIT KAUR CHILANA AND KENNETH A. RoOSs

A commutative hypergroup K is, roughly speaking, a
space in which the product of two elements is a probability
measure. Such spaces have been studied by Dunkl, Jewett,
and Spector. Examples include locally compact abelian
groups and double-coset spaces. K has a Haar measure m
(Spector). It is shown that for several important classes of
hypergroups the structure space of L'(m) is a hypergroup K.
For such spaces, L'(m) is shown to be regular, in fact, super-
regular, and to have good approximate units. A Wiener-
Tauberian theorem is given. Points in the center of K are
shown to be strong Ditkin sets. Examples (due essentially
to Reiter and Naimark) show that not all points in K need
be spectral sets.

1. Introduction. The purpose of this paper is to determine to
what extent results for the group algebra of a locally compact
abelian group carry over to commutative hypergroups. The theory
of topological hypergroups was initiated by Dunkl [3], Jewett [6],
and Spector [12] and has recently received a good deal of attention
from harmonic analysts. Throughout the paper, K will denote a
commutative locally compact hypergroup such that K~ is a hyper-
group under pointwise operations. Being commutative, K admits a
Haar measure m, as shown by Spector [13]. The convolution algebra
L*(m) = LK) can be identified with the pointwise algebra A(K") of
Fourier transforms on K~. The main reference will be Jewett [6]
who calls hypergroups “convos.” A survey of the subject appears
in [10].

In §2 we establish some basic facts about A(K™). A(K") is
shown to be a regular algebra of functions on K~; in fact, A(K")
is super-regular (2.9). It is shown that A(K") has some useful ap-
proximate units. A Wiener-Tauberian theorem is given. Some
results on spectral synthesis are given in §3. The main result
asserts that points in the center of K~ are strong Ditkin sets. Several
examples are discussed in §4. In particular, it is observed that, in
general, points of K~ need not be spectral sets. It is also observed
that there exists nondiscrete K~ such that every closed subset is a
Calderén set.

1.1. As remarked above, we assume throughout that
(H)) K~ is a hypergroup under pointwise multiplication.
In (8.5)-(3.13) we impose another hypothesis which we now discuss.
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The hypergroup K~ need not be the structure space of A(K"). In
fact, the structure space for A(K™)~ LK) is the space 2Z5(K) of
all bounded continuous multiplicative functions on K [6, 6.3]. We
always have K~ < .25(K), but in (8.5)-(3.13) we assume that

(Hy) K~ = 2Z(K).
We devote the remainder of §1 to showing that (H, and (H,) hold
for several important classes of hypergroups.

1.2. To start with, observe that (H,) and (H,) hold if K is a
locally compact abelian group. Now let G be a locally compact
abelian group and let B be a subgroup of the automorphism group
of G having compact closure. Then the space G, of B -orbits is a
hypergroup. Property (H,) holds for G, because (Gz)" is isomorphic
with (G7); where G~ denotes the character group of G. Property
(H,) also holds for G;. See [11] for a more detailed discussion.

1.3. Compact hypergroups always satisfy (H,) [3, 3.5] but (H,)
can even fail for three-element hypergroups [3, 3.8], [6, 9.1C].

PROPOSITION 1.4. Let G be a Z-group, t.e. a group such that
G/Z 1is compact where Z denotes the center of G. The hypergroup
K of conjugacy classes of G satisfies (H,) and (H,). For each xe K
let «~ be defined on K~ by ™ (¢) = ¥@&). Then ¥(K°) =K "~ =
{e7:xe K}. In particular, K™~ is isomorphic with K and (H,) and
(H,) hold for K~.

Proof. As observed in [11], K~ can be identified with the space
X of normalized characters on G. It is shown that X is a hypergroup
in [11, 5.5] and so K satisfies (H,). A theorem of Hulanicki (see
[16, 4.12]) shows that K also satisfies (H,).

As noted in [6, 12.4], x — 2~ is a homeomorphism of K onto a
closed subset of K~~. Now consider yeZX,(K"). The fact that
x = 2~ for some x € K follows directly from Theorem 2 in Kaniuth
and Steiner [15]. To translate into their notation, observe that
EG@G =%=K" and that RG) = K. For £cLYK"), let h(&) =

E(q/r)xw)dq/r Then & is a nonzero multiplicative linear functional
on LYK") and the theorem of Kaniuth and Steiner shows that

(&) = S ) E(Y)Y(x)dy for some x € K and all £e€ LX(K ™). Then y(v) =
() = 27 () for e K™,

An interesting hypergroup for which both (H,) and (H,) fail is
discussed in (4.8.)
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2. The algebra A(K"). We begin by setting down some results
that are straightforward consequences of basic results in [6]. As
stated in §1, we assume throughout that K is a commutative hyper-
group and that K~ is a hypergroup under pointwise operations. The
Plancherel measure on K~ will be denoted by z. Since K~ is a
hypergroup, 7 is the Haar measure for K*; see [6, 7.3, 12.4]. In
view of [6, 7.3I] the Fourier transform on L‘(m) N L*m) extends to
an isometry of L*(m) onto L*7).

LemMA 2.1. If f and g are in L*(m), then f~ and g~ are in
LXz) and f~xg" = (fg9)". Moreover, (@,+)— @x*4 s a jointly
continuous mapping from LAw) X LAXw) onto A(K™).

LEMMA 2.2, If f belongs to L'(m) or L*(m) and if Y€ K~, then
()" =) If f belongs to L'(m) and y € K, then (f,)"(7) =Yy (V)
for all Ye K™,

The next lemma follows from (2.2B) and (5.4H) in [6].

LEMMA 2.3. For f in LY(m), the mapping y — f, is continuous
Jrom K into L'(m).

LEMMA 2.4. If f, g are in L'(m) and y € K, then
<f*g)y = f*(gy) = (fy)*g .

The regularity of A(K") is a consequence of the next lemma,
whose statement and proof will be familiar.

LeEMMA 2.5. Let E be a compact subset of K~ and let V be a
symmetric set such that nw(V) >0 and such that its closure V~ 1is
compact. Then there is a function ¢ in A(K") such that 0 = p =< 1,
oM =1 for Yel and () =0 for YeExV«V. Also, we have
lplls < T(E=V)[m(V).

Proof. Let &, and &, denote the characteristic functions of V'
and K=V, respectively, and let ¢ = n{ V)&, #&5,». Lemma 2.1 shows
that ¢ belongs to A(K™). For 7€ K~, we have

o) = (V)| @) BV IaR(r) ;

p; denotes the point mass at 7. Since each p,xp, is a probability
measure, we see that 0 < p < 1. If vYeE, then supp (p,*p,) S ExV
for all 7’ € V, from which it follows that o(7) = 1. If @(7) = 0, then
(p, ) E+V) >0 for some ¥ eV, From (4.1B) in [6] it follows that
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Ye¥V«ExV C ExVxV. The norm inequality is easily verified.

The subscript “00” on a family of functions restricts the family
to its members having compact support.

THEOREM 2.6. A(K™) is a regular Banach algebra of functions
on K~. Moreover, A(K") is dense in A(K").

Proof. Lemma 2.5 establishes the regularity. Lemma 2.1
implies that Cy,(K ")*C(K™) is dense in A(K") and [6, 8.2B] implies
that Co(K™)*Co(K™) S Au(K7).

We now obtain two useful approximate units for L'(m), i.e., for
A(K™). We use the notation “ to signify involution.

LEMMA 2.7. Let f be in L'(m) and ¢>0. There is a neighborhood

V of the identity e in K such that for every nonnegative Borel

Sunction u supported by V and satisfying S w(x)dm(x) = 1, we have
K

W = frull, <e.

Proof. By Lemma 2.3 there is a symmetrie neighborhood V of
e such that ||f, — f|l. <¢e for ye V. If u is as indicated, then

fru@) = f@) = | [5@) ~ falu@)dmy)

for x € K, and therefore
ifru— = | {15 - Aol u@dm)dms)
= _IIfy = Fllut@am@) <.

THEOREM 2.8. A(K™) has an approximate unit {p,} such that
each @, belongs to An(K™) and |i@.ls =1 for all @. If K is metri-
zable, {p,} can be chosen as a sequence.

Proof. Let % be a basis of neighborhoods at e¢ consisting of
compact symmetric sets. We direct the net by D = {(U, 9): Ue %,
0 < ¢ < 1} where (U, 8, = (U,, 6,) signifies U, S U, and 4, < 9,. For
Ue7, let fy = m(U)&,. For a = (U, d), use Theorem 2.6 to select
Yra in Au(K ") such that ||y — vlls < 9. Finally, define @, = |[¥ral|"v -
Some routine estimates and an application of Lemma 2.7 show that
{p.} is an approximate unit for A(K").

Before obtaining our second approximate unit, we use Theorem
2.8 to show that A(K") is super-regular.
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THEOREM 2.9. Let E be a compact subset of K" and let ¢ > 0.
Then there is a function + in A(K"™) such that (7)) =1 for Yec K
and ||, <1+ e.

Proof. By Lemma 2.5 there exists ¢ in A,(K") such that ¢ = 1
on E. By (2.8) there exists ¢, in A,(K"™) such that ||@)||, =1 and

llp — opiils < &. Now let ¥ = @ + @, — @@,

TueoreM 2.10. A(K") has an approximate unit {p,} with the
Jollowing properties. If ¢, = f, for f.c L'(m), then each f, belongs
to Ci(K), each @, belongs to LX), ¢, =0, and |||, =1 for all «.

If K is metrizable, {p,} can be chosen as a sequence.

Proof. Our directed set will be a basis % of compact sym-
metric neighborhoods of e. For each U in %, select V in 4 satisfy-
ing V+V S U. Let gp = m(V)y, fv = gr*gv, and ¢, = f. Then
Jfv is easily seen to be in Cj(K). Since §, belongs to LA(xw), ¢, = (§)
belongs to L'(z). Since V is symmetric and g, is real-valued, §, is
real-valued and so ¢, = 0. Since §,(1) = 1, we have

1=op,0) =l = lleslls = 15600 = llgvllllgrlh = 1,

i.e., |lpylla = 1. Finally, Lemma 2.7 implies that {¢,} is an approxi-
mate unit for A(K").

THEOREM 2.11. A subset I of LK) is a closed ideal tf and only
if it 1s @ closed tramslation-invariant subspace.

Proof. Let I be a closed ideal, fel, ye K. If {g,} is an ap-
proximate unit for LYK), then f, = lim, (f,)*g.. But by (2.4), each

(f)*9a = [*(ga)y is in I and so f,el.

Now suppose that I is a closed translation-invariant subspace
and let fe I, ge L'(K), ¢ > 0. Select h € Co(K) so that ||f]],llg — k|, <
g/2. Use Lemma 2.3 to partition the compact set supp (2) U Supp (k)”
into Borel sets {B;};-, so that

x,y€B; imply [lb7|LIlfy — fll <e/2.

Select x; € B; and set ¢; = S h(z)dm(x). For xz<c K, we have
Bj

(b= @) — 3 ed £, )@) = 3 |, 5@ = £ @h@dnw) ,

j=1 B;
from which it follows that |kh+f — 3%, ¢i(f.)lh <é/2. Hence

llg*f — X, ei(f:)ll <e. Thus gxf eI since Iis translation-invariant
and closed.
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Here is a Wiener-Tauberian theorem for hypergroups.

THEOREM 2.12. If f belongs to LK) and if 7 vanishes nowhere
on K=, then the closed translation-invariant subspace of LK)
generated by f is LK) itself.

We omit the direct proof which is similar to that for the group
case. If K~ is the structure space 25(K) for LYK), then this
theorem follows from the abstract Tauberian theorem [5, 39.27] in
view of Theorem 2.6. See the discussion in (1.1).

3. Synthesis in A(K"). As before, K denotes a commutative
hypergroup such that K~ is also a hypergroup. The center Z(K)
of K consists of all z in K such that supp (p,*p,) is a singleton for
each yc€ K. The center Z(K~) of K~ is the set of 4 in K~ such
that |4+ = 1. A detailed study of centers appears in [11]. The main
result in this section, and in this paper, asserts that each point in
Z(K™) is a strong Ditkin set for the algebra A(K"); see (3.3) and
(3.8). We begin with two lemmas.

LEMMA 3.1. Let F be a compact symmetric subset of K and
e>0. If HS{veK™:|"(y) — 1| < ¢ for all yeF}, n(H) < o, and
tf § = &u, then |lg. — gll, < ex(H)"* for xeF.

Proof. By Lemma 2.2, we have

lo. — glli = 16, — 8l = | __17@3an — genrdzen
— SH v(a) — 1Pdr(Y) < ex(H) .

LemMA 3.2. If F 4s a compact symmetric subset of K and
0 > 0, then there exists ge LYK) such that

(i) gl <2,

(ii) § =1 on a neitghborhood of 1,

i) | lowe®) - gwldm@) <o for weF.

Proof. Let ¢ = 6/12 and let
O={eK:|"y) —1li<e for yekF}.

Since K~ has the compact-open topology, @ is a neighborhood of
1 and so @ contains an open symmetric neighborhood H, of 1
having compact closure. Since 7« is a regular measure on K,
there exists a compact symmetric neighborhood H, of 1 such that



SPECTRAL SYNTHESIS IN HYPERGROUPS 319

H, € H, and n(H,) > (1/4)n(H,). By [6, 3.2D], there is a neighbor-
hood ¥ of 1 such that ¥« H, & H,. Now there exist g, g, in L} K)
such that g, = &z, © = 1, 2. Finally we put ¢ = n(H,) 'g.g.. Observe
that gl = n(H;) and so

lgll, = w(H,) 7 ||910ell, = 7(H) 7 lgullo gl = [w(HY)[m(H)]* < 2.
To check (ii), consider 4 ¥. Then

R = (0.0 () = 02G0) = | _ &+ M M)
=\, anpmdne) = | endwirp)ine) .

For v ¢ H,, we have supp(py*p,) S¥+H,Z H, and so &, is identically
1 on supp(pv=*p,). Therefore w(H,)§(+) = n(H,), i.e., §(+4) = 1. Thus
=1 on ¥ and (ii) holds.

Since F' is symmetrie, it suffices to prove (iii) for x in place of
%. Observe that

w(Ho)lg(y *@) — 9(1)] = (6:9)(¥ * ) — 9.(¥)9:(¥)
= | 1@ — 0@)ln® — 0.0)d®, )@

+ a(W(9)(y) — gz(z/)] + &W(g).(¥) — 9.()]
= G(y) + Gy(¥) + Gy(¥) -

Using Lemma 3.1, we obtain

(1)

| 1Gldm = ligl(g). — g1l
= ||g1HzH(gz)a: - gz”z é W(H1>1/257[(H2)1/2 .

(2)

Similarly, we have
(3) | Gl dm < en(H) m(H)"

Estimation of the integral of G, is more delicate. By Holder’s
inequality, we have |G,(¥)|* < A, (y)A,(y) Where

4w = | _1040) = 0.0)Pd(m, ) -
Now

4w = | 9@ — 2 Re 0.@5.0) + 9.0, (@)

= (|g:.(¥) — 2 Re ¢.(¥)(9).(%) + g:(¥)P
= (19::() — 1(9).(DF + 1(9)9) — gD} .
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By |6, 3.3B], we have

| Goam < | lgiram = ot

and so
SK [(9:1De — [(g0)aI"1dm = [1gills — [1(g.).]13
= [llgills + 1I(g)all1ll1g:lls — 11(g0)alls]
= 2|lgall:l19: — (9a)alls
Also

|, 190, = gitdm = @) — gl = 2lgbll(@). —
and so

|, Adm < 4llgdLl(90. — gl < 4x(HY en(H)" .
By Holder’s inequality again, we obtain

13 1 1/2) 1/2
SK Gldm < SK A A < HK Aldm] BK A2dm]
= [16en(H)n(H,)]* = 4en(H,)*n(H,)'"* .
Combining (1)-(4), we find

(4)

m(H,) SK lg(y ) — gW)| dm(y) = 6ern(H,)"*n(H,)"*

or
[, low+o) — g@)ldm(y) < 6ela(H)/mH)]" < 126 = 5 .

The next theorem shows that the identity 1 of K~ may be
viewed as a strong Ditkin set for A(K”) even if K~ is not the
structure space for A(K"); see (1.1).

THEOREM 3.3. There is a net {f.} in LK) such that

(i) [[felly <8 for all a,

(ii) if fe LK) and f(1) = 0, then lim, ||f — f+fl, =0,

(iii) each fa vanishes in a meighborhood of 1 im K~ and has
compact support.

Proof. Let {u;} be an approximate unit for LK) such that
llupll, =1 and %@, € A(K™) for all B; see (2.8). The net {f,} will be
directed by the set
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D = {(F, é, B): F < K compact symmetric, 6 > 0}

where (F, 6, B) = (F", &', B') signifies F2 F', 6 =9, 8= 6. Given
a = (F, 9, 8), select g, , as in Lemma 8.2 and then define f, = u; -
Ups* r,ae

Properties (i) and (iii) are easy to verify. To verify (ii), consider
fe LX(K) such that f(1) = 0, and let ¢ > 0. Select 8, so that 8= 5,
implies ||f — fxusl, < €/2; seleet compact symmetric F, in K so that

Ifldm < ¢/16; and select 9, so that 46,||f]l, < e. If a, = (F, 0, By,
routlne estimates show that « = «, implies ||f — f=f.l, <e.

REMARK 3.4. The proof of Theorem 3.3 follows the same pattern
as in the group case (see [5, 39.28], for example). The main new
difficulty is that the relation (fg), = f.9., familiar for functions on
groups, does not in general hold for functions on hypergroups.

Concepts such as spectral set, strong Ditkin set and Calderdén
set are normally defined for subsets of the structure space of a
regular commutative Banach algebra. For these reasons, we adopt

AN ADDITIONAL HYPOTHESIS 3.5. For the remainder of this sec-
tion, we assume that K~ = 2Z5(K). Thus K will be o commutative
hypergroup such that K~ is a hypergroup and K~ is the structure
space of L'(K).

If K is compact, then K~ is discrete and all its subsets are
Calderén sets. So our results below on synthesis are of special
interest only if K is noncompact. In any case, {1} is a strong Ditkin
set for LK) by Theorem 3.3. Our next result and its corollary
allow us to extend this result to points in Z(K"). It should be
compared with results of Rieffel [9, §4.2].

THEOREM 3.6. Let h be a nonzero bounded continuous function
on K, and define J,(g) = hg for each ge LNK). If ve Z(K"), then
Jy is an isometric algebra isomorphism of LK) onto LYK). Con-
versely, if J, preserves the convolution of L' (K), then h belongs to
Z(K™).

Proof. The first statement is easily verified. For example, the
identity J,(fxg) = J,(f)=J,(g) is checked using the definition of con-
volution and the fact that v is constant with value 7(x)Y(y¥) on
supp (p,*p,) for each x, yc K and ve Z(K") [3, 2.2].

For the converse, we first consider z, ¥ € K and show that i(s) =
h(x)h(y) for all s €supp (p,*p,). Assume that 8 = h(x)h(y) — h(s) # 0
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for some s e supp (p,*D,) so that [h(x)h(y) — h(s)]@ > 0. There exist
compact neighborhoods V and W of z and v, and » > 0, so that

Re [R(v)h(w) — k(s)]B = 7 for veV, weW.

Select a continuous nonnegative function f so that f(x) >0 and
supp(f) S V, and let ¢g=¢&,. Since xzcsupp(p,*py) we have
f(sxy) > 0. By the continuity of w — f(s ), we see that f(sxw) > 0
in a neighborhood of % and so

(1) Swf(s*ﬁz)dm(w) >0.
Direct calculations show that
() +(ho)s) = | | mow)dm, s po)o)nwiimw)
and
Wf o)) = is) | | Awpdw,« pa)w)amw) .
Since (hf)*(hg) = h(f *g), we conclude that
0= SW SV [R(v)h(w) — h($)]f (0)d(p, * px)(v)dm(w) ,
contrary to the estimate
Re| | [ho)h(w) — eNER)AD,* p2))dm(w)
=7 SW Svf(v)d(ps* py)()dm(w) =1 Swf(s*'ﬁz)dm(w) >0;
see (1).
Thus h(s) = h(x)h(y) for sesupp(p,*p,) and hence h(xxy) =
n(x)h(y). Since h(xxe) = h(x)h(e) and h is nonzero somewhere, we
conclude that h(e) = 1. Since h(x)h(%) = h(e) =1 and k is bounded

above, |k| is bounded away from zero. Hence || =1 by [9, 4.2.3]
and so k is in Z(K").

COROLLARY 3.7. Suppose that ¥ e Z(K™) and that E 1s a spectral
set (respectively, Calderon set or strong Ditkin set) in K~ for A(K™).
Then YE has the same property.

To check this corollary, use Lemma 2.2: (J,(f))" = (f )7. The
next theorem is immediate from Theorem 3.3 and Corollary 3.7.

THEOREM 3.8. Points in the center Z(K™) of K~ are strong
Ditkin sets for the algebra A(K™).
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COROLLARY 3.9. Countable closed subsets of Z(K™) are Calderim
sets for A(K™). See [5, 39.39.c].

Theorem 3.8 is best possible in the sense that the points in
K"\Z(K") need not even be spectral sets; see (4.5), (4.7) and (4.8).
Note, however, that Ditkin’s condition holds at o by Theorem 2.8.

A careful reading of (39.24), (39.39) and (89.42) in [5] shows
that the following general result holds.

THEOREM 3.10. Let U be a regular Banach algebra in Cy(X),
where X 1is the structure space of . Suppose that A satisfies
Ditkin’s condition at oo, and let X, denote the set of x in X at
which A satisfies Ditkin’s condition.

(i) If E is a closed subset of X such that oE = X, and such
that o0E contains mo nonvoid perfect sets, then E is a Calderén set
Jor .

(ii) If E is a closed nonspectral subset of X,, then there exists
o continuum of closed ideals in A with zero-set H.

COROLLARY 3.11. If E is a closed subset of K~ such that oE &
Z(K™) and oE contains no nonvoid perfect sets, then E is a Calderin
set for A(K™).

COROLLARY 3.12. Suppose that K~ 1is discrete at points of
KN\Z(K"). If E is closed in K~ and ENZ(K") contains no nonvoid
perfect sets, then E is a Calderéon set. In particular, if K"\Z(K")
18 discrete and Z(K~) is countable, then every closed subset of K~
18 a Calderén set.

See Example 4.6.

COROLLARY 3.13. If E is a closed momspeciral set in Z(K™),

then there exists a continuum of closed ideals in A(K™) with zero-set
E.

Corollary 3.13 can fail if K is a closed subset of K~; see (4.5).

4. Examples. In this section we give examples to show that
points in K~ need not be spectral sets. We begin with a general
discussion.

Let A be a Banach algebra of continuous functions on a locally
compact Hausdorfl space X such that X can be considered as a sub-
set of the structure space of A. The zero-set Z(I) for a closed ideal
I'in A is {xe X: flz) = 0 for all fel}. A closed subset E of X will
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be called a spectral set if it is not the zero-set of two distinct closed
ideals in A. For a subset S of the conjugate space A* of A, we
write I(S) for the set {f e A:o(f) =0 for all peS}. The set I(S)
need not be an ideal in A4, but it will be under certain conditions
on S.

Derivations 4.1. A set D=1{d, d,, ---, d,} in A* is often called

a system of derivations if Leibniz rule
L[k
aiso) = 3 ) s

holds for f,ge A4, 0 <k < n. Note that for & = 0 this requirement
simply asserts that d, is a multiplicative linear functional on A. If
d, is point evaluation at z, in X, we call D a system of derivations
at 2,, and we call d, a point derivation at x,.

It is easy to show that D is a system of derivations in A*, then
I(D) is a closed ideal in A. In particular, if d, is a point derivation
at ¢, in X and if d, denotes the evaluation map at «, then I({d, d.})
is a closed ideal in A. If its zero-set is {x,}, then {x,} is not a
spectral set. For a partial converse, see Atzmon [1, 4.5].

In order to characterize spectral sets in X, we introduce a
generalization of a “set of multiplicative linear functionals.”

Collectionwise multiplicative sets 4.2. A subset S of A* is called
collectionwise multiplicative if, for p€ S and f, g€ A4, there exist
and +, in S (depending on ¢, f, and g) such that o(fg) = ¥.(v=(9)
[2]. For a collectionwise multiplicative set S in 4*, I(S)is a closed
ideal in A. In fact, it can be shown that a closed subset S of X
is spectral if and only if for every collectionwise multiplicative set
T in A* with Z(I(T)) = S we have I(T) = I(S).

There are various ways to obtain collectionwise multiplicative
sets. If D={d,d, ---,d,} is a system of derivations, then the
absolutely convex hull of {2°d, 2"'d,, ---, 2d,_,, d,} is collectionwise
multiplicative. Clearly the union of collectionwise multiplicative sets
is collectionwise multiplicative, and so is its absolutely convex closed
hull. More generally, suppose that S is a collectionwise multiplica-
tive set, that ¢ = 1, and that 7' < A* has the property that if pe T
and f, ge A, then there exist 4 €S and complex numbers «, £, 7, 6
such that o(f9) = ap(f)e(g) + Be()V(g) + Y4 (p(g) + o (f)¥(g) and
lee] + 18] + 7| + 0] £ a. Then a{T U S) is collectionwise multiplica-
tive where (T U S) is the absolutely convex closed hull of TU S.
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Point derivations in M(K) 4.3. Now we give a general method
to obtain point derivations for the algebra M(X) which can be con-
sidered as a Banach algebra of bounded continuous functions on
Z(K) and M(K) can be regarded as a Banach algebra of functions
on K~ by [6, 6.3, 7.3E].

Let K be a commutative hypergroup such that K~ is a hyper-
group. Let {x,} be a net in 23(K), {a.} a net of complex numbers,
f a nonzero bounded continuous function on K, and y € .25(K) such
that a.(}. — %) — f and y,— ) uniformly on compact subsets of K.
Define @ () = Sdey for pe M(K), so that 2i(K) is embedded in
the structure space of M(K) via the mapping y — @,. (Note that
our @, is the same as Jewett’s F [6, 6.3].) For f described above,
@, is a point derivation for M(K) at x e 2;(K).

We check that @, is a point derivation at y, noting first that
@, is clearly a nonzero continuous linear functional on M(K). If
z, y € K, then a,(¥. — ¥) — f uniformly on the (compact) support of
P, * P, and so :

fay) =\ _fa@.xp) =lime,| [ — 1dw.p)
= lim au[7(2)1(%) — x(@)x(®)]
= lim {@[)e(2) — X@N(¥) + 2@)ltv) — 2]}
= fl@)(®) + x@AY) .
Now for g, veM(K), we have

o pev) = | _silpey) = | | forppauaan)

= SK SKf (@) (y)dp(x)dy(y) + SK SK 1 (@) F)d () dy(y)
= 0D, + D,(L)Ps(¥) ,

i.e., @, is a point derivation for M(K) at y. Note that &, can, of
course, also be regarded as a point derivation for L'(K) at y.

For a subset & of the space C,(K) of bounded continuous
functions on K, we write I(# ) for the following closed subspace
of LY K):{ge LXK): ®;,(9) = 0 for all fe # }. The following simple
observation will help us determine when our ideals are distinet.

LEMMA 4.4. If &, eand &, are distinct finite subsets of a
linearly independent subset F of Cy(K), then I(F,) + I(F;).

Proof. {@;. f €.} is a linearly independent set of linear funec-
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tionals on LYK ). The lemma follows from an elementary fact con-
cerning linear functionals [5, E. 12].

ExamPLE 4.5. Let G = R” and let B be the group of rotations
in G. The study of rotation-invariant functions and measures on
R* can be viewed as a study of functions and measures on the
hypergroup K = G5 see (1.2). As a set, K is identified with R* =
[0, =); see the discussion and references in {10, §3]. The hypergroup
K"~ is isomorphic with K and so L*(K) and A(K) are isometrically
isomorphic. The center of K is {0} and this is a Calderén set by
Theorem 38.8. The remaining points of K are nonspectral sets if
n = 3. This follows from the work of Reiter [7] which shows the
connection between radial functions on R® and L. Schwartz’s original
example of a nonsynthesis set. Varopoulos [14] has determined
completely the closed ideals of A(K) with zero-set {0} in (0, ).

Let us briefly cast these known results of Reiter and Varopoulos
in terms of the notations in 4.1 and 4.2. Let A=(K) be the space
of infinitely differentiable functions in A(K). Fix o in (0, «) and
let ¢° denote the point evaluation functional on A(K): 0°(f) = fp)
for fe A(K). Similarly, let 6* denote the kth-derivative evaluated
at p: 0%(f) = f®(p) for fe A*(K). For m = 3, d* is continuous in the
topology of A(K) [8, Ch. 2, 6.3(4)] and can be defined on all of A(K).
Accordingly ¢' is a point derivation at o0 and {0} is not a spectral
set as discussed in (4.1). Varopoulos [14, p. 384] shows that ¢* is
continuous on A(K) if and only if £ < K, where K, is the greatest
integer less than or equal to (1/2)(n —1). For k< K, the set D, =
{o°, o%, -+, 0%} is a system of derivations at o and I(D,) is a closed
ideal in A(K). These ideals are distinect and they all have zero-set
{0}. Varopoulos shows that these are the only closed ideals with
zero-set {o}. In particular, all points in K are spectral sets if
n=2.

ExampLE 4.6. Let G be the group 4, of p-adic integers and let
B denote the group of units in & acting on G. Then G; is a compact
hypergroup identified with the one-point compactification Z* of Z, =
{0,1,2, --+}. The hypergroup K = G; is identified with Z,. and
Gy = K”; see [4] for more details. Since the center of G, is {co},
Corollary 8.12 shows that every closed subset of G is a Calderdon
set. For a class of hypergroups that includes G5, Dunkl and Ramirez
[4, 10.6] prove that every subset is a spectral set.

ExAaMPLE 4.7. As in [6, 15.4], let F' be the hypergroup of con-
jugacy classes of the compact group SU(2). Then K = F" is a com-
mutative discrete hypergroup and Proposition 1.4 shows that K~ is
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a hypergroup isomorphic with F and that 27(K) = K~. We may
take {0, 1, 2, ---} as a model for K and [0, ] as a model for K~ = F.
Specifically, K~ = {ys: 6 € [0, 7]} where ys(n) = sin (n + 1)0/[(n + 1) sin 6]
for ¢(0, ), Y(n) =1 and y.(in) =(—1)* for n=10,1,2, ---. Since
Z(K™) = {)n X<}, the sets {x}, {x.} are strong Ditkin sets.

We now show that for e (0, @), {¥s} is not a spectral set. Let

n cos nd sin @ — sin nf cos 6
7 sin® 6

_4d 1) =
gon — 1) = —-(xo(m 1)

for n = 1. Then g, is a bounded (continuous) function on K and
hence @,, is a continuous linear functional on M(K). Since Y., — Xo
and 0 Xs.s — Xo]l — 9o uniformly on compact subsets of K as d — 0,
®,, is a point derivation at x, by (4.3). Since {4 9o} is linearly in-
dependent, the closed ideals I({y,}) and I{y, ¢,}) are distinct by (4.4).
Each of these ideals has zero-set {y,} and so {¥,;} is not a spectral
set.

NAIMARK’S EXAMPLE 4.8. We assume familiarity with Jewett’s
treatment of Naimark’s example K = [0, ) [6, 9.5]. If supp (7)
denotes the support of the Plancherel measure on K=, then
supp () & K~ & 2(K) and 1¢supp (x). In particular, K~ is not a
hypergroup. We will show that many points of 25(K) are not
spectral sets for L*(K) and, in fact, we will show that they are the
zero-sets of infinitely many closed ideals.

Fix complex numbers @, b with ¢ = ¥, ¢ # 0, and 0 < Im (b) < 1.
For n=20,1,2, ---, let

fon(®) = x®*sin bx/sinh x and f;,.(2) = ***' cos bx/sinh «x .

Note that b7Yf, = %,, an element of 25(K). Each f, is a bounded
continuous function on K. So each @, is a continuous linear func-
tional on M(K). Straightforward calculations show that

g=

m
J

bfu(xy) = i) ( )(—1)"‘”+‘)J‘j(x)fm_f(y) + m(—=D)"fu (@ *y)

for ¢, yc K. It follows that

m (M
=\ 7

bP;,(f*Y) = 3, ( )(—1)"””+”@fj(#)@fm_j(v) + m(—1)"0s,, _ (tt*v)
for p,ve M(K). Hence for any m =0, I, = I{f, fi, -+, fa}) is a

closed ideal in LYK). Since {f,, fi, ---} is a linearly independent set
of functions on K, Lemma 4.4 shows that the ideals I, I, --- are
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all distinct. Moreover, each of these ideals has zero-set {x,} in Z5(K).
Similar computations show that {y,} is the zero-set' of infinitely
many closed ideals in L'(K). The auxiliary functions f, in this case
are defined by f.(x) = x***'/sinh . Note that f, = ¥,.
We do not know the status of the identity x_, or the other
points of Z5(K) not covered by the preceding discussion. However,
we observe that no point of supp (%) = {¥.:t€]0, )} is a spectral

set.
The first author should like to thank the University of Oregon
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