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RINGS WITH QUIVERS THAT ARE TREES

K. R. FULLER AND JOEL HAACK

Associated with each artinian ring R are two diagrams
called the left and right quivers of K. We generalize a
well-known theorem on hereditary serial rings by proving
that if these quivers have no closed paths then R is a factor
ring of a certain ring of matrices over a division ring. It
follows that the categories of finitely generated left and
right R-modules are Morita dual to one another. Applying
our theorem and theorems of Gabriel and Dlab and Ringel,
we show how to write explicit matrix representations of all
hereditary algebras of finite module type.

A quiver is, in the terminology of Gabriel [8], [9], a finite set
of points (vertices) connected by arrows. Given an artinian ring R
and a basic set of primitive idempotents e, ---, ¢, of R (see, for
example, [1, §27]), one forms & (xR) the left quiver of R (see [11]):
The vertices of «°(yR) are v,,---,?,, one for each basic idempotent,
with #n;; arrows from v, to v; iff Re;/Je; appears exactly =,; times
in a direct decomposition of the semisimple left R-module Je,/J%,;.
The right quiver «&?(R;) is formed similarly, with vertices v, «--, v,
and n;; arrows from v; to v, iff ¢;R/e;J appears exactly n;; times in
a direct decomposition of e;J/e,J®>. Note that n;; == 0 iff n;; = 0. Also,
R is indecomposable iff £2(zR) is connected, i.e., there is a nonoriented
path from v, to v; for every 4,7 =1, «--, n.

A quiver & is called a tree in case it is connected and contains
no cycles, i.e., in case it has a unique nonoriented path from v, to
v;, for every 4, j. Let & be such a quiver. Then the vertices of
& are partially ordered by =, where v,<v; iff there is an oriented
path from v; to », (or 4 = j), and we can relabel the vertices so that
v; Zv; implies 1< j. Having done this, we see that for any ring D,
the set of matrices

T ={[di]ld:ije D, di; =0 if v, £ vy}

is a subring of the ring of upper triangular matrices over D. More-
ever, if D is a division ring, then &(;T) = &, &(T;) is the dual
quiver of 7, and T is the unique basic tic tac toe ring (in the sense
of Mitchell [12, §10.8]) over D with left quiver &.

Murase [14] showed that an indecomposable artinian ring whose
quivers are of the form

—

Ve Ve Vg V a

n—1
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is a factor ring of a block upper triangular matrix ring (i,e., of one
whose basiec ring is an upper triangular matrix ring) over a division
ring. (Goldie [10] proved a similar result.) A ring with such a
quiver is a serial ring, and an indecomposable hereditary artinian
ring is serial iff it has quivers of this form. We extend this result,
showing that any artinian ring whose quivers are trees is a factor
ring of a tic tac toe ring over a division ring. As an application
we also prove that such rings are self-dual in the sense that there
is a Morita duality between their categories of finitely generated
left and right modules.

Before proceeding to the proofs we note that, by the work of
Gabriel [8], ]19], and Dlab and Ringel [4], an indecomposable hereditary
algebra over an algebraically closed field is of finite module type iff
its quivers are Dynkin diagrams of type A4,, D,, E,, E,, or E,. These
diagrams are all trees, so the theorem we are about to prove allows
one to apply Gabriel’s argument [8] (see also [2], [11]) to show that
any artinian ring with quivers of type A,, D,, K, E,, or E;is a ring
of finite module type.

LeEMMA 1. Let R be an artinian ring with e, ---, e, o basic set
of primitive idempotents. If Re,/Je, is isomorphic to a direct
summand of Jte;/J* 'e;, then in & (RR) there is an oriented path
Jrom v; to v, of length k. Moreover, if in addition R is hereditary,
then the converse is also true.

Proof. We induct on k. The cases # =0 and k£ =1 follow
immediately from the definition of a quiver. Now let Re,/Je, be
isomorphic to a direct summand of J*e;/J*"'e;. Let

f

@ Re; —1 716, — 0

be a projective cover. Then f induces an epimorphism
, .
@ (Jes, /T, L, Jre, e, —0 .

Since @;_, (Je; /J%;) and J*e;/J*"'e; are semisimple R/J-modules, f
splits. Thus there exists an r with Re,/Je, isomorphic to a direct
summand of Je; /J%; . By induction, there is an oriented path of
length (k—1) from v; to v; and one of length 1 from »; to v;, which
combine to give the desired path of length %.

For the moreover part, suppose we have an oriented path

Vg = Vg Vg, * 0 Vg <V = V; .

if—1

Assume that Re, /Je; is a direct summand of J7¢;/J""'e; (m < k).
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Then since R is hereditary, J"e; = Re, @ M, some M. Thus
Il e; = Je, [Je, D JM|J'M ,
and we are done since Re,

imir/ €1, ., 18 @ direct summand of Je, [J%, .
Now we are ready to prove the promised result.

- THEOREM 2. If the left and right quivers of an artinion ring
R are trees, then there is an indecomposable tic tac toe ring T over
a division ring D such that R is isomorphic to a factor ring of T.
Moreover, & (GR) = & (;T); and R is hereditary iff R = T.

Proof. It is easy to see that a ring is Morita equivalent to an
upper triangular tic tac toe ring over a division ring D iff it is
isomorphic to a (block-upper-triangular) tic tac toe ring over D.
Thus we may assume that R is basic.

Suppose that & = & (xR) and &(R,) are trees, and correspond-
ingly, relabel the vertices of ¢ and the idempotents of R as in the
earlier discussion. In particular then, v, is minimal with respect to
the partial order <, and hence no arrows leave wv,.

Note that for each basic idempotent ¢, ¢,Re; is a division ring
since e;Je; = 0 by Lemma 1. For each pair of idempotents ¢, and
e, with an arrow from v, to v, in & (and hence one arrow from
v, to v, in & (Ry)), we have a left ¢,Re,- right e ,Re,-bimodule e,Je,
with dim(epRepepJeq)=1:dim(e,,JeqeqReq). So we may choose e,, €e¢,Je,
with e,, # 0 and define a division ring isomorphism o,,: ¢,Re, — ¢,Re,
via xe,, = €,,0,,(x) for xce,Re,. Since & is connected, we have
e, Re, = e Re, for all primitive idempotents ¢, and e,. Define ¢, = ¢,
and for each v, < v; with oriented path

UV = Vg Vg 2o Uy, Uy, = V5,

define

€15 = €€, " €

1183 o

For v,<wv, in &, define 7,, =0, and 7, =0,. Now let v, =
Vipy Vipp ** 5 ¥y, = v; be the vertices of a nonoriented path from o,
to »; for j = 1. Define

O1i = Vi i,° *** ©74,4,°0 for 7 =2,¢0,m.

Define 0, = L, z.,. Let

1115° 0441y

D= {,z; 0,;(%) } x € elRel} .

Then D = e¢;Re; and D is a division subring of R.
Let v;<v; via an oriented path of length k. Then e,Re; = ¢,J%;
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by Lemma 1. It is then straightforward to verify that De,; =
e, J";, using the equalities De, = ¢,Re, and e¢,Re,, = ¢,Re,e,, = ¢,Je,
for v, < v,. Hence we have shown that
(%) R = 3, De; .
vié’vj

Next we claim that de; = ¢;;d for any deD and v,<v; in &
Suppose we have v, «—wv,. Let v, =v;, v, --+, v, = v, be the non-
oriented path from v, to v,. If v, =%, _, then ¢, = 0,,°0,,, and

e 35,00(0)) = €014 () = €,0,,(0,@)) = Ty
= <T§i]1 au(x)>e,,q .

If v,#v then o,, = 05,00, and

e 2,0:(0)) = €,0(®) = 030, @) = 1(@)ery
= <§1 o*l,(x)>e,,q .

Now the claim follows by induction on the length of the path from
v; to v,.
Let T be the tic tac toe ring

T ={[di]ldi;eD,dy;=0 if v, Lv;}.
Define

0. T—> R via O:[d;]+—— 3, dye; .

;S5
Since the elements of D commute with each e¢,;, and since

i if m=»p
0 if m+#op,

Crmbpg =

©® is a ring homomorphism. Also @ is onto by (%).

Clearly &(;T) = &(zR). If R is hereditary, then for v,<v; with
oriented path of length k, De,; = e, J%; == 0 by Lemma 1. So ¢; # 0
and @ is an isomorphism. If T is a tic tac toe ring whose quivers
are trees, then T is hereditary by [12, Theorem IX. 10.9].

One could apparently use an argument similar to the one in [4,
Proposition 10.2] to show that the rings of Theorem 2 are factor
rings of so-called tensor rings (see [5]). The same argument, however,
shows that rings with quivers
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U, g

RN 7N
N SN
v, v, and Vs
AN /! AN /
% N
Y, Vs

are also tensor rings. But these need not be tic tac toe rings. Indeed,
let @ be an automorphism of a division ring D which does not fix
the center of D. Then the ring R, of matrices

a 0 m

b 7
0
d

with all entries in D except m € ,M, where ,M = ,D and multiplication
in M, is given by m-d = mep(d), is a tensor ring that is not a tic tac
toe ring. In contrast, by Theorem 2 or originally by Murase in [14],
the ring S, of matrices

o m

o %)

with a, be D and m e M is isomorphic to the ring of upper triangular
2 x 2 matrices over D. (A word of caution: Associativity is lost
if one tries this trick for 3 X 3 upper triangular matrices.) The
ring R, fails to behave similarly, for the center of R, is all scalar
matrices ¢ with ¢(¢) = ¢ € center (D).

Note also that the above example indicates that Theorem 2 does
not extend to include rings whose quivers are not trees.

A gap in the Morita duality theory that begs to be filled is the
nearly total lack of knowledge of which artinian rings (in addition
to artin algebras and QF rings) are self-dual. The characterization
of artinian rings whose quivers are trees given in Theorem 2 enables
us to show that such rings are self-dual. We employ the following
lemma whose proof is dual to that of [7, Lemma 4]. In what follows,
E(M) is the injective envelope of M and Soc, (M) is the kth term in
the lower Loewy series of M.

LEMMA 3. Let R be any ring. Then the following statements
about o left R-module M are equivalent:

(a) M is distributive.

(b) For each simple left R-module T, the set of submodules
{ker v|v e Hom, (M, E(T))} is linearly ordered.
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() For each simple left R-module T the right End GE(T))-
module Hom, (M, E(T)) 1s uniserial.

PROPOSITION 4. If R is an artinian ring whose quivers are
trees, them there is a Morita duality between the categories of
finitely generated left and finitely generated right R-modules.

Proof. Assume that R is indecomposable and basic with identity
element a sum of orthogonal primitive idempotents 1, = ¢, + -+ + ¢,.
Let E, = E(Re,/Je;) for it =1, ---,n, let E=E @ --- P E,, and let
S = End (zE). Then ( )* = Homj(_ zEs) defines a duality between
the categories of finitely generated left R-modules and finitely gen-
erated right S-modules [13] and [7, Lemma 5]. Write 1;=f, +++-+ f,
where the f;, are the orthogonal primitive idempotents in S such
that Ef, = E,. Let N = J(S). We will show that the quivers of S
are the same as the quivers of E.

From the results in [1, §24], we see that for ¢ =1, ---, n,

(Re,/Je)* = (Soc B)* = £.S/f,.N
(Soc,(E;)/Soc (E)* = fiN/fiN*.

So by [7, Lemma 5], f,N/f,N* is square free, and by [6, Theorem 2.4],

¢;Rle;J embeds in e¢;J/e;J?
iff Re,/Je; embeds in Soc, (¥;)/Soc (E;)
it fiS/f.N = (Re;/Je,)* embeds in (Soc, (E;)/Soc (E;))*
= f;N/f;N*® .

Thus the right quiver of S is the same as the right quiver of R.

Now to see that the left quivers of B and S are the same we
need only show that dim (y,s7,/:Sf)=0 or 1 for all ¢, j. But (writing
maps on the right), f,.Sf; = Homy (¥, E;) = Hom, . (¢;E,, ¢;E;) by [6,
Lemma 2.1]. Note that since the quivers of R are trees, Re, and
e,;R are distributive R-modules for each 7=1, ---, % [3]. So by
Lemma 8 and [7, Lemmas 4 and 5}, ,;z.;¢;F:s,55, = Hom, (Re;, ;) is left
and right uniserial, so since f;Sf; is also a division ring, ¢;E,; is both
left and right one-dimensional or zero. Now since ,;z.e;E; is also
one-dimensional, it follows that , , fiSf; is zero or one-dimensional.
Note also that f,Sf; # 0 iff ¢;F, + 0 iff ¢,Re; + 0. Thus R and S are
isomorphic factor rings of tic tac toe rings with the same quivers
over isomorphic division rings e,Re; = f,Sf,.

Regarding algebras of finite module type, we conclude with

REMARK 5. Let R be an indecomposable hereditary artin algebra
of finite module type which does not satisfy the hypotheses of Theorem
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2. Then according to Dlab and Ringel [4], [5] the quivers of R or
of its opposite ring are Dynkin diagrams of one of the types

B, v, v, v, Vg —— oo 0 —— Y, T3,
C.:v, v, v, VTV e —— ),
Feu, vy Py V, Y, ——— Yy, T Wy —— V)
I_—_) !
G, v, — v, T
—_

Using an argument similar to that in the proof of Theorem 2, one
can show that if R is an artinian ring with quivers of one of the
above types, then R is a factor ring of a generalized tic tac toe
ring; that is, R is isomorphic to a factor of a matrix ring with some
of the entries from a division subring C of a division ring D and
the other nonzero entries from D. (For example, if R is hereditary
with quivers

& (RR) = v, v, (% Vy

& (Rp) = vie— v " 3Z v, — v,

then R is isomorphic to a ring 7' of matrices

D D D D
c 0 C
D 0
C

with dim (D,;) = 2.) To show this, assume that R is basic and that
& (R) is a tree. Arrange the right and left quivers of R so that
the multiple arrows point to the right. Let ¢, be the vertex of
& (Ryz) at the tails of the multiple arrows, and let v; be the vertex
of (R at the heads of the multiple arrows. Let &7, be the sub-
quiver of &(,R) containing », and the arrows and vertices to the
left of v,, and let & be the subquiver of «?(zR) containing v, and
the arrows and vertices to the right of v;. Notice that dim (,,z. e.Je;) =
1 since & (zR) is a tree. For v,<—wv, in &(zR), let e, generate
epRep€o€as and define ¢;; as before for v, < »;. Define o,; for v, &,
and o;; for v;€ &% as in the proof of Theorem 2. Let

C = {v'z 055() meeﬁRe,a} .
Let

D= { > 04i(x) weeaRea} .




378 K. R. FULLER AND JOEL HAACK

Define 6: C' — D via e, pe:¢’ = 0(¢')e .5 for ¢ €C’. Then C = im 8§ = (.
Now let
T={[di]ldi;eD,d;;=0 if v, Lv;,
and d;eC if v, egn}.

Then T is a ring, since if v,€ &?, and v, € &%, then »,£v, (and hence
d; = 0). So in any nonzero product d,;d;,, we must have »,<v; and
v;Zv,, giving v;<v,, and thus either v, € &,, or both v, v;€ & and
d,;d;, €C. Now define

¢: T—R by
0: [dij]—— > 0Hdie; + D die .

viguj,vieaﬁ VSV, €y

The map @ is clearly additive and onto. To show that @ preserves
the multiplication, we need only add to the proof of Theorem 2 that
for deD and ¢ceC,

de 07 (C)es, = deeqpes, = deey, ,

which is immediate by the definition of 4.
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