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CENTERS OF REGULAR SELF-INJECTIVE RINGS

K. R. GOODEARL

This paper is concerned with calculating centers of
regular self-injective rings, particularly those obtained
by completions with respect to rank functions, and those
obtained as factor rings of other regular self-injective
rings. Sufficient conditions are developed under which the
completion of a regular ring R has the same center as K.
For any regular self-injective ring K of Type I, it is shown
that the center of any factor ring of R is a factor ring of
the center of RE. These results are used to distinguish
among the simple regular self-injective rings of Type II,
by their possible centers.

All rings in this paper are associative with unit, and all ring
maps are assumed to preserve the unit.

1. Introduction. The class of regular, right self-injective
rings may be divided into subclasses using the theory of types as
in [6, Chapters 5-7]. In particular, any indecomposable, regular,
right self-injective ring must be one of Types I, L., II;, Il., or
IITI [6, Corollary 7.6]. The indecomposable, regular, right self-
injective rings of Types I, and I. are easy enough to describe,
since those of Type I, are the simple artinian rings, while those of
Type I. are the endomorphism rings of infinite-dimensional right
vector spaces [6, Theorem 5.4].

In the remaining cases, however, very little is known. The
center suggests itself as a reasonable invariant with which to
distinguish among different rings of the same type, particularly in
the indecomposable case, where the center is a field. In this paper,
we develop some techniques for calculating centers, and we apply
these techniques to the standard Type Il examples (deseribed below).
In particular, we show that any field can be the center of a simple,
regular, right and left self-injective ring of Type II, and that the
standard Type II examples can be distinguished by means of their
centers.

Both of the standard Type II examples are built up from
certain sequences of simple artinian rings, one by the completion of
a direct limit, the other by a factor ring of the direet product.
The second of these is the easiest to describe, as follows. Let
R, R,, --- be simple artinian rings whose composition series lengths
are unbounded, and set R = IIR,. If M is any maximal two-sided
ideal of R which contains @ R,, then it follows from [6, Corollary
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11.10] that R/M is a simple, regular, right and left self-injective
ring of Type II.

To describe the other example, we outline the completion process
as developed in [8, 4, 5]. A pseudo-rank function on a regular ring
R [4, p. 269] is a map N: R — [0, 1] such that

(a) NQ) =1.

(b) N(xy) £ N(x), N(y) for all =, yeR.

(¢) N(e + f) = N(e) + N(f) for all orthogonal idempotents e,
feR.

A rank function on R [13, p. 231] is a pseudo-rank function N such
that

(d) N(x) > 0 for all nonzero x € R.

It follows from (b) and (¢} that N(x + y) < N(x) + N(y) for all
z, ¥y € R [13, Corollary, p. 231].

Any pseudo-rank funection N on R induces a pseudo-metric é on
R according to the rule é(z, ¥y) = N(x — y), and the ring operations
on R are uniformly continuous with respeet to 6 [13, pp. 231, 232].
Thus the (Hausdorff) completion of R with respect to 0 is a ring
R, which we refer to as the N-completion of R. Note that the
kernel of the natural map R — R equals the kernel of N. Accord-
ing to [8, Theorem 38.7], R is a regular ring, N extends continuously
to a rank function N on R, and R is complete with respect to N.
Also, R is right and left self-injective by [4, Corollary 15].

Given a simple regular ring R with a rank function N, the
N-completion R of R need not be a simple ring or even indecom-
posable, as [4, Examples B, C] show. Necessary and sufficient
conditions for B to be simple are given in [4, Corollary 20]. In
particular, [4, Corollary 21] says that if N is unique then R is
simple.

The remaining Type II example is now constructed as in the
following proposition.

ProposiTiON 1.1. Let R,— R,—--- be a sequence of simple
artinian rings and ring maps such that the composition series
lengths of the R, are unbounded, and set R = lim R,. Then there

exists @ wunique rank function N on R, and the N-completion of
R is a simple, regular, right and left self-injective ring of Type
II.

Proof. According to [4, Proposition 2], there is a unique rank
function on each R,. Inasmuch as rank functions on R are induced
by compatible rank functions on the R,, it follows that there is a
unique rank function N on R.

Let R denote the N-completion of R. Then R is regular by
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[8, Theorem 3.7] and [4, Corollary 15] says that R is right and left
self-injective. Since N is unique, [4, Corollary 21] says that E is
simple.

Inasmuch as the composition series lengths of the R, are un-
bounded, we infer that there exists an infinite sequence of nonzero
orthogonal idempotents in R. Since R is simple, the natural map
R — R is injective, hence R contains an infinite sequence of nonzero
orthogonal idempotents. Thus R is not artinian. Consequently, we
conclude as in [6, pp. 38, 34] that R is Type IIL.

We conclude this section by showing that any field can be the
center of a regular, right self-injective ring of Type III. This
result was proved by Handelman after seeing a preliminary version
of this paper.

ProposITION 1.2 (Handelman). Let F be any field. Then there
exists a simple, regular, right self-injective ring R of Type III
such that center(R) = F.

Proof. Set S, = M,.(F) for all » =1,2.--. Map each S,—8S,,,

along the diagonal, i.e., map [g g], and set S = 1imS,. Note

that S is a simple regular ring, and that center(S) = F.

Now let B be the maximal right quotient ring of S. Since S
is a simple regular ring, we see that R is a simple, regular, right
self-injective ring. Given any xz¢ center(R), we see that J =
{seS|xseS} is a nonzero two-sided ideal of S, whence J =S and
so x€S. Consequently, center(R) = center(S) = F.

In [7, Example (e), pp. 831, 832], it is shown that R is directly
infinite. Since R is simple, it follows that R contains no nonzero
directly finite idempotents. Therefore R is Type III.

2. Completions. This section is concerned with calculating the
center of the completion B of a regular ring R with respect to a
pseudo-rank function, and in particular with conditions which ensure
that the center of R coincides with the center of R. As our
methods deal with direct limits of semisimple (artinian) rings, we
begin with the case where R equals the ring M,(D) of all n X n
matrices over a division ring D. Our method, which is an exten-
sion of [9, Theorem 5], involves comparing the ranks of additive
commutators xy — yxr with the ranks of differences ¢ — 2z, where
zccenter(R). (By the rank of a matrix zeM,(D), we mean the
number of linearly independent rows (or columns) of zx.)

In order to construct additive commutators in M,(D) with
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suitably large ranks, we use the rational canonical form for matri-
ces in M (D), which works as well over division rings as over fields
[10, p. 50]. Specifically, any matrix in M,(D) is similar to a block
diagonal matrix where each block is a companion matriz, i.e., a
matrix of the form

0|1
ol 1
0 1
e e

LEMMA 2.1. Let D be a division ring, let n = 2 be an integer,
and let xe M, (D) be a companion matriz. Then there exists y €
M, (D) such that xy — yx is 1nvertible.

Proof. If m is even, set

0 0 00
1 0

0 0

1
y = o
1
0
110

1 0 1 0
0 o (900 - 0 —1 0
1 1
ol
0 ot 1
_ 1 -
0 .
110 1] 0
ko sk \0 0 '1 * s *———1
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which is clearly invertible.
If n is odd, set

1 0
0 0
1
0
'y:
1
00
100 - - -0140

In this case, we compute that xy — yr has the form

0o 0 oL 0 0]-1 0
0y 1 0 0] 0 0 0 1 0
0 1 -1
1 0 1
0 010 0 10 0 -1 0
1i00 ..-01 )0 opoo0oo0 ---01/0 1] 00 01| 0
* | * % oo e ¥ ¥ O 0100 ...O 1 * * ¥ **_1

which we see is invertible (rearrange the columns in the order
2,8, -, —1,1,n to obtain a triangular matrix).

LEMMA 2.2. Let D be a division ring, and let n be a positive
integer. Let x e M,(D) be a diagonal matrix with diagonal entries
Qs by Qo by » 00y Gy by Qyyyy By v 00y Gyyy SUCK that a; # b, for all i=1,

-, t.
(a) If a,,, ¢ center(D), then there exists ye M,(D) such that
xYy — Yyx 8 invertidle.

() If a,. ccenter(D), then there exists ye M,(D) such that
rank(zxy — yx) = 2¢.

Proof. It clearly suffices to show that if z = I:g’ 2]eMz(D)

with @ # b, then there exists w e M,(D) such that zw — wz is inver-

tible. For this we need only take w = [g (1)], since then zw — wz=
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[b 2 aa Z)— b:l'

ProprosiTION 2.8. Let D be o division ring, let n be a positive
wnteger, and let xeM,D). Then there exist matrices ye M,(D)
and z ¢ center(M,(D)) such that rank(x — z) < rank(ry — yx).

Proof. By a change of basis, we may assume that z is in
rational canonical form. T}len, by a permutation of the basis, we
may put « in the form g xﬂ’ where ' is an %’ X »' diagonal
matrix and x” is an »” X %" block diagonal matrix whose diagonal
blocks are companion matrices of degree at least 2. In view of
Lemma 2.1, there exists an %' X n” matrix y” over D such that
2"y" — y"x"” is invertible.

We may arrange the diagonal entries of z’ in the order «, b,
Gy Dy # 00y Gy By Byss Qypyy =0y By, With a;, =0, for all 1 =1, --+, ¢t If
@, ¢ center(D), then by Lemma 2.2 there exists an »' X n’ matrix
y' over D such that x'y’ — y'x’ is invertible. In this case, set y =

[g’ y,‘?} in M,(D), so that xy — yx is invertible. Setting z =0, we
obtain rank(x — z) < » = rank(xy — yx), as desired.

Now assume that a,., € center(D), and define z € center(M,(D)) to
be the diagonal matrix with all diagonal entries equal to «,,,. Note
that rank(x — 2) < 2t + n”. According to Lemma 2.2, there exists

an n’ X n’ matrix ¥’ over D such that rank(x'y’ — y'2’) = 2t. Set-

’
ting y= [g y’Q] in M,(D), we conclude that rank(zxy — yx) =2t +n"" =

rank(x — 2), as desired.

DEFINITION. Given modules A and B, we write A < B to mean
that A is isomorphic to a submodule of B. Given elements z and
y in a regular ring R, we note that 2R s yR if and only if x =
ayb for some ¢, be R.

COROLLARY 2.4. Let R be a semisimple ring, and let xeR.
Then there exist elements y € R and z € center(R) such that (x—2)R<S

(xy — yx)R.

Proof. It suffices to consider the case when R is simple artinian,
hence we may assume that B = M, (D) for some positive integer n
and some division ring D. According to Proposition 2.3, there exist
ye R and zeccenter(R) such that rank(zx — z) < rank(zy — yx). As
a result, we see that the composition series length of (x — 2)R is
less than or equal to the composition series length of (xy — yx)R.
Consequently, we conclude that (x — 2)R < (2y — y2)R.
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COROLLARY 2.5. Let R be a directed union of semisimple sub-
rings R, and assume that center(R,) < center(R;) whenever R, S R;.
Given any x € R, there exist elements y<c R and z €center(R) such
that (x — 2)R < (xy — ya)R.

Proof. We have xe R, for some %k, hence by Corollary 2.4
there exist ¥y € R, and z € center(R,) such that (x—2)R,S(xy—yx)R,.
Since center(R;) C center(R;) whenever R, & R;, we see that ze¢
center(R). Inasmuch as R is a flat left R,module, we conclude
that (x — 2)R < (zy — y2o)R.

THEOREM 2.6. Let R be a directed union of semisimple sub-
rings R,, and assume that center(R;) & center(R;) whenever R,Z R;.
Let N be a pseudo-rank function on R, let R denote the N-comple-
tion of R, and let ¢: R — R be the natural map. Then ¢(center(R))
is dense in center(R).

Proof. Let N be the natural extension of N to R. Let z¢
center(R), and let ¢ > 0 be a real number.

Choose w € R such that N(g(w) — x) < ¢/3. According to Corol-
lary 2.5, there exist y € B and zccenter(R) such that (w — )R S
(wy — yw)R. Then w — z = a(wy — yw)b for some a,beR, from
which we see that Nw — 2) < Nlwy — yw). Since x commutes
with #(y), we obtain

Nw — 2) £ Nwy — yw) = N(p(w)s(y) — ¢(y)p(w))
= N((p(w) — )p(y) — s(¥)(p(w) — x))
< 2N(g(w) — x) < 2¢/3 ,

and consequently

N(g(z) — #) = N(g(2) — p(w)) + N(g(w) — =)
< Nw —2z)+ (¢/3) <e¢.

Therefore g(center(R)) is dense in center(R).

COROLLARY 2.7. Let R be a directed union of semisimple sub-
rings R;, and assume that center(R,) S center(R;) whenever R, S R;.
Let N be a rank function on R, let R denote the N-completion of
R, and assume that R is indecomposable (as a ring). Then the
natural map center(R) — center(R) is an isomorphism.

Proof. Since N is a rank function, we see that the natural



388 K. R. GOODEARL

map ¢: R — B must be injective. Let N be the natural extension
of N to R. According to Theorem 2.6, g¢(center(R)) is dense in
center(R) in the N-metric. Since E is an indecomposable regular
ring, center(R) is a field. Then for any x ccenter(R), either x = 0
or x is invertible, hence either N(x) = 0 or N(z) = 1. Thus the N-
metric on center(R) is discrete, hence we conclude that g(center(R))=
center(R). Therefore ¢ restricts to an isomorphism of center(R)
onto center(R).

Corollary 2.7 does not remain valid without the compatibility
condition on the centers of the R,, as Example 2.10 shows.

The calculation of the center of the completion of a direct limit
of semisimple rings with respect to a rank function was first per-
formed by Alexander in the following special case [1, Theorem 12.8],
using a fairly involved procedure. Specializing this case to the
situation where D is a field of characteristic zero, Handelman deve-
loped a relatively short proof in [9, Proposition 6].

THEOREM 2.8. Let D be a division ring, let n(l) < n@) < ---
be positive integers such that n(k)|n(k + 1) for all k, and set R, =
M, ., (D) for all k. Map each R,— R, by the obvious block dia-
gonal map, and set B = lim R,. Then

(a) There exists a uﬁque rank function N on R.

(b) The N-completion R of R is a simple, regular, right and
left self-imjective ring of Type 1I.

() The natural map center(D) — center(R) is an isomorphism.

Proof. (a) and (b) are given by Proposition 1.1.

(e¢) It is clear that the natural map center(D)—center(R) is an
isomorphism. Since the maps center(R,) — center(R,,,) are isomor-
phisms for all k, we conclude from Corollary 2.7 that the natural
map center(R) — center(R) is an isomorphism. Thus the natural
map center(D) — center(R) must be an isomorphism.

COROLLARY 2.9. Let F be any field. Then there exists a stmple,
regular, right and left self-injective ring R of Type II such that
center(R) = F.

Proof. Set D = F and n(k) = 2* for all k, and construct R as
in Theorem 2.8.

We close this section with an example which shows that Theo-
rem 2.6 and Corollary 2.7 may fail if we do not assume that
center(R,) < center(R;) whenever R, & R;.
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ExAMPLE 2.10. There exists a simple regular ring R such that

(a) R is the direct limit of a sequence R, — R,—-.-. of simple
artinian rings and ring maps.

(b) There exists a unique rank function N on R.

(¢) The N-completion B of R is a simple, regular, right and
left self-injective ring of Type II.

(d) center(R) = R but center(R) = C.

Proof. (a) Set s(n) = 2*"% and R, = M,,,(C) for all =
1,2, ---. Define R-algebra maps ¢,: B, — R,., according to the rule

X
€T

p@) =| - ,

X

T

where ¥ denotes the conjugate (not transposed) of the matrix z.
Set B = lim R,, and for all n let +4,: B, — R be the natural map.

(b) E_‘gr each 7, there is a unique rank function P, on R,,
given by the rule P,(x) = rank(x)/s(n). Observing that P, ¢, = P,
for all », we see that there is a rank function N on R such that
Ny, = P, for all n. Since the P, are unique, N must be unique.

(e) 1is given by Proposition 1.1.

(d) It is clear that center(R) = R. Since N is a rank function,
we may identify R with its image in E. Let N be the natural
extension of N to R.

For all n, let 4,: C — R, be the natural isomorphism of C onto
the center of R,. Given any xe€C, we claim that the sequence
{4.0,.(®)} & R is Cauchy with respect to N. For each n, we see
that 4,,.(x) — ¢,0.(x) is a diagonal matrix with 0 for the first
s(n + 1) — s(n) diagonal entries and 2 — Z for the remaining s(n)
diagonal entries, whence rank (4,..(x) — 4.6.(x)) <s(n). Consequently,

N(’l[l‘”+10n+1(x) - "lfnﬁn(x)) = N"/"n+1(0n+l(x) - ¢n0n(w))
= P i(0441(2) — $,0,(%)) = s(n)/s(n + 1) = 1/2*,

As a result, we see for all £ > n that

_

N(pi0(®) — Paba(2)) = .—1 N s41051(®) — ¥505())

LI
[0
- 8

< 3 1/2¢ < 1/20 .
j:

3
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Therefore {4,0,(x)} is indeed Cauchy with respect to N, hence there
is a unique element Y(x)cR such that +,0,() — Y(x) in the N-metric.
Inasmuch as N(y,0,(x) — ¥0,(x)) < 1/2" for all k > n, we see that
N(y.0,(x) — 7(x)) < 1/2" for all n.

We now have a map 7:C— R, and it is clear that 7 is an
injective ring map. We claim that ¥(C) = center(R).

In order to prove that 7(C) < center(R), it suffices to show that
for any xeC, v(x) commutes with any y € R. Choose k& such that
Yy € (R,). Given any » = k, we have y = +,(z,) for some z,€R,.
Since 6,(x) commutes with z,, we see that +,0,(x) commutes with
y. Taking limits, we find that v(x) commutes with ¥, as desired.

Finally, consider any w ccenter(R). There exists xeR, for
some 7 such that N(y.(®) — w) < 1/8. According to Corollary 2.4,
there exist elements y € B, and z € center(R,) such that (x — )R,
(xy — yx)R,, whence P,(x —z2) =< P,(xy — yx). Since w commutes
with +,(y), we obtain

P,(x —2) = P.(xy — y%) = NP (@)9(¥) — Pa(¥)a ()
= N((4a(@) — Wi, (4) — P (H) (¥, (2) — w))
< 2N(p(x) — w) < 1/4 .

In addition, we have z = 6,(t) for some ¢t e C, hence
N(/‘l{\n(x) - "P‘nﬁn(t)) = Nr‘ll‘n(x - Z) = an(x - Z) < 1/4 .
Recalling that N(v,0,() — 7(t)) < 1/2°, we find that

Nw — 7)) £ Nw — ¥(@®)) + Na(@) — $.0,() + N@0.() — 7))
< (1/8) + (1/4) + (1/2m < 1.

Consequently, w — 7(¢) is a noninvertible element of the field
center (R), hence w — 7(t) = 0. Thus w e Y(C). ~
Therefore 7(C) = center (R) as claimed, so that C = center (R).

3. Factor rings. This section is concerned with calculating
the centers of factor rings of regular, right self-injective rings.

DEFINITION. For any ring R, we use B(R) to stand for the
Boolean algebra of all central idempotents of R. If R is regular
and right self-injective, then B(R) is complete by [6, Proposition
4.1].

LEMMA 3.1. Let R be a regular, right self-injective ring, and
let XC R. Let YS BR), and set f= VY. If xe =0 forall xeX
and all ec Y, then xf = 0 for all x e X,
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Proof. Let J be the right annihilator of X, and note that
(R/J )z is nonsingular. According to [6, Proposition 4.1], 3., ¢R is
an essential right R-submodule of fR. Inasmuch as >.,eR < J,
we conclude that fR < J, so that xf = 0 for all xe X.

LEMMA 3.2. Let R be a regular, right self-injective ring. Given
any xcR, there exist elements ye R and fe B(R) such that fxe
center(R) and (xy — yx)e #= 0 for all nonzero e <1 — f in B(R).

Proof. Set Y={eecBR)|(xt —tx)e=0 for all te R}and f=V Y.
According to Lemma 3.1, (fa)t — t(fx) = (ot — tx)f = 0 for all te R,
hence fx € center(R).

Let W be the set of those ¢g e B(R) for which there exists an
element t e R such that (¢t — tx)e = 0 for all nonzero ¢ < g in B(R).
We claim that every nonzero i =< 1 — f in B(R) must lie above some
nonzero member of W.

Now h £ f and so h¢ Y, hence (2t — tx)h = 0 for some ¢ R.
Setting & = V {ec B(R)|(xt — tx)e = 0}, we see by Lemma 3.1 that
(xt — tx)ls = 0. Then h £ k, hence g = h — hk is a nonzero member
of B(R). It is clear that ¢ < h, and that (xt — tx)e = 0 for all
nonzero ¢ < g in B(R), whence ge W.

Thus every nonzero h =<1 — f in B(R) lies above some nonzero
member of W, as claimed. Consequently, we infer that there exist
orthogonal idempotents g,€ W such that Vvg,=1—f. For each 7,
there exists an element y,€ R such that (xy, — y2x)e =0 for all
nonzero ¢ < ¢, in B(R). Since R is right self-injective, there exists
y € R such that yg, = y.g, for all <. Given any nonzero ¢ < 1—f in
B(R), we have ¢g,-#0 for some ¢, whence (xy—yx)eg,=(@Xy,—¥.x)eq,>
0. Therefore (xy — yx)e = 0 for all nonzero ¢ £ 1 — f in B(R).

THEOREM 3.3. Let R be a regular, right self-injective ring, and
let P be a mintmal prime ideal of R. Then the natural map
center(R) — center(R/P) is surjective.

Proof. Given any xe€R such that % ecenter(R/P), we must
show that Z=12 in R/P for some zccenter(R). According to
Lemma 3.2, there exist y e R and fe B(R) such that fx ccenter(R)
and (zy — yx)e = 0 for all nonzero ¢ <1 — f in B(R).

Since % e center(R/P), we obtain zy — yx € P. According to [3,
Theorem 2.3], P =[P N B(R)]R, from which it follows that xy —yx=
glxy — yx) for some ge PN B(R). Consequently, (xy —yx)(1— g)=0,
which implies that 1 — ¢)1 —f)=0. Thus 1 —f=g91—f)eP,
and so © — fxeP.

Therefore we have fx ¢ center(R) such that # = fx in R/P.
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DEFINITION. For any ring R, we use BS(R) to stand for the
set of all maximal ideals of the Boolean algebra B(R).

LEMMA 3.4. Let R be a regular, right self-injective ring which
s Type I, for some n. For any Me BS(R), RIMR is a simple
artinian ring, and the natural map center(R)— center(R/MR) is
surjective.

Proof. According to [3, Theorem 2.3], MR is a minimal prime
ideal of R, hence Theorem 3.3 says that the natural map center(R)—
center(R/MR) is surjective. Now R = M,(S) for some abelian,
regular, right self-injective ring S, hence E/MR = M,(S/Q) for some
prime ideal @ of S. Inasmuch as S is strongly regular, S/Q is a
division ring, whence R/MR is simple artinian.

ProposiTION 8.5. Let R be a regular, right self-injective ring
of Type I;. Given any x € R, there exist elements ye R and z¢€
center(R) such that (x — 2)R < (xy — yx)R.

Proof. According to [6, Corollary 6.5], there exist regular,
right self-injective rings R, R,, --- such that R = IIR, and each
R, is Type I,. Consequently, there exist orthogonal central idem-
potents ¢, ¢,, --- € B(R) such that Ve, =1 and each ¢,R is Type I,.

Let X be the set of those fe B(R) for which there exist
elements ¥, a, bec B and z ccenter(R) such that f(ax —z)=falxy—yx)b.
We claim that any nonzero g€ B(R) must lie above some nonzero
member of X. :

Now ge, # 0 for some %, hence there exists Me BS(R) such
that ge,¢ M. Since ¢,¢ M, we see that M N e¢,R e BS(e,R) and that
¢, RI(M N e,Re, R = R/MR. Consequently, it follows from Lemma
3.4 that R/MR is a simple artinian ring, and that the natural map
center(R) — center(R/MR) is surjective. Applying Corollary 2.4 to
the element #eR/MR, we obtain elements ¥ € R/MR and 2'¢
center(R/MR) such that & — 2} (R/MR) < @y’ — y'Z)(R/MR). Thus
T—2 =a'@y —yz)V) for some o/, b€ R/MR. Now there exist
elements y, a, bc R such that ¥ =4’, @ = a’, and b =V, and there
exists z ¢ center(R) such that z = 2’.

Thus 2 — 2z — a(ry — yx)be MR, from which it follows that

x — 2z — alxy — y2)b = hjx — z — alxy — yx)b]

for some he M. Since gé M and h e M, we see that f=g(1l — h) is
not in M, whence f is a nonzero member of B(R) such that f<g.
In addition, flx — 2z — a(zy — yx)b] = 0, so that fe X, Thus the



CENTERS OF REGULAR SELF-INJECTIVE RINGS 393

claim holds.

Inasmuch as every nonzero member of B(R) lies above a nonzero
member of X, we infer that there exist orthogonal idempotents
f:€ X such that Vf, = 1. For each 1, there exist elements y,, a,,
b;€ R and z, € center(R) such that f,(x — 2,) = fia {2y, — ¥:2)b;. Since
R is right self-injective, there exist elements v, a, b, 2 € R such that
?/fz =y S, afi= @yJ s bf, = b,f:;, and zf, = zzfz for all 4. Then
S — 2) = fia(xy — yx)b for all 4, hence we see by Lemma 3.1 that
2 —z=aley — yx)b. Thus (x — 2)R < (xy — yx)R. Since zf, =2z.f; €
center(R) for all 7, we conclude from Lemma 3.1 that z € center(R).

THEOREM 3.6. Let R be a regular, right self-injective ring of
Type 1. If K is any two-sided ideal of R, then the natural map
center(R) — center(R/K) is surjective.

Proof. Consider any z <€ R such that Zecenter(R/K). Accord-
ing to Proposition 8.5, there exist y € R and z e center(R) such that
(x — 2)R < (xy — yx)R. Since R/K is a flat left R-module, it follows
that (Z — 2)(R/K) < (Zy — yZ)(R/K). Since Zccenter(R/K), we
obtain Zy = %%, and consequently % = Z.

The centers of the other standard Type II examples may now
be calculated using Theorem 3.6, as follows.

THEOREM 3.7. Let D, D,, --- be diwision rings, let n(l)<n(2)<
-+« be positive integers, and set R, = M,,(D,) and F, = center(R,)
Jor all k. Set R =1IIR,, and let M be any maximal two-sided
ideal of R which contains @ R,. Then R/M is a simple, regular,
right and left self-injective ring of Type 11, and center(R/M) =
(TF)[IM N (ITF)).

Proof. Since each R, is a regular, right self-injective ring of
Type L., [6, Corollary 11.10] says that B/M is a simple, regular,
right and left self-injective ring of Type II. According to [6, Corol-
lary 6.5], R is Type I;, hence Theorem 3.6 says that the natural map
center(R) — center(R/M) is surjective. Observing that center(R) =
IIF,, we conclude that center(R/M) = (IIF,)/[M N (Il F})].

Unlike the Type II examples obtained from completions, the
rings R/M in Theorem 3.7 do not have completely arbitrary centers,
as the following corollary (of Theorem 3.6) shows.

COROLLARY 3.8. Let R, R, --- be simple artinian rings, set
R =1R,, and let M be any maximal two-sided ideal of R which
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contains P R,. Then center(R/M) is either finite or uncountable.

Proof. Set F), = center(R,) for all %k, and note that center(R)=
IIF,. Note also that P = MN({IF},) is a prime ideal of ITF, which
contains @ F,. By [6, Corollary 6.5], R is Type I;, hence Theorem
3.6 says that the natural map center(R) — center(R/M) is surjective.
Thus center(R/M) = (Il F,)/P.

Since IIF, is a commutative regular ring, all of its prime ideals
are maximal, hence it follows that P is a minimal prime ideal of
IIF,. Consequently, [3, Proposition 3.3] says that there exists an
ultrafilter .# on the index set N ={1, 2, ---} such that

P={xcllF,|{keN|x, =0}e 7 }.

Thus (IIF,)/P is an ultraproduct of the F),. Since @ F,< P, we
see that # is a nonprincipal ultrafilter on N.

Now if the set {ke N| F, is finite} belongs to ., then we see
by [2, Lemmas 3.7, 3.11] that (/IF,)/P is either finite or uncount-
able. On the other hand, if the set {k € N|F, is infinite} belongs to
&, then we see by [2, Corollaries 1.10, 3.14] that (IIF})/P is
uncountable. Therefore in all cases center(R/M) = (IIF,)/P is either
finite or uncountable.

The following example, and the basic idea for its proof, was
suggested by Handelman in correspondence.

ExAMPLE 3.9. There exists a simple regular ring R such that

(a) R is the direct limit of a sequence R, — R, — --- of simple
artinian rings and ring maps.

(b) There exists a unique rank function N on R.

(¢) The N-completion B of R is a simple, regular, right and
left self-injective ring.

(d) There do not exist simple artinian rings S, S, --- such
that R is isomorphic to a factor ring of I78,.

Proof. Set D=Q and n(k) =2* for all t=1,2, ---, and con-
struct R as in Theorem 2.8. Then (a), (b), (¢) hold, and center (B)=Q.

(d) Suppose that there do exist simple artinian rings S, S,, -+
such that R=(IIS,)/M for some maximal two-sided ideal M of IIS,.
Since R is Type II, we see that R % S, for all n, whence @S,Z M.
Then Corollary 3.8 says that the center of (/7S,)/M is either finite
or uncountable. Since center(R) is countably infinite, this is im-
possible.

In view of Example 8.9, we ask whether the simple, regular,
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right and left self-injective rings R/M of Theorem 3.7 can be
obtained as in Theorem 2.8. More generally, can every simple,
regular, right and left self-injective ring of Type II be obtained as
in Theorem 2.8? The following example of von Neumann [12] indi-
cates that the answer to this second question is probably negative.

Set D = C, choose positive integers n(l) < n(2) <--- such that
nw(k) | n(k + 1) for all k, and construct B as in Theorem 2.8. Let S
be the “‘regular ring’’ of a complex W*-factor of Type II, (denoted
UM) in [12, §5]). As indicated in [12, §5], S is a continuous
regular ring. It is not hard to check that S is simple, and [11,
Theorem 7.9] says that S is right and left self-injective. By [11,
Theorem 5.1], S is directly finite, from which we infer that S is
Type II. However, [12, Theorem E] says that R  S.

This example shows that there exists a simple, regular, right
and left self-injective ring S of Type II such that S cannot be
obtained as in Theorem 2.8 in case D is a field (since then D = C).
It still might be possible to obtain S as in Theorem 2.8 with some
noncommutative D, but this seems unlikely.
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