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A conjecture of Duffin and Schaeffer states that
oo

is a necessary and sufficient condition that for almost all
real x there are infinitely many positive integers n which
satisfy | x — a/n \ < ann~x with (α, n) — 1. The necessity of
the condition is well known. We prove that the condition
is also sufficient if oίn—

1* Introduction* Let {an}, n = 2, 3, 4, , be a sequence of real
numbers satisfying 0 <> an ^ 1/2. We consider the problem of deter-
mining a sufficient condition on the sequence {an} so that for almost
all real x the inequality

(1.1)
n n

holds for infinitely many pairs of relatively prime integers a and n.
We note that there is no loss of generality if we restrict x to the
interval I = [0,1]. Let λ be Lebesgue measure on I and define

n n

where (α, w) denotes the greatest common divisor of a and n. Then
our problem is to determine a sufficient condition on {an} so that

(1.2) lim λ j U -EU- = 1 .

It is clear that \(En) — 2anφ(n)/n where φ is Euler's function.
Thus by the Borel-Cantelli lemma,

(1.3)

is a necessary condition for (1.2) It has been conjectured by Duffin
and Schaeffer [4] that (1.3) is also a sufficient condition for (1.2),
but this has never been proved. Khintchine [7] showed that if nan

is a decreasing function of n then (1.3) implies (1.2). (Actually,
Khintchine's result is usually stated in a different but equivalent
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form.) Duffin and Schaeffer [4] improved Khintchine's theorem by
showing that if

for some constant c > 0 and for arbitrarily large values of N then
(1.3) implies (1.2). More recently Erdδs [5] proved the following
special case of the Duffin-Schaeffer conjecture:

ERDOS' THEOREM. If an = 0 or ε/n for all n and some e > 0,
then (1.3) implies (1.2).

In the present paper we generalize Erdos' theorem by proving

THEOREM 1. If an = O(n~γ) then (1.3) implies (1.2).

If the sets En were pairwise independent, that is if X{En Π Em) =
X(En)X(EJ for all n φ m, then (1.3) would imply (1.2) by the "diver-
gence part" of the Borel-Cantelli lemma, (Chung [3], Theorem 4.3.2).
In general the sets En are not pairwise independent. However, by
using some weaker bound on X(En Π Em) we can still deduce the
desired result. This is also the approach used in [4] and [5]. We
give a simpler treatment of this part of the problem by employing
a theorem of Gallagher. Let Z denote a finite subset of {2, 3, 4, }
and define Λ(Z) by

(1.5) Λ(Z) = Σ,HEn).
neZ

Then we obtain Theorem 1 from

THEOREM 2. Suppose there exists an integer K^2 and a real
number ΎJ > 0 such that the following condition holds: every finite
subset Z of {K, K + 1, K + 2, • •} with 0 ^ Λ(Z) £ η also satisfies

Then (1.3) implies (1.2).

Proof. We assume that (1.3) holds. By a result of Gallagher
[6], the value of lim^oo λ {\J™=N En) is either zero or one. We suppose
that

(1.6) lim λ \ U En\ = 0 .
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If limsup^ooλ^J = ζ > 0 then λ { U S U # J ^ £ for all N, which
contradicts (1.6). Thus we may assume that

(1.7) lim X(En) = 0 .
n-*oo

Now choose M so large that

LI
M

Let J — max {K, M). From (1.3) and (1.7) it follows that there exists
a finite subset Z of {J, J + 1, J + 2, } such that

<;

But then by a simple sieve argument

^ Σ

which is impossible.

The remainder of our paper will consist of showing that if
an = O(w~1) then the hypotheses in Theorem 2 are satisfied. In fact
we will prove the following result, which gives a stronger estimate
than we require.

THEOREM 3. If an ^ Cn'1 for all n and some C > 0 then there
exists a real number ηo>O such that the following condition holds:
if Z is a finite subset of {2, 3, 4, } with 0 < Λ(Z) <: ηQ, then

Σ Σ HE* n Em)
(1.8) nen^tZ

Here, and elsewhere in this paper, the constant implied by < is
absolute.

Our proof of Theorem 3 is modeled after Erdδs' proof in [5].
In § 2 we give several lemmas for later use. We then split the sum
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on the left of (1.8) into three parts which are estimated in §§ 3 and
4. It is in §4 that the main difficulty occurs. Indeed it is only
there that we require the hypothesis an ^ Cn"1.

We remark that Catlin [1, 2] has recently found a connection
between (1.1) and the problem of approximating almost all x by
fractions afn which are not necessarily reduced. Thus our results
also have implications for this problem. We note, however, that the
proof of Theorem 3 in [1] contains a serious error.

2» Preliminary lemmas* Throughout the remainder of this
paper p will denote a prime. Thus Σ p ! w is a sum over prime divisors
of n and π(x) — Σj>£* 1 is the number of primes not exceeding x.
For each integer n ^ 2 we define g(n) to be the smallest positive
integer v such that

Σ -
p\n p

If g(n) — v then

p / n p\* \ p -
^ p>v ^

(2.1) ^ fw e χpΣ- + Σ Σ Γ
% \p\n <ϊ) p i=2

It follows from the theorem of Mertens that

(2.2) 1 < ^lϋί l o g (1 + v ) .
n

Next let ζ > 0, x > 0 and let v be a positive integer. We define
N(ζ, v, x) to be the number of integers n •£ x which satisfy

(2.3) Σ - ^ £ •

We then have the following estimate of Erdos [5].

LEMMA 4. For any ε > 0 and ξ > 0 £/&ere βxisίs α positive integer

ô — ̂ o(ί> s) ŝ c/^ tfeαί /or αii a; > 0 α^d αiZ v ^ 0̂>

(2.4) iSΓ(ί, v,x) £x exp

where log β — ξ.
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Proof. We may assume that 0 < ε < (1 — e~ζ). Let

Pi < Ί>2 < ' * * < PM

be the set of all primes in [v, w], where w = vf^-*/ve if v [s suffici-
ently large then M ̂  π(w) - π(v) ^ V

β{1"2β/B).
We split the integers n <> x which satisfy (2.3) into two classes.

In the first class are integers n with M prime factors in the interval
[v, exp (w)]. The number of such integers is clearly less than

ce( ̂  Σ —)M/Ml ^ xfa log w)*/Ml

for some constant cx > 0. Using Stirling's formula this is easily seen
to be

(2.5) < x exp (-M) < x exp {-v

β{ί-2ε/5)}

for sufficiently large v.
Next we observe that

(2.6) = ξ + log (1 - 6/3) + 0(1)

^ ξ - ε/3

for sufficiently large v. The integers n ^ x which satisfy (2.3) and
which have fewer than M prime factors in [v, exp (w)] must therefore
satisfy

— Σ — ^ l .
ε v\n p

The number of such integers n is

3 1 _ 3 ^ IΓOJ
= — 2-j 2-k — — — 2-k — —

S n^x ρ\n Ό S 3>>expw Ύ) [_ Ύ)
(2.7) 3>>expw "^ ^ ^

Σ
>

The bound (2.4) now follows from (2.5) and (2.7).

We now suppose that gin) = u ^ v. For each ξ > 0 w e split the
divisors d ot n into two classes, An(ξ, v) and BΛ(f, v). We say that
d is in An(ζ, v) if

(2.8) Σ- f̂
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The class Bn(ζ, v) consists of divisors which do not satisfy (2.8).

LEMMA 5. For any ε > 0 and any ζ > 0 there exists a positive
integer vQ = vQ(ξ, e) such that if g{n) — u ^ v and v ^ v0 then

(2.9) 2 — ^ (log (1 + u)) exp{ — vβ{1~ε)}
deAn(ζ,v) d

where log β — ξ.

Proof Let v, w and M be as in the proof of Lemma 4. For
any collection & of M primes in [v, oo) we have

1 M 1

pe& p = i = i p^ =

for sufficiently large v, as in (2.6). Thus if d e An(ζ, v) then d must
have at least M prime factors in [v, oo). Let q19 q2, * ',qj be the
prime factors of n which are greater than or equal to v. If J ^ M
then An(ξ, v) is empty. Otherwise

Σ -y =

Since g(^) = u <^ v we have

Also,

^-s* Π ( l - - ) Π ( i - - ) « iog(i + u)Σ ^ Π ( ) Π (
^ p>u ^

by the theorem of Mertens.

Let ΣmW denote a sum over integers m which satisfy g(m) = v.

LEMMA 6. Let ε > 0. Then there exists a constant v0 = vQ(ε)

such that the following inequalities hold: ifx>0 and y ^ 2, i /

g(n) ~ u <^ v and v ^ v0, then

(2.10) Σ W 1 ^ (log 1 + w)(log y) exp {-̂ (1~ε)}

(2.11) X m"1 ^ (log 1 + w)(log T/) exp {»
(n,m) ίx<m<(n,m)~ίxy
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where β — e1/2.

Proof. The proofs of the two inequalities are virtually identical,
so we prove only (2.10). We have

Σ m"1 = Σ Σ mr1.
(n,m)x<m<{n,m)xy (n,m) = d

dx<m<dxy

If (n, m) = d we write m = dm'. Then by Lemma 5 with ξ = 1/2,

dx<m<dxy

^ Σ ώ"1 Σ (W)"1

<2e4Λ(l/2,«) m'
a;<m'<cci/

<; (log 1 + %)(log y) exp { — ̂ (1"e/2)} ,

for sufficiently large v.
If d e Bn(l/2, v) then

U Σ r ^ Σ ^ + Σ;"1

2 Pi»'

and so

(2.12) Σ ? " ι > | .

By Lemma 4

(2.13) Σ (W)"1 < χ-ιN(—f v, 2x) < 2 exp {-v

βa-£/2)}
n<t?ϊ2χ \2 / "

for sufficiently large v, where the sum on the left of (2.13) is over
mr satisfying (2.12). Hence

Σ ΣΣ
deB(ll2,v) (n,m) = d

dx<m<dxy

^ Σ d'1 Σ (mT1

deBn(H2,v) m'
x<m'<xy

^ Σ d-'ilog y) exp {- v*1-"
deBn(ll2,v)

< log (1 + u)(logy) exp {-vβ^-£/

for sufficiently large v.

3. First estimates* In this section we begin our proof of Theorem
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3. For n Φ m we define

δ = δ(n, m) = 2 min \^L9 -^4 ,
i m

Δ = Δ(n, m) = 2 max ί-̂ -,
m

and

t = t(n, m) = max {#(%), #(m)} .

We write Σϊ=i an<^ ΣΓ=i for sums over integers prime to n and m
respectively. Thus

x(En n J^J

α=i 6=1 ι\ n n / \ m m

(3.1) ^ δ(n, m) Σ Σ 1
α = l 6=1

\aln—blm\ <Δ{n,m)

= δ Σ Σ l .
α = l 6=1

\am—bn\ <nmΔ

For each integer u we define ίf(^) to be the number of pairs {α, 6}
which satisfy

— hn = u , l^a^n , (a, n) = 1 ,

^ b <̂  m , (6, m) = 1 .

From (3.1) it follows that

(3.2) X(En OEJ^δ Σ
It

Let d = (ti, m). It is clear that ίf(0) = 0 and iίdJfu then H(t6) = 0.
Thus in estimating the right hand side of (3.2) we may assume that

(3.3) d < nmΔ

and restrict ourselves to integers u which are divisible by d. We
write \u\ = dduulf where the prime divisors of du also divide d and
(d, ut) = 1. Obviously this decomposition is unique. It is shown in
[5] that if either (ulf nmd~x) > 1 or (duf nmd~2) > 1 then H(u) = 0.
Hence we may further restrict ourselves to integers u which satisfy

(3.4) (ulf nmd~ι) = (du, nmd~2) = 1 .

For such u we have the estimate
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H(u)£d Π ( 1 - ^ ) Π

π
(3.5) PW. ««-« - ,ι*.—-»

from [5].

Next let ^ 0 be the set of primes p which divide d but do not
divide nmd"2. We split ^ 0 into disjoint subsets ^ and ̂  con-
sisting of primes satisfying p <; t and p > t respectively. Let &$
be the set of positive integers whose prime divisors are in ^ * , for
j — 0, 1, 2. From (3.4) we may assume that dn e S^o and hence that du

is uniquely represented as du = s^ with st e £/[ and s2 e Si. Thus

H(u) £ φ{d) Π (l - - ) Π (l - -
^\ p / \ \ p(3.6)

Now | w | = dduu1 = ds&Uj. where the set of primes which divide s19 s2,
and ux are all distinct. Therefore if we set k = s2u± then k is rela-
tively prime to

Q= Π P

by (3.4) and the definition of ^ 2 . From (3.2) and (3.6) we obtain

\u\ <.nmΔ

(3.7) = δ Σ Σ * {Hi-daje) + H(dsM

^ 2§Ψ(d) Π (l - - ) { Σ Π (l - - ) " Σ* l l ,
pej^1 \ p/ \sιe6^ι p\s1 \ p/ l^k^inmΔ/ds^ )

where (k9 Q) — 1 in the sum X*.
By the prime number theorem there exists an absolute constant

h such that

(3.8) π(y) log 2y + log logy ^y log 3

for all y ^ δ. Throughout the remainder of this section we shall
assume that

(3.9) t = t(n, m)^b and nmΔ ̂  3'd .

Then by the sieve of Erathosthenes



536 JEFFREY D. VAALER

If st ̂  tπit) then using (3.8) and (3.9) we have

l - -

It follows that if we sum over sλ <; tπ{t) on the right hand side of
(3.7) we obtain the upper bound

28φ(d) Π ( l - - ) Σ sMsiΓ Σ * 1

fll(i--)π(l--) Σ
(3.10) " P>Λ p Λ " Λ p U ' ^

Π

m

- i )

MEn)X(EJ .

Now if sL > tπ{t) we easily see that for some prime p e ^ and
some integer 7 ̂  2 we must have pr s19 p

r > t p ̂  t. By considering
the cases where 7 is even or odd it follows that sx is divisible by
a square greater than £2/3. Thus summing over sί > tπit) in (3.7) we
obtain

2δφ(d) π ( l - - ) Σ β^(βiΓ ι Σ * i
pe^X p / £ττ(ί) < S l lShύ{nmΔ/dsι)

Σ Σ 1

(3.11)

(X

« (au^)(au2&ϊy»* log2 ί

Putting the estimates in (3.10) and (3.11) together, it follows
that

(3.12) X(En n Em) « X(En)X(EJ

for all pairs {w, m}, n Φ m, which satisfy (3.9).



ON THE METRIC THEORY OF DIOPHANTINE APPROXIMATION 537

4* Second estimates* Let Z be a finite subset of {2, 3, 4, }
with Λ{Z) defined by (1.5). We choose ε in Lemma 6 so that
eιί\l — s) = 3/2. This determines an absolute constant v0 such that
(2.10) and (2.11) hold for all v ̂  v0. We then define ηQ by

(4.1) Vo = exp { — max (6, C, vQ)}

and assume that 0 < Λ{Z) <; η0.
Next we write

Σ V >» / 777 /^ jp \ . O I O
>̂ J /\jl JjJn I I J2jm) —- O i "T~ Oo

where Sλ is the sum over pairs {n, m) which satisfy (3.9) and S% is
the sum over the remaining pairs {n, m] which do not satisfy (3.9).
We apply (3.12) to obtain the estimate

(4.2) s,« Σ Σ λ(JS )λ(#j - Λ(zγ.
neZ meZ

Thus it remains only to bound Sz.
From (2.2) and (3.7) we have

* n EJ

(4.3) ^ 2bφ{d)^ψ- Π (l ~ — ) Σ Ψ&Γ

< anam < Iog2(l + t)X{En)X(Em) .

Hence if we set L — —log{yl(^)} and sum over pairs {n, m) which
satisfy t < L we obtain

Σ Σ
neZ meZ(4.4)

log

Now for any pair {n, m) in the sum S2 we have either t < b or nmΔ <
tfd, where d — (n, m). But from (4.1) we have b <̂  L so that terms
for which t <b are already included in (4.4). Therefore the only
sum which we need to bound is

w € ^ me
nΦm

where each pair {n, m] satisfies t ^ L and (using (3.3))

(4.5) d < nmΔ < &d .

We have
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Ss < Σ Σ { Σ Σ α.α
v=L u=l K n(u) m{v)

(n,m)<nmJ<3v(n,m)

< Σ log (l + v) Σ JΣ MK) Σ «*} ,

where we have used (2.2) and (4.3). Our objective it to establish

(4.7) Σ am < Ct;(log 1 + v) exp {-v3/2}
{n ,m)<nmΔ<Zv (n ,m)

for the sums on the right of (4.6), that is for fixed n, g{n) = u ^ v
and v ^ vQ. To accomplish this we consider two cases.

If ajm ^ ajn then the condition (n, m) < nmΔ < 3V(^, m) becomes
(n, m) < 2man < &(n9 m). Clearly we may assume that an > 0 so
that by (2.10) we have

Σ am£C Σ m"1

(%,m)<2wα%<3v(ίi,m) (w,m)<2mαw<3(M,m1')

< Ci;(logl + v) exp {-v3/2}.

If ajn < αm/m then the condition becomes

(4.8) (n, m) < 2nam < SΌ(n, m) .

Since α& <; C&"1 we may partition Z into disjoint classes TΓy, j =
0,1, 2, •••, defined by

Ws = {keZ: 02'^ < kak ^ C2~j} .

If m e Wy and m satisfies (4.8) then we have

2Γ\n9 m) < ^m" 1 ^- 5 ' < 3*(w, m)

and so

(4.9) C2~jn3-V(n, m)'1 <m< C21~jn(n, m)"1 .

Therefore we may apply (2.11) with x = C2-jnZ"v and y = 2(3V) to
obtain

Σ ^^ci^-'Σ*™"1

m(^) i=0 m(o)
(%,m)<2wαm<3i;(w,m) meTΓy

< Cv(log 1 + v) exp {-<υ8/2},

where Σ * indicates a sum over m's which satisfy (4.9). This proves
(4.7).

By using (4.1), (4.6), and (4.7) we find that
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Ss < Cfxiog 1 + vf exp {-V/2} Σ Σ HK)
(4.10)

The three upper bounds (4.2), (4.4), and (4.10) now establish (1.8) and
so complete the proofs of Theorem 3 and Theorem 1.
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