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This work is about the dimension of the kernel of a
starshaped set, and the following: result is obtained: Let
S be a subset of a linear topological space, where & has
dimension at least d ^ 2. Assume that for every (d + 1)-
member subset T of S there corresponds a collection of (d—2)
dimensional convex sets {Kτ} such that every point of T sees
each Kτ via S, (aff Kτ) Π S = Kτ, and distinct pairs aff Kτ

either are disjoint or lie in a ώ-flat containing T. Further-
more, assume that when T is affinely independent, then the
corresponding set Kτ is exactly the kernel of T relative to
S. Then S is starshaped and the kernel of S is (d — 2)-
dimensional.

We begin with some preliminary definitions: Let S be a subset
of a linear topological space, S having dimension at least d ^ 2.
For points x, y in S, we say x sees # via S if and only if the
corresponding segment [x, y] lies in S. Similarly, for T Q S, we
say x sees T (and ϊ7 sees x) via S if and only if x sees each point
of T via S. The set of points of S seen by T is called the kernel
of T relative to S and is denoted ker^ T. Finally, if kers S = ker S
is not empty, then S is said to be starshaped.

This paper continues a study in [1] concerning sets having
(d — 2)-dimensional kernels. Foland and Marr [2] have proved that
a set S will have a zero-dimensional kernel provided S contains a
noncollinear triple and every three noncollinear members of S see
via S a unique common point. In [1], an analogue of this result is
obtained for subsets S of Rd having (d — 2)-dimensional kernels.
Here it is proved that, with suitable hypothesis, these results may
be extended to include subsets S of an arbitrary linear topological
space.

As in [1], the following terminology will be used: Conv S, aff S,
cl S, bdry S, rel int S and ker S will denote the convex hull, affine
hull, closure, boundary, relative interior and kernel, respectively,
of the set S. If S is convex, dimS will represent the dimension
of S.

2. Proof of the theorem*

THEOREM. Let S be a subset of a linear topological space, where
S has dimension at least d^2. Assume that for every (d + 1)-
member subset T of S there corresponds a collection of (d — 2)-dimen-
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sional convex sets {Kτ} such that every point of T sees each Kτ via
S, (aff Kτ) f] S = Kτ, and distinct pairs aff Kτ either are disjoint
or lie in a d-flat containing T. Furthermore, assume that when
T is affinely independent, then the corresponding set Kτ is exactly
the kernel of T relative to S. Then S is starshaped and the kernel
of S is (d — ^-dimensional.

Proof. The proof of the theorem is motivated by an argument
in [2, Lemma 3], and it will be accomplished by a sequence of
lemmas.

LEMMA 1. Assume that conv (K U {x}) U conv (K U {y}) £ S, where
K is a convex set of dimension d — 2, x $ aff K and y $ aff {K U {x})
Then the set S Γl aff (K U {x, y}) is starshaped, and its kernel is a
(d — ̂ -dimensional set containing K.

Proof. The argument is identical to the proof of the main
theorem in [1].

LEMMA 2. Assume that conv (K (J {x}) U conv (K U {y}) £ S, where
K is a convex set of dimension d — 2, x & aff K and y 0 aff (K U {x}).
Assume there exists some q e S ~ aff (K U {x, y}) such that q does not
see K via S. Then if z sees d — 1 affinely independent points of
K via S, z 6 aff (K (J K #}).

Proof. By Lemma 1, the eZ-dimensional set S Π aff (K U {x, y}) is
starshaped, and its kernel Kr is a (d — 2)-dimensional set containing
K. Hence without loss of generality we may assume that K—K\
Let π = aff (K U {a?}), π' = aff (K U {#}), and let fcw , fc^ be d - 1
affinely independent points in K seen by z. The affinely independent
points klf , &<*_!, g, x see via S a unique (d — 2)-dimensional convex
set A = (aff A) Π S, and A £ π by [1, Corollary 1 to Lemma 1].
Similarly k19 , kd-lf q, y see a (d — 2)-dimensional set A!, and
A' £ π\ Clearly each of A, A! sees K via S. There are two cases
to consider.

Case 1. If K, z, and q are not in a (d — l)-dimensional flat,
then the affinely independent points klt , kd-lf z, q see a unique
(d — 2)-dimentional set R, (aff R) Π S = R, and iϋ must lie in
aff(iΓ(J{2;}): Otherwise, {klf , kd-u z) U i? would contain a set Γ
of d + 1 affinely independent points with corresponding segments in
S, contradicting the fact that Kτ is a convex set of dimension d — 2.
Again by Lemma 1, the d-dimensional set S Π aff (K U {z, q}) is
starshaped, and its kernel must be R. Thus K sees R via S, so #,
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A, A! all see if U {q} via S. Hence R U A U A! cannot contain d + 1
affinely independent points, and R £ aίf (A U A') £ aίf (TΓ U TΓ'). Since
g sees R but not if via S, R Φ K, and aίf (if U Λ) is (d - l)-dimen-
sional. Then aίf (if U {z}) = aίf (if U i2), and s e aίf (if U i2) £ aff (TΓ (j
TΓ'), the desired result.

Case 2. If if, z, and g lie in a (d — l)-dimensional flat, then
since q $ aff (if U {#}) U aff (if U {#}), neither # nor # is in that flat.
However, if, z, q, x lie in a d-dimensional flat, and this flat is exactly
aίf (if U A U {z, q}) = aίf (if U A U {q}). Since conv (if U A) U conv (A U
{q}) £ S, by Lemma 1, A is the kernel of S Π aff (if U A U {?}), and
z sees A via S. Since S cannot contain d + 1 afBnely independent
points with corresponding segments in S, if U A U {z} must lie in a
(d - l)-dimensional flat, and z e aίf (if U A) £ aff ( Γ U TΓ'). (In fact,
ze K.) This completes Case 2 and finishes the proof of Lemma 2.

LEMMA 3. Assume that conv (if (J M ) U conv (if U {y}) £ S,
K is a convex set of dimension d — 2, a? g aff if, α^cί 7/ ί aff (if U {a?}).
1/ g 6 S ~ aίf (if U {cc, y}), then q sees K via S.

Proof. Assume on the contrary that q does not see if via S to
reach a contradiction. As in the previous lemma, we may assume
that K is the kernel of S Π aff (if U {x, y}). Let π = aff (if U {x}),
πr = aff (if U {y}), and let A, A' denote the (d — 2)-dimensional subsets
of π, πr seen by klf , kd-lf q, x and by klf , Λd_!, g, ?/, respectively,
where k19 , fc^-i are affinely independent points in if. Then A and
A' see K U {#} via S, so A U A' cannot contain d + 1 affinely in-
dependent points, and A U A! lies in a (c£ — l)-dimensional flat. By
hypothesis, since A and A! both correspond to if U {q} and if U {q} U
A U A' does not lie in a cϊ-flat, the distinct sets aff A and aff A' are
disjoint, and these sets must be parallel in aff (A U A') Further-
more, since if and A' lie in π\ aff if Π aff A £ aff (if U A!) Π
aff (A U A!) = aff A', and aff if Π aff A £ aff A' Π aff A = 0 . Hence
aff if and aff A are parallel in π. Similarly, aff if and aff A' are
parallel in π', and it is easy to see that aff if n aff (A U A') = 0 .

Select some point u in rel int conv (A U {q}), and examine the
d-dimensional flat aff (A U A! (J {u}), which contains q. Clearly
aff (A U A! U M ) intersects aff (π U π') in exactly aff (A U Ar). Hence
for any point v in rel int conv (A' U {q}) •£ aff (A U A' U M ) , the line
L(^, v) determined by u and v does not intersect aff if, and if, w, t;
affinely span a full d-dimensional set. Furthermore, for any point
k in aff if, the plane aff (fc, w, v) intersects aff (π U π') in a line
containing ά, and this line cannot intersect aff (A U A'): Otherwise
k would lie in aff (A U A' U {u, v}) Π aff (TΓ U π') = aff (A U A'), impos-
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sible. Hence aff (If U {n, v}) Π aff (A U A') = 0 , and the d-dimensional
flats aff (If U {w, v}) and aff (TΓ U π') intersect in a (d — l)-dimensional
flat in aff (π U π') parallel to aff (A U A').

To complete the proof, we will find some nonempty subset F of
S contained in aff (A U A') Π aff (If U {u, v}), giving the desired contradic-
tion. Let E = (aff E) Π S denote the {d — 2)-dimensional subset of
S seen by klf , hd_19 u, and v. By Lemma 2, each point of 2? lies
in aff (π U π')> and since If is the kernel of S Π aff (π U π'), each point
of j£ sees If via S. Hence E U K cannot contain d + 1 affinely
independent points, and dim aff (E U If) ^ d — 1. Clearly IT ̂  £?:
Otherwise w and v would see K via S and by Lemma 2, w, t; e
aff (If U {x, y}), impossible by our choice of u and v. Therefore
aff (E U K) is a (d - l)-dimensional subset of aff (π U πr), and ΐ/, if, {g}
affinely span a cί-flat. By selecting d affinely independent points in
E U K, these points together with q see a (c? — 2)-dimensional sub-
space F of S-, and it is easy to see that F S aff (E U if) C aff (π U π1').
Hence ί7 sees iΓ via S. We conclude that F, A, A' all see K U {̂ }
via S, so F U A U A! cannot contain d + 1 affinely independent points,
and F Q aff (A U A').

Finally, we show that F £ aff (if U {w, v}). Observe that w g
aff (TΓ U π'), so the set if (J E U {̂ } contains d + 1 affinely independent
points, and by Lemma 1, the kernel of S Π aff (K U E U {̂ }) is ΐ7.
Also, there exist points in S ~ aff (Z" U E U {̂ }) which do not see E
via S: In particular, at least one of the sets A, A' cannot lie in
the d-flat aff (if U E U {u}), for otherwise w e aff (if U E U {u}) =
aff (JBL U A U A') = aff(jrU π'), impossible. If A g aff (if U E U {%}),
then A cannot see £7 via S (for otherwise Z U J B U A would contain
d + 1 affinely independent points with corresponding segments in S).
Similarly, if A! g aff (if U E U {%}), then A' cannot see E via S.
Thus the set conv (if U E) U conv (JE U {U}) satisfies the hypothesis of
Lemma 2, and we may apply that lemma to conclude that v e
aff (if U E U {u}). Therefore if U E U F U {u, v} lies in a d-flat, and
since if U {u, v) contains d + 1 affinely independent points, this flat
must be exactly aff (if U {u, v}). Hence F £ aff (If U {u, v}).

We conclude that F Q aff (A U A') n aff (if U {%, v}) = 0 . This
yields the desired contradiction, our opening assumption is false, and
g sees K via S, finishing the proof of Lemma 3.

The rest of the proof is easy. Select a set T consisting of
d + 1 affinely independent points of S, and let K = ker5 Γ. Since
dim if = d — 2, we may select points x9 y in T with α? g aff If and
y & aff (If U {#}). Then If, x, y satisfy the hypotheses of Lemmas 1
and 3, and by the lemmas, If £ ker S. Since ker S Q kers T = If,
we conclude that If = ker S. Hence S is a starshaped set whose
kernel is {d — 2)-dimensional, completing the proof of the theorem.
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We conclude with the following analogue of [1, Corollary 3]:

COROLLARY. The hypothesis of the theorem above provides a
characterization of subsets S of a linear topological space, S having
dimension at least d ^ 2, for which K = ker S has dimension d — 2,
(aff K) Π S = K, and the maximal convex subsets of S have dimen-
sion d — 1.

Proof. If S satisfies the properties above, then to each (d + 1)-
member subset T of S, the set K = ker S will be a suitable Kτ set.
For Jξ and K2 distinct Kτ sets, we assert that T, Kί9 and K2 lie
in a eZ-flat: At least one of the sets Klf K2 is not K, so without
loss of generality assume that Kγ Φ K. Since maximal convex sub-
sets of S have dimension d — 1, clearly each Kt set lies in a (d — 1)-
dimensional flat containing K, i = 1, 2, and it is easy to see that
each point of T lies in the (d — l)-flat aff (Kx U K). Furthermore,
if T£K, then K2 must also lie in aff (K, U K), finishing the
argument. In case T £ K, then since both iζ. and K2 lie in (d — 1)-
flats containing K, the set ^l) K2U K lies in a c?-flat, and this flat
contains KX\J K2\J T, again the desired result.

The remaining steps of the proof are identical to those of [1,
Corollary 3].
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