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It is well known that if a regular matrix sums every
subsequence of a sequence z, then x converges. It follows
trivially from this result and row finiteness of the Cesiro
summability matrix that if A is a regular matrix such that
Ay is Cesaro summable for every subsequence y of x, then
2 is convergent (not merely Cesaro summable). The purpose
of the present paper is to give some general results of this
type involving matrix methods that are not necessarily row
finite. For example, it is shown that if 7 is any regular
matrix summability method and A is a regular matrix such
that Ay is absolutely 7T-summable for every stretching y of
z, then x is absolutely convergent. This is done without
assuming that x is bounded, and consequently, without the
benefit of associativity.

The well known result mentioned above is due to R. C. Buck
[2], and the trivial consequence involving the Cesiaro summability
matrix (C,1) ecan be seen as follows. If A is regular and Ay is
Cesaro summable for every subsequence y of x, then (C,1)4 is a
regular matrix which sums every subsequence of z, since row finite-
ness of (C, 1) gives the associativity relation (C, 1)(4y) = [(C, 1)Aly.
Consequently by Buck’s theorem, z is convergent.

When we say that a matrix A is semiregular, we will mean
that A is regular over the set of all convergent sequences of 0’s
and 1’s. Thus 4 = (a,,) is semiregular iff A satisfies the first two
of the following three conditions for regularity:

1) ap,—0as p—c0,q¢g=123, ---,

2) Dimty,,—1las p— oo,

3) Z;’:l la’pql < KA ’ »= 1’ 2’ 39 .

If ¢ is a positive term null sequence and each of z and ¥ is a
complex sequence, then the statement that y contains an e-copy of
o means that y contains a subsequence {y,} such that |y, — z,| <
€y p=1,2,38, «--.

THEOREM 1. If T = (t,,) is a matrix such that 3.5, |t,] < L,,
p=1238,---, A is a regular matriz, and Ay is T-summable for
every subsequence y of x, then either x converges or TA is a Schur
matriz, i.e., TA sums every bounded sequence.

Proof. Suppose z is unbounded. Clearly A is row finite since
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Az is defined for every subsequence z of x. It is somewhat less clear,
but nonetheless true, that T is row finite, and we gives a proof.
Suppose the pth row of 7T contains infinitely many nonzero terms.
Using only the semiregularity of A, we can construct a subsequence
y of x such that |t,; >, a4, = [t,;(4y);] > 1 for infinitely many
values of j, thus ruling out convergence of >, %,,(Ay),, and con-
tradicting the fact that T(Ay) is defined. We see this as follows.
Suppose a finite subsequence ¥,, %., *+*, ¥, of © has been determined.
From the semiregularity of A, there exists a positive integer v such
that if 4 > v, then >y la,| < 1/2 and |35, @, — 1] < 1/2. Choose
j > v such that ¢,; #0. Let a; be the last nonzero term in the
jth row of A. Then from the inequalities above, » > n. Determine
Ywirs ***y Y, such that y, -+, y, is a finite subsequence of = and

r—1

Z AjY,

g=1

1
Itp.il

+

]ajryrl >

Then regardless of how the remaining terms of y are chosen,

> -1

]tpj] ’

thus establishing our assertion above. Therefore T must be row
finite. Hence the associativity T(Az) = (T'A)z holds for all z. There-
fore TA sums every subsequence of the divergent sequence x. Thus
by the theorem in [9], TA is a Schur matrix. This completes the
proof for the case that x is unbounded.

Next suppose [z, < M, p=1,2,8,---. We note that if y is
any subsequence of x, then |[Di7, €, D% a¥,] < MK, Sy, |t,] <
MK,L,. Thus we can interchange the order of summation and
obtain

4wl = | S as,

”r
Z QiY,
q=1

(*) St(S aur,) = 3 (S towan .

The left side of (*) is the pth term of the sequence T(Ay) and the
right side of (*) is the pth term of the sequence (T'A)y. Thus again
we have the associativity T(Ay) = (T'A)y. Hence the matrix TA
sums every subspace y of x. Therefore if x is not convergent,
then TA is a Schur matrix by the theorem in [9]. This completes
the proof.

THEOREM 2. Suppose T is any regular matriz summability
method. If A is a regular matrixz such that Ay is T-summable for
every subsequence Yy of x, them x 1s convergent.
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Proof. Since the hypothesis of Theorem 1 is satisfied, then
either z converges or TA is a Schur matrix. But TA4 is regular
since it is the product of regular matrices, and no regular matrix
is a Schur matrix. This completes the proof.

For stretchings, we obtain the following theorem which is
analogous to (but more comprehensive than) Theorem 2.

THEOREM 3. Suppose T is any regular matrixz summability
method. If A 1s a regular matrix such that Ay is T-summable
(absolutely T-summable) for every stretching y of x, them « is con-
vergent (absolutely convergent).

We note that Theorem 3 is an immediate consequence of the
following result which we shall call the “Copy Theorem.”

THEOREM 4. If each of T and A is a regular matriz, x is any
complex sequence (bounded or not), and ¢ is any positive term null
sequence, then there exists a stretching y of x such that T(Ay)
exists and contains an e-copy of .

Proof. Let K=K, + K, +maxe, +1, M, =1+ 37_ |x], 9, =
min{e, --+,¢,}, and @, = KM, + 1. There exists a positive integer
7, such that if p = n,, then

© 1‘
24 oo < 160, 16Q1

There exists », such that

Sl < ok and | 35 ¢

8Q1 q=ny

There exists m, > n, such that if 1 < p < r, then

t, 1|
i 8@;

35l < -

There exists an integer s, > 1 such that if 1 < » < m,, then

< =

5 land < 55
Suppose the finite increasing sequences {n, )iz, {r.}:=i, {m,}3ci,

and {s,}2=} of positive integers have been determined. Choose n, >

M,_, such that if p = n,, then

O
16Q,

q=8p4_.

(1) :i a'pq_l



78 DAVID F. DAWSON

and
(2) aZ'.llapq|<8Q where s, =1 and M,=1.
Choose 7, > 7,_, such that
3 S It St — 1] <
( ) qz;‘ l * [ 8Q q;""la «t 8Qa

Choose m, > n, such that if 1 < p < »,, then

O
22+aQ

(4) 3 ftodl <

9=

Choose s, > s,_, such that if 1 < » < m,, then

O
5
(5) 3510l < g
From (3) and (4) we can obtain
Mmea 5
6 t 1 @,
(6) St < g5

From (1) and (5) we obtain

(7)

for n,<p=m,.

Z QApq —

9=8q—1

$p—1 1

8Qa

Thus we have defined the increasing sequences {n,}oi, {Tp}omos {Mp}omos
and {s,};-, of integers, where r, = 0 and m, = 0.
Let {y,}7-, be the stretching of x induced by {s,};-, [3, p. 455].
Ifa>1and n, < p < m,, then from (2), (56), and (7) we obtain

Sg—1—1 sq—1

glamyq—wa S| X Gl T 3 G T %
+ 3 q=§_l_l @oille
8) = ("3 lapd) max ), -+, loe)
tlod| 3 an -1+ £ ol S jad

< 04/8K + 0./8K + Z |2, 122+"Q

< 80,/8K .

Also we can prove this inequality for n, < p < m,. Thus we have
fora =1 and n, < p £ My,
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(9) S\ Gpelle = @+ ffa, Where || < 35,/8K .
If m,, <»<n, then from (5) we obtain
oo sp—1 o | 8p41—L
q% a’pq?/q = Z ApeYq| + vg’«x qzs' QApe¥q
sg—1 ’ o $p41—1
= (3 lad) max (), oy el + 3 ol 35 oy
< KM + Z Ix’ll-{—llza_‘_vQ

= KM, + (0./K) Z /20
< KMa + 1 = th .

From this inequality and (8) we can show that if m, , < p < m,,
then

o0

21 ApY,q

(10)

+ 2] < KM, +1=@Q,,

Z Apq — La
g=1

since |z,| < KM, and 35,/8K < 1.
If r,_, < p <7, then from (4) and (10) we obtain

oo oo a1
2 pq = | ltpj] ](Ay)al
g=ms+1 a=i j=my+1
) M1
(11) =SPILT MDY ]
a=% j=mp+l .
<3 Quu e <o,

Aot
i 27 Quss

R
Il

Thus we see that T(Ay) is defined.
From (8), (6), (9), (10), and (11), we obtain

3 i AD); >, i (A);

2 m(Ay)j - xil
3 t4);

J=my

<0, i: 16l +
+3

-+

mg

rij(xi + H) —
j=n;
Mot

3 tay),
A3t =1 + 3 s

+ Z Qa+1 = § ltrii‘

< 04/8 +

0

<5/8+5/4+331/8+2Qa+1
22+01Q0(+1
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< 0,/8 4 0,/4 + 86,/8 + 4,/4
=4,
=e¢.

This completes the proof.
We can use Theorem 4 to prove the following extension of a
theorem of Agnew [1].

THEOREM 5. Suppose T s any regular matrixz summability
method. If A 1is a regular matriz and x s a sequence having a
finite limit point, then there exists a subsequence y of x such that
every finite limit point of x is a T-limit point of Awy.

Proof. Using the separability of the complex plane, we write
the finite limit points of « in a sequence denoted by u. Let v
denote the sequence u; U, U,; Uy, Uy, Us - -+, and let. ¢ be a positive
term null sequence. By the “Copy Theorem,” there exists a stretching
z of v such that T(Az) is defined and contains an e-copy of v. Let
y be a subsequence of x such that z — y is a null suquence. Since
T(Ay) = T(Aly — z]) + T(Az), we see that T(Ay) is the sum of a
null sequence and a sequence which contains an e-copy of v. There-
fore every finite limit point of x is a limit point of 7T(Ay). This
completes the proof.

In [5] we proved theorems analogous to the results of this
paper, except that T was the identity matrix (ordinary convergence)
and A was a semiregular matrix. The following theorems are
trivial consequences of associativity, the results in [5], and the fact
that if 7T is a row finite regular matrix and A is a semiregular
matrix, then TA is a semiregular matrix.

THEOREM 6. Suppose T is any row finite regular matric sum-
mabtlity method. If A is a semiregular matrixz such that Ay is
T-summable for every subsequence y of x, then x is convergent.

THEOREM 7. Suppose T is any row finite regular matrix sum-
mability method. If A is a semiregular matrix such that Ay is
T-summable (absolutely T-summable) for every stretching y of x, then
x 18 convergent (absolutely convergent).

REMARK. We give an example to show the necessity of “row
finite” in the statement “... the fact that if T is a row finite
regular matrix and A is a semiregular matrix, then T4 is a semi-
regular matrix,” which precedes Theorem 6. Let B and A be
matrices defined as follows: b,, =277 if p is even and ¢q = p,
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b,, =0 if p is even and ¢ < p, b,, =1 if p isodd and ¢ = p, b,, = 0
if p is odd and ¢ # p, a,, = 0if ¢g<2p — L or ¢>2p, a,, = 27 + 1 if
q=2p—1, a,, = —27" if ¢ = 2p. Simple calculations show that B
is regular, A is semiregular, but B4 is not semiregular.
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