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It is proved that under certain mild restrictions every
closed set of attainability of a planar control system with
piecewise constant controls is either the entire plane or
homeomorphic to one of the following: a closed half plane,
a closed disk or the complement of an open disk.

Let D = {X1} be a family of C°° vector fields on R\ We say
that a continuous mapping 7: [a, 6] -> R2, a < 6, is an integral curve
of D if there exists a finite partition of the interval [α, 6]: a — tQ <
t2 < < tn — b such that 7 restricted to [tjf tj+1] is an integral curve
of some vector field X** e D. Let x0 and xx be points of R2. We say
that xx is attainable from x0 (by means of D) if there exists an integral
curve of D, 7: [α, b] —> R2 such that 7(α) = x0 and 7(6) = xx. Notice
that we can always assume a = 0; 7(α) and 7(6) are called endpoints
of 7 and we set Im7 = 7([α, 6]). Let A(x) denote the set consisting
of x and of all the points yeR2 which are attainable from x by
means of D. Similarly we denote by AN{x) the set consisting of x
and of all the points yeR2 attainable from x by means of DN, where
DN = {Y:-YeD}.

The sets A(x), xeR2 determined by a given family D of vector
fields on R2 can be viewed as the sets of attainability of a control
system on R2, with discrete control space D and piecewise constant
controls taking values in D (see Lobry [5]). By using the standard ter-
minology from control theory, an integral curve 7 of D (or the control
defining it) is said to steer xQ to xt if x1 is attainable from x0 via 7.

Families of vector fields on manifolds and their sets of attainability
have recently been investigated by various authors Gerbier [2],
Gronski [3].

Let L denote the Lie subalgebra generated by the elements of
D in the algebra of all C°° vector fields on R2 and L(x) be the space
determined by L in the tangent space at x e R2. We write the symbol
Cl A to denote the closure of a set A, Int A for its interior and dA
for its boundary.

We will use the following known result (see e.g., Krener [4] or
Lobry [5]).

THEOREM 1. // dim L(x) = 2, then x e Cl (Int A{x)).

We prove first several auxiliary results.
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DEFINITION 2. Let yl9 72 be nonconstant integral curves of D.
We say that 7X and 72 are distinct if 0 6 l m 7 1 n l m 7 2 implies that
z is an endpoint of Ύι and 72.

LEMMA 3. Let 7 be an integral curve of D steering x to dA(x).
Then Im 7 Q dA(x). (See Roxin [6].)

Proof. Suppose that 7: [0, a] —> R2 is an integral curve corres-
ponding to some control u, such that 7(0) = x and 7(α) e dA(x). Assume
that there exists a t, 0 <ί t < a with the property that 7(ί) e Int A(x).
Notice that the corresponding control u\ιt,a \ steers points near Ί(t)
to points near 7(α) and that this mapping is a local diffeomorphism
at 7(t). Thus 7([ί, α]) is contained in lntA(x), which is impossible.

An equivalent formulation of this lemma is that no point in
the Int A(x) can be steered to dA(x).

PROPOSITION 4. Let xeR2. There are at most two nonconstant
distinct integral curves of D steering x to dA(x).

Proof. Let ui9 i = 1, 2, 3 be three controls and let 7t: J* —> iϊ2,
i = 1, 2, 3, be the corresponding integral curves of D starting at x.
Suppose that each 7, steers x to dA(x) and that the 7t are pair wise
distinct.

The existence of two nonconstant distinct integral curves of D
steering x to A(x) implies that x e Cl (Int A(x)). This follows easily
from continuity properties of flows of vector fields.

Let Γi — Im Ύt. Choose an open ball B about x such that
B\(Γ± U Γ2 U Γ3) has three connected components. Since x e Cl (Int A{x))
we can assume that one of these components, say C, intersects Int A(x)
and that #eCl (Int A(x) f] C). It is clear that there exists i, say
i = 1, such that Γί Π Cl C = {#}. It follows that the boundary of C
contains parts of Γ2 and Γ3. Let yeΓxΓ\BfyΦx and # = 7x(ί). Let
V be a neighborhood of y such that F Π Cl C = 0 . Then Wilco,*] steers
a sufBciently small neighborhood of x into V without leaving B. As
we have already noticed in Lemma 2, this induces a local diffeomor-
phism at x. In particular, there are points in C f] Int A(x) which are
steered to a point in another component of B\(Γ1 U Γ2 U Γs). But then
the corresponding integral curves of D intersect dA(x) which contra-
dicts Lemma 2.

Note that this proof established also that sufficiently small ball
about x is separated by dA(x) into exactly two components.

The next result is obtained by obvious modifications of Prop-
osition 4.
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COROLLARY 5. Let dimL(x) = 2 and y eA(x)f)dA(x). Then y is
an endpoint of at most two distinct integral curves of D contained
in dA(x).

In other words dA(x) has no "branch points." The hypothesis
dim L(x) = 2 could be replaced by a weaker assumption x e Cl (Int A(x)).
Simple examples show that without this assumption Corollary 5 is
not true.

Let us now summarize what has been established so far. We
know that there are at most two distinct integral curves steering
x to dA(x) and neither of them "branches" while remaining in dA(x).
If they meet the union of their images constitutes the boundary of
A(x). Let us show what happens if they do not meet.

LEMMA 6. If yedAN(x), then A(y) Π IrAAN(x) = 0 .

Proof. Suppose that there exists a point z e A(y) Π Int AN(z).
Then y e AN (z) £ Int AN (x) by the remark immediately following
Lemma 3. But yedAN(x).

LEMMA 7. Let α: [0, a]—> R2 be a homeomorphism onto Imα^
and let X1 be an arbitrary C1 vector field on i?2, with X\a\0)) Φ 0.
Let tx> 0 be such that Xt(z) $ Im a1 for all z e Im a and all 0 < t ^ ί1#

Then the mapping H: [0, a] x [0, t j —> R2 defined by

H\s, t) - X&a\8))

is a homeomorphism onto its image.

The proof is straightforward and uses only existence, uniqueness
and continuous dependence on the change of initial points of integral
curves of X1.

Let a1 be as above and let a2(s) = H\a\s), tj. Assume that X2

is a C1 vector field on R2 with X\a\0)) Φ 0. Let t2 > 0 be such that

Xt\z)ZH\[0,a]x [0,ίJ)

for all z e Im a2 and 0 < t ^ t2. Let H2: [0, a] x [0, tx + t2] -> R2 by
given by

_ βx (H\8,t) t£tίf

Clearly H2 is a homeomorphism onto its image. It is also clear that
given a collection X\ , Xn of vector fields satisfying appropriate
conditions and a curve a1 we could construct inductively a sequence
of homeomorphisms Hk from some rectangle into R2. More precisely,
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let ck^ = Σf=ί tt and let a\s) = Hk-\ah-1(8), cfc_t). Assume that the
collection X1, •• ,X9* satisfies the following properties:

1. X1 satisfies the hypothesis of Lemma 7.
( * ) 2. X\a\0)) Φ 0.

3. X\(z) £Hk~\[Qy a] x [0, cfcr.J) for all ^ 6 l m α f c and 0 < t ^ ίt.
Then Hh: [0, α] x [0, ck] -> R2 defined by

is a homeomorphism for 1 <; k <; n.
Let x be an arbitrary point in R2 and let zedA(x). Assume

that u is a control steering z to a point ye9il(a?). Moreover let

where XleD and are such that

XKXfc Xix(z)) Φ 0

for all i ^ 1. Finally let α: [0, α] —> A(a?) be a homeomorphism onto
Imα such that

e Int A(a?) 0 < t ^ α .

LEMMA 8. 1/ α is sufficiently small then a, X1, , Xn satisfy
conditions (*).

Proof. It follows immediately that Im X\(a(0)) Π Im a = α(0) = z.
Since X1 is C1 and [0, t j is compact, it follows from the continuous
dependence on the change of initial conditions that for sufficiently
small α, X\{z) $ Im a for 0 < t <; tί9 and ^elmα:. Thus

H:[0, a] x [0, ί j > A(x)

defined as before is a homeomorphism. Note that H restricted to
[0, α1] x [0, t j where α1 ^ a is still a homeomorphism. One can now
show by induction, repeating the same argument as above, that the
lemma holds.

LEMMA 9. Let dim L(x) = 2 and let 7: [0, α] -> JB2 6β α^ integral
curve of D steering x to dA(x). Then there is a 0 ^ t < a and a
vector field XeD such that

X8(Ύ(t)) 6 Int A(x)

for s>0.



CLOSED SETS OF ATTAINABILITY IN THE PLANE 121

Proof. Suppose to the contrary that for any XeD and all 0 ^
t < a,

Xs(y(t))edA(x).

Without loss of generality we can assume that for some YeD and
0 < ε < a

= γt{χ)

for 0 ^ t < ε. Then

[X, Γ](7(ί)) = α(ί)Γ(7(ί))

for all 0 ^ t < ε. Which implies that

dim L(7(ί)) = 1

for 0 ^ t < ε which contradicts the assumptions when t = 0.

PROPOSITION 10. Let dim L(w) = 2 /or αii points w e dA(x) and
let 7: [0, α] —> i?2 6e cm integral curve of D steering x to dA(x). Let
V = 7(t0) ^ ί ^ 0 < t0 < a. Then there exists a neighborhood V of
y such that the set dA(x) Π V is homeomorphic to an interval.

Proof. By Lemma 9 there exist points zί9 z2 e Im 7 and vector
fields X1 e JD, X2 e Z>̂  with the property that

Kz,) 6 Int A(x) 0 < 8 ^ αx

s

2(s2) e Int ^ (7(α)) 0 < s ^ α2

Define 7,: [0, α j -* iί2 by

74(β) = Xl{z%)

for i = 1, 2 and let

I* = [0, α,] x [0, ί2 - ί j .

Using Lemma 8 with c% — t2 — ίx and H^ Lt^ R2 defined in an obvious
way we conclude that Ht(Lt) are homeomorphic to rectangles and
by Lemma 6 we can see that

HάLJ n H2(L2) = {#,(0, t):0^t^t2- ί j = {3,(0, ί): 0 ^ t ^ ί2 - ί j .

We conclude that the set

H^L,) U iJ2(L2)

is homeomorphic to a rectangle and that
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Let V = Int (H^LJUH^L,)). Since Int (H^LJ) c Int A(x) and
Int H2(L2) £ Int AN(Ύ(a)),

dA(x) n (Int (H^LJ) U Int (H2(L2))) = 0

it follows that if wedA(x) n F then

lί e T O t):0 ^ ί ^ ίa - ί j

which proves the proposition.

THEOREM 11. Let dim L(w) = 2 /or αίί w e dA(x) cmd let A{x)

be closed. If the set dA{x) is not empty then it is homeomorphic to
a Jordan arc or a closed Jordan curve.

Proof. Assume that

dA(x) Φ 0 .

Let y e dA(x) be a point other than x and let 7 be an integral curve
of D steering x to y. Moreover let us assume that 7 is a homeo-
morphism from its domain onto its image. Let Σ1 be the set of all
integral curves σ: [0, a(σ)] —• dA(x) such that Im 7 g Im σ and σ is a
homeomorphism onto its image. Let

B1 = \JImσ .
σeΣ1

Clearly Bt is connected. Let us introduce an ordering on Bt as
follows. We will say that

if and only if there exists σeΣ1 such that σ steers x to x2 with
xt e Im σ and xγ Φ x%. Clearly x is the only minimal element of B19

We claim that if there exists a maximal element then it is unique
and j?i is a homeomorphic image of a closed interval.

Suppose that zi9 i = 1, 2 are maximal elements of Bx. Let
a^. [0, α(<7,)] —> dA(#) be integral curves of J9 steering x to s<e Note
that Im βi are homeomorphic images of closed intervals, thus they
are closed and Im σ1 Π Im σ2 must contain its maximal element, say
z3. Then z3 would be a "branching" point contradicting Corollary 5.
Thus there is a unique maximal point in B1 and the integral curve
steering x to this point is a homeomorphism that we were looking for.

Assume that there is no maximal point in B1 and that there
exists an increasing sequence of points {xn}n=i in Blf such that the
limit point y of {αsn}?=1 exists, is an element of Bt and is such that
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y < xk for some k ^ 1. We claim that in this case y = x and that
B1 = 3A(flc) and is homeomorphic to a circle. Indeed if xh_1 < y <
xt, (#0 = #), then we would contradict Proposition 10. Thus if y < xk

for some & then y = x. We can assume without loss of generality
that x = y = lim xn. Let 7X: [0, α] —> dA(x) be an integral curve of
D steering x to xx. Since 5cx < #2 there exists an integral curve
72: [0, α2] -> 3A(α?) steering ^ to α .̂ We can construct now an integral
curve of D, 72: [0, at + al] = [0, a]-^dA(x) steering x to x2, with
Im 7i - 72([0, αj), by

( ί ) =

By induction we can define entire sequence of integral curves of
D, yn: [0, αΛ] -> dA(x) steering x to xn with Im 7Λ_! = 7»([0, αn_J). Note
that a,,.! < an. Let

a = lim an .
W->oo

If a < oo, let ft: [0, a] -• S1 such that

Λ(0) = h(a) = p 1

and ft is a continuous map which is a homeomorphism onto its image
if restricted to [0, a). Define H: S1 -> 3il(aj) by

if αΛ_! < ft'Xί?) 5£ α n and

1) - x .

Clearly H is a homeomorphism. If a— co, let k = S1-* [0, oo) be a
continuous 1 — 1 mapping defined in such a way that

k(z) = 0

for z = (1, 0)

lim k(eie) = 0

and

lim k(eiβ) = oo .

Again define H: S1 —> 3A(x) by

if αw_x < fc(p) ^ an and
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H{z) = x .

Clearly H is a homeomorphism. Thus if there is an increasing sequence
{xn} in J5L converging to a point y in Bt with y <. xk for some & then
y — x and B1 is homeomorphic to £ l β An argument exactly parallel
to one in Proposition 4 will show that there are no integral curves of
D steering x to dA(x) which are not contained in Bt. Thus Bx = dA(x).

Assume now that there is no increasing sequence {xn}n=i in Bx

such that its limit point y is smaller than xk for any k = 1, 2, .
We claim that BL is homeomorphic to [0, 1).

Since R2 is a second countable space it follows that cll^α;} is
a second countable space, hence it is Lindelof space. It follows from
Proposition 10 that for any y > x set

is open in the relative topology of the clJ5lβ Moreover

c\Bι\{x} = U Bx{y).

By the properties of Lindelof spaces (see Dugundji [1]) there exists
a sequence {yn}n=1 such that

We can assume without loss of generality that

for all n — 1, 2, . It is easy to see that the sequence {yn}n=ι is
coίinal in B19 i.e., for any element z of Bt there exists an n such
that z < yn. Let x = yQ and let Ύi: [0, α j —• 3A(x) be an integral
curve of D steering yn to yn+1. Define τ»: [0, δ%] —> dA(x) where bn —
Σϊ=U* by

= 7ί(t - Σ

for Σ!Lo Uk^t^ Σ*to %• It is clear that τ» is an integral curve of
D steering x to b%. Let 6 = lim^̂ oo bn. Define H: [0, 6) —> 3A(a?) by

for ί ^ 6%. It is clear that H is well defined, one-to-one, onto and
continuous. We will show that Ήr1 is also a continuous map. Let
{zn}n=i be a sequence in B1 such that linv^, zn — z0 e Bx. Since {yn}n=i
is cofinal there exists an N such that, except for finitely many,
zn e Biiyxf). Note that 7^: [0, bN] —> 3A(#) is a homeomorphism onto
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its image and that

B,{yN) £ Im ΎN .

Thus

lim H-\zn) = lim 7**00 - 7*1(s0) = H~\zQ) .
n-*oo n->oo

This proves that H is a homeomorphism.
We have thus shown that ft is homeomorphic to one of the

following objects: closed interval, half closed interval or a circle.
In case of a circle we have shown that Bι = dA(x).

Assume that ft Φ 0 . If there is an integral curve of D steering
x to A(x)\B19 then we can construct B2 in the same manner as we
constructed ft. Following the proof for ft we establish that i?2

must be homeomorphic to a closed or a half closed interval. It could
not be homeomorphic to circle for then B2 = dA(x) and B1 — 0 .
Clearly

ft U ft = dA(x) .

Thus in general the following three cases may occur
(1) ft = dA(x), B2 = 0
(2) BXΦ 0',B2Φ 0

(a) {£} - cl ft ΓΊ cl ft

(b) {#} = cl ft Π cl B2 .

We have already investigated case (1). If case 2(a) occurs it is clear
that dA(x) is homeomorphic to a Jordan arc. For case 2(b) we will
show that dA(x) is homeomorphic to S1 by showing that at least one
of Bx and B2 is closed, say Bλ = τ[0, 1] with τ(0) — x, and that there
is at most one point distinct from x in cl ft Π cl ft namely 7(1).

Suppose y19 y2 e cl ft Π cl B% and yt Φ x. Note that both y1 and
y2 are elements of ft U B2 = dA(x) as A(x) is closed. Assume that
yί9 y2e ft. Since ft is a Jordan arc there is an induced order on ft and
one of them, say y19 is a point in between x and %. This contradicts
Proposition 10. Suppose that yt e ft and y2 e B2. By Proposition 10
none of the two can be an internal point of ft. ft ^ 0, i== 1, 2, and
none is homeomorphic to a circle, thus ft is homeomorphic to a
half-open interval or a closed interval, but in the former case the
only point which is not internal point of ft is x. Hence ft, i = 1, 2
is homeomorphic to a closed interval.

Since A(x) is closed and 3A(#) = ft U ft it follows that 2/L = #2.

THEOREM 12. Let dim L(w) = 2 /or αiϊ w e dA(x). Then set A{x)
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is homeomophic to one of the following objects
( i ) closed half plane
(ii) closed disk
(iii) complement of an open disk
(iv) R2.

Proof. Suppose that dA{x) is homeomorphie to an open interval.
Let 7: (0, 1) -»8A(x) be the homeomorphism. Consider

Π: S2 • R2

the stereographic projection. Assume that point p in S2 is such that
ΠR restricted to S2\{p} is a homeomorphism. It is clear that Π^1 is
a homeomorphism and that

p = lim Π~R

ιΊ(t) = lim ZΓϊM*)

Thus nR

ly(0f 1) U {p} is homeomorphie to S1 which separates S2 into
two components each of which is homeomorphie to an open two
dimensional disk. Since S2\{p} is homeomorphie to R2 via Π one of
these components must be ΠR\R2\A(X)) and the other Πs\Int A(xj).
Thus ΠR\A(X)) U {p} is homeomorphie to a closed disk, and ΠR\A(X))

is homeomorphie to a closed half plane.
Suppose that dA(x) is homeomorphie to S1. Then by Jordan curve

theorem R2\dA(x) has two components, one of which must be IntA(x).
If this is the bounded one then A(x) is homeomorphie to a closed
disk, otherwise R2\A(x) is homeomorphie to an open disk. If dA(x)
is an empty set then A(x) = R2. Indeed the only subsets of R2 with
empty boundary are empty set and R2. Set A(x) is nonempty thus
A(x) = R2.

THEOREM 13. Let dA(x) Φ 0 . Let dim L(w) = 2 /or αίi w e dA(x).
Let B{x) denote the set of points z e dA{x) such that there exists an
integral curve of D,Ί\ [0, a] —> dA(x) and a tx in (0, α), with z — 7(ti).
Tfee^ B{x) is an imbedded C^submanifold of R2 with at most two
connected components.

Proof. Set B(x) is contained in dA(x) Π A(x). Proposition 10
shows that B(x) is an imbedded C°-manifold. Let z e B(x) and 7 be as
above, determined by piecewise constant control u: [0, a] —> D. We
have only to consider the case when tγ is a point of discontinuity of
u. Let X*9 X

j e D be two distinct values of u near tx and assume
that the integral curves of X* and Xj are transversal at z. Then
one of the integral curves steers either an interior point of A(x) to
its boundary or a point of dA(x) Π A(x) to the exterior of A(x), which
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is impossible. It follows from our previous discussion that if
dim L(w) = 2 for all w e dA(x) then dA(x)\B(x) contains at most two
points.

From the topological point of view the boundary of a closed set
of attainability has been completely described, however from the
control theoretic point of view it seems necessary to subdivide the
three cases described in Theorem 11 into the following:

1. The boundary of A(x) is homeomorphic to an open interval.
II. The boundary of A(x) is homeomorphic to a circle.
(1) There are no two distinct integral curves of D steering x

to dA(x).
(a) There exists a nonconstant integral curve of Dy 7: [0, a] —>

dA(x) steering x to x with τ(α) = x.
(b) There is no integral curve having the above properties.
(2) There are two distinct nonconstant integral curves of D

steering x to dA(x).
(a) There exists y e 5 Ate) and two distinct nonconstant curves

7i and τ2 of D steering x to y.
(b) There is no point y in dA(x) having the above properties.
III. The boundary of A(x) is empty.

Let us note that in case I we must have two distinct nonconstant
integral curves of D steering x to dA(x).

All the possible cases listed above actually occur. We illustrate
all of them in the examples below, omitting some of the lengthy
computations. In each figure the shaded area represents the set of
attainability from the point indicated by its coordinates.

EXAMPLE 14. 1. Let D = {Xlf X2, 0} with

X^xu x2) = (~*2x2, x1 + 2x2) for (xlf x2) e R2 ,

X2(xlf x2) = (—2x2, x1 + 2x2 + eπ — 1) for (xί9 x2) e R2 .

Then the set A(x19 0) is equal to R2 if 0 ^ xt < 1, is of type Ilia if
xt = 1, is of type Π2a if 1< xι < 1 + e~π and is of type I if x1 ^ 1 + e~\
(See Fig. 1.)

2. Let D ~ {X19 χ2f 0} where

,(xlf x2) = (-» ! , -a?2) for (xu x2)eR2 ,

X2(xlf x2) = (2oj2, —x1 + 2x2 — 1) for (xlt x2)eR2 .

Then the set A(-eπ - 1, 0) is of type Π2b. (See Fig. 2.)
3. Let D = {Xί9 X2, 0} with

, «*) = (-»i, ~^2) for («!, a?2) 6/ί2 ,

X2(x19 x2) = ( - 2 ^ - 2ίr2 - 2,'a?! + 1) for (x19 x2) eR2 .
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FIGURE 1

we

FIGURE 2

(0,0)

FIGURE 3

Then the set A(0, 0) is of type lib. (See Fig. 3.)
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