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It is shown that every 2-decomposable operator (in the
sense of S. Plafker) is decomposable (in the sense of C.
Foias); this answers a question raised by Plafker.

Throughout the paper, T is a bounded linear operator defined
on a Banach space Y. An invariant subspace X of T is called a
spectral maximal subspace of T if M = X for all invariant subspaces
M of T for which o(T|M) < o(T|X). The operator T is called n-
decomposable [10] (n a fixed integer greater than 1) if for every
open covering {G,, G,, ---, G,} of o(T) there exist spectral maximal
subspaces X,, X, ---, X, of T such that o(T|X)SG, 6=1,2,--+, %)
and Y=X, + X, + --- + X,; T is called decomposable [6] if it is
n-decomposable for all n» = 2.

Plafker [10] asked whether every n-decomposable operator is
decomposable; the question is answered by E. Albrecht and F.-H.
Vasilescu [1] for » = 3 in a general Banach space and by S. Frunza
[7] for » = 2 in a reflexive Banach space. Here we extend Frunzd’s
result to a general Banach space by a shorter and simpler proof,
and thus we completely solve Plafker’s problem.

For a closed subset F' of C, we let X (F') = {x € Y: there exists
an analytic function f,: C\F — Y such that (z — T)f,(2) =x}. If T
is 2-decomposable, then X,(F') is a spectral subspace for all F, and
every spectral maximal subspace of T is of this form [10] (see also
[4] for the case of decomposable operators). I. Colojoara and C.
Foias [4, page 217] ask whether the restriction of a decomposable
operator to every spectral maximal subspace is again decomposable;
an operator whose restriction to every spectral maximal subspace is
decomposable is called strongly decomposable by C. Apostol {2].
Obviously every strongly decomposable operator is decomposable and
whether the converse is true is what Colojoara and Foias ask. I.
Bacalu [3] shows that decomposable operators with nowhere dense
spactra are strongly decomposable. The problem in the general case
seems to be difficult and has been attacked by many authors; the
following question is simpler and arises in a natural way.

Question 1. Does every decomposable operator 7' satisfy the
following condition (1):
(1) Xo(F) € X:(G) + X2(Go) + - + X2(G,)
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for any closed set F' and any open covering {G,, G,, ---, G,} of F.

Decomposakle operators satisfying (an equivalent modification of)
condition (1) are said to have almost localized spectra by Vasilescu
[13], who also shows that the duals of such operators are again
decomposable operators of the same type. Frunza [7], [8] shows
that the dual of any 2-decomposable operator is decomposable and
satisfies (1); hence in a reflexive Banach space all decomposable
operators satisfy (1). We improve this result by showing that every
decomposable operator (on any Banach space) satisfies (1).

We will make use of the following proposition due to Frunza
[8, Proposition 1].

PROPOSITION 1. Let T be a 2-decomposable operator. Assume
X,(F) € X.(G) + X.(G,) for any closed set F and any open covering
{G, G} of F. Then T is a decomposable operator satisfying (1).

The following lemma is probably known to the experts; we
include a proof for an easy reference. Recall that the operator T
is said to have the single-valued extension property if there exists
no nonzero, Y-valued, analytic function f such that (z — T)f(z) = 0;
it is known that every 2-decomposable operator T has the single-
valued extension property and o(7T|X.(F)) € F N o(T) for all closed
sets F' [10] (see also [4]).

LeEMMA 1. Let T be a 2-decomposable operator and let E be a
closed subset of C. Let ¥ = Y/ X (E), T be the operator on ¥ induced
by T, and let  in ¥ denote the image under the camonical mapping
of xeY. Assume ZeX;(F) for some closed set F. Then x¢€
X (E U F).

Proof. Let G, be an open neighborhood of E U F and let G,
be another open set such that o(T) S G, UG, and G, N(EUF) = Q.
Let ¢ = x, + x,, where x,€ X,(G,) (4 =1,2). Since &, = & — #, there
exists and analytic function g: C\G, — ¥ such that (z — T)g(z) = %,.
Let M = X(G,UE)/X,(E). Since M is a spectral maximal subspace
of T containing %, [2, Proposition 1.8.2(8)], it follows that g(z) € M for
all z¢ G, [4, page 19]. (Note that, in view of [12, Theorem 2.1],
T has the single-valued extension property.) Now let S: X,(G,) —» M
be the operator defined by Sy = #(y € X;(G,)). In the light of the
Riesz decomposition theorem (applied to T'|X,(G, U E)), S is bijective
and S(T|X,(G,)) = (P|M)S. Thus (z — T)(S™g(z)) = z for z¢ G, and
hence w, € X;(G,). Therefore xc X,(G) for all neighborhoods G of
E U F which implies that x € X, (E U F).

Now we prove the main result of the paper.
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THEOREM 1. FEwvery 2-decomposable operator T is decomposable
and satisfies condition (1), i.e., it has almost localized spectrum.

Proof. Let F be a closed subset of the plane and let {G,, G}
be an open covering of F. Let E=G, NG, Y= Y/X,(E), and let
7 be the operator on ¥ induced by 7. Let xe X, (F) and let
JiC\F'— Y be an analytic function such that (z — T)f(z) = z. Ob-
viously f: C\F — Y is analytic and (z — Tf(z) = 2. (Here again %
denotes the image of w under the canoninal mapping fromA Y onto
Y.) Since oD < C\(G, N @,) [9, Lemma 1], it follows that f has an
analytic extension (denoted by the same symbol 7 ) to (C\F)U(G,NG,),
which also preserves the identity (z — Tf(z) = 4.

Let D, be a Cauchy domain containing F\G, and let D, be another
one containing F'\G,. Since F\G, and F\G, are disjoint, D, and D, can
be chosen such that D, N D, = @. Now for j = 1, 2 define

g =] fooan,
and
g,(2) = (2mi)™ Sm,. (z — Vv (z€ D) -
Obviously # = & + &. Also,
(— Do) = @riy || (2 =2 + 0= Dile = 2Fooan

= @ri)y S Fovdn + @i S (z — N)Bdn = &,
+9D; +8D;

for z¢ D; and j = 1,2, This shows that & ¢ X;(D,), and since D, is
an arbitrary Cauchy domain containing F\G,, it follows that
& e X3p(F\G,). Similarly & e X3(F\G,). Let z; be a vector in Y such
that & =%;( =1,2). By Lemma 1, x;e X, (G,)j =1,2). Since
=12 +2, v=(x +u)+ 2z, where uc X, (E); thus zeX,(G,) +
X(G,). Now the rest of the proof follows from Proposition 1.

~ Part (¢) of the following corollary gives a new characterization
of decomposable operators.

COROLLARY 1. The following assertions are equivalent.

(a) T is decomposable.

(b) T is 2-decomposable.

(e) For every closed set F', X.(F') is closed and o(T") < a(T)\F°,
where T denotes the operator induced by T on Y/X,(F) and F°
denotes the interior of F.
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Proof. First note that the operator 7 in each case has the
single-valued extension property (for case (c) see {11, Remark 2]).
Now the equivalence of (a) and (b) follows from Theorem 1 and the
equivalence of (b) and (¢) follows from [9].

REMARK. J. Daughtry [5] defines a superinvariant subspace of
T to be a subspace M invariant under all operators A such that
(AT — TA)M < M; he shows that an invariant subspace of a normal
operator is superinvariant if and only if it is the range of a spectral
projection. Note that if T is a normal operator with the resolution
of the identity E,, then X, (F) = E,(F)Y for all closed sets F'. The
following proposition shows that for any decomposable operator T the
subspaces X, (F') are superinvariant.

PROPOSITION 2. Let T be a decomposable operator and let F be

a closed subset of C. Then X, (F) is a superinvariant subspace of
T.

Proof. Let T, = T|X,(F). Let xeX,(F) and let f1C\F—Y
be an analytic function such that (T — \)f(\M) =x. Let A be an
operator such that (TA — ATX,(F) S X {F) and let

gN) = Af(N) — (Tr — M(TA - AT)f(N) (MeF) .

Since o(T;) € F and f(\) e X (F') for n¢ F [4, page 19], it follows
that ¢ is a well-defined analytic function and (7' — \)g(\) = Axz. Thus
Ax e X,(F) and the proof is complete.
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