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An explicit representation of the duals of Lorentz se-
quence spaces having "regular" weights is provided.

1* Introduction, Lorentz spaces are rearrangement-invariant
weighted lp spaces, and as such it is necessary to consider only the
positive cone of positive sequences in their study. Indeed it is necessary
to consider only the sub-cone of positive decreasing sequences.

If X is a sequence space, denote by X+ the subset of X of non-
negative sequences, and by X++ the subset of X+ of decreasing
sequences (e.g., lp, 1%, l%+). For any infinite sequence {μn} converging
to zero, define {μn} to be the decreasing rearrangement of {|μj}. As
is common, c0 denotes the set of infinite sequences with limit 0.

Let {πn} e ct+\lt. For any 1 <: p < oo define d(π, p) to be the set
of all sequences {μn} such that

Σ π*Φ»)9 < -

The norm on d(π, p) is ( Σ πn(βn)p)1/p> and d(π, p) is called a Lorentz
space. The duals of the Lorentz spaces d(π, p) are denoted by c£*(ττ, p).
These are rearrangement-invariant Banach spaces and hence if one
can characterize <Z*(ττ, p)++ all of d*(π, p) is characterized.

For 1 < p < oo, Garling [3] has characterized the duals d*(π, p)
as follows: {an} 6 c£*(π, p)++ if and only if there is a sequence {ηn} 6
lt+((l/p + 1/q) = 1) such that

Σi
( 1 ) sup - ^ < oo .

In the case p = 1, {an} e d*(π, 1)++ if and only if

(2 ) sup ^ — < oo .

We intend to show that these duals have a particularly simple
structure for a broad class of sequences {πn}. Namely; the sequence
{πn} e ct+ is said to be regular if

(3) Σ*V
3 = 1
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For example, the sequences {n~p}, 0 < p < 1, and {(log n)~p}, p > 0,
are regular but the sequence {n~1} is not. The concept of regular
sequences was first used by Gohberg and Krein [4], and was also
used by Altshuler [2] to give necessary and sufficient conditions that
the Lorent spaces d(π, p\ p > 1, are uniformly convexifiable.

A necessary and sufficient condition that a sequence {πn} e c£+ be
regular is that

( 4 ) inf -i=i— ^ c > 1

3=1

for some (and hence all) integers k Ξ> 2 (cf. Allen and Shen [1]).

2Φ Main Result. Our main result is stated as follows.

THEOREM 1. If {πn} is regular, then for p > 1, p~ι + q~ι = 1,

( 5) {αΛ} e d*(ττ, p) i/ α^ώ ô Z?/ if {ctjπ\!p} e lq .

Note that Theorem 1 is the complete generalization of the result
(Allen and Shen [1]):

d*(π, 1) = {{£»}|fn = O(ττJ} if and only if {πn} is regular .

The proof of Theorem 1 proceeds in a series of lemmas.

L E M M A 1. Let {an} e c ί + . If, for some positive integer k^2
the supj ccόlakύ — c < k, then {aό} is regular and

inf Σ «y / Σ «y ^ &/c

% i = i / 3=i

Proof. This result follows from (4) since

( 6) Σ «y ^ Σ *a*i ^ Λ/β Σ «y
i=i i=i i=i

LEMMA 2. Let {ηά} e ί++, g > 1, and {ηό} £ lr for all r <q. Then
there is a regular sequence {ξj} e l£+ for which 7]3- ^ ξjf j — 1, 2,
Moreover for any ε > 0 the sequence {ξj} may be chosen so that

Proo/. For ! < & < ? , W1} e ϊff/ffl. Define {£.} by
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i
n i=i

Then

i=i / i=i

By Hardy's inequality {£j1}eZ+,+ ; so {£;} e £++. By Lemma 1 {fj is
regular, from above £//f2y < 21/gj, and from (6)

Σ j / Σ
3 = 1 / 3=1

Σ £j / Σ £i > 2"!-1"*! > 2(«-1)/β - ε ,
/ 1

for any ε > 0 if qt is suίSciently close to q.

LEMMA 3. Let {πn} be a regular sequence and let p > 1. Define
{π*} by π* = (1/ri) Σ?=i *i- Then

inf Σ (π*)1/p

Proof. From the regularity of {πj} it follows that

2n I n

Thus τr2*/TΓ* > fci/2, and (π*/π*n)
1/p < (2/&1)

1/ί> By Lemma 1

2tt / W
TYTP V 1 /-T ^Nl/p / X * /-—^ίNl/p v^ O WO IT* \1/P . O(V~~1)/V TA/P

n 3=1 I i = l

Call two sequences {α%} and {/3U} e ci+ equivalent if

0 < inf ajβn ^ sup αJβ n < oo ,

and denote equivalence by {an} ~ {βn}.

LEMMA 4. If {an} and {βn} e ci+ are equivalent and if {an} is
regular, then {βn} is regular.

The proof is a simple application of the definitions. A useful
application of Lemma 4 is the following

COROLLARY. Let {πn} and {Xn} be regular sequences, for which

2n I n 2n I n

ίnf Σ πό / Σ ft $ ̂  &! > 1 and inf Σ ^i / Σ ^i = 2̂ > 1

If kjΰz > 2, then {πnXn} is regular.
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Proof. Define X* = (11%) Σ J = 1 Xd. Summing by parts,

\i=i /

Thus {τryλ|} is regular, and so, by Lemma 4 is {πjXj}.

Proof of Theorem 1. Suppose that {ad} e d*(7Γ, p)+ +. Select {̂ y}
satisfying (1) to additionally satisfy {ηs} £ lr for all r <q. By Lemma
2 we can assume by taking {̂ } larger if necessary that {rjd} is regular
and

(7) infΣtfi Σ ^ > 2 ^ ) ^ ~ ε

for any fixed ε > 0. It is apparent that d(π, p) is isomorphic to
d(π*9 p) where {πl} is the sequence defined by πj = Σ^-i^iM Hence
d*(ττ, p) and ώ*(τz:*, ί>) are isomorphic. By Lemma 3 and (7) we can
assume that {7c)lp} and {Ύ]J} satisfy the hypotheses of the corollary.
Thus by (6) as = 0{η5π)ίp). Writing aό = ίyπ J> it follows that ξό =
0(̂ 7/), and thus {ς̂  } 6 lq. This proves, together with our earlier remarks,
that d*(π, p) c lq'd*(πι/2>, 1). The reverse inclusion is immediate.
The converse of the theorem follows by taking for {ηά} the decreasing
rearrangement of {\a5jπ

λ-p\}.

3. REMARKS. It could be said that the most important aspect
of Theorem 1 is that it provides an explicit representation of the duals
of Lorentz spaces with regular weights. We also remark that the
function analogue of regularity includes all "weights" currently used
in classical interpolation theory. Whether or not Theorem 1 remains
true for Lorentz function spaces remains unknown.
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