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If G is the group with p (=prime) elements and k a field
of characteristic p let Vl9 V2, , Vp denote the indecomposable
&[G]-modules of λ -dimension 1,2, , p respectively. Let en,υ

denote the number of nonfree components of the decom-
position of the symmetric power SuVn+ί. Then the following
symmetry relation is proved

As a corollary we find that SrVn+1 has exactly one nonfree
component when n + r — p ~ 2 thus solving a problem in a
previous paper by R. Fossum and the author. An explicit
formula for en,v expressed in numbers of restricted partitions
is obtained.

Let G be the group with p elements where p is a prime number.
Let k be a field of characteristic p. Then there are p indecomposable
&[G]-modules V19 V2, , Vp where

Vn ~ k[x]/(x - IT .

Note that Vφ = k[G] is free and dim^F,, = n.
The symmetric power Sv Vn+ί taken over k is again a &[(?]-module

and can be decomposed into a direct sum of the Vt: s

where the integer cu>j(n) is the number of times V3> is repeated.
Let

J > - 1

en,v = Σ cUtί(n)
3 = 1

be the number of nonfree components in SuVn+ί.
If we write down these numbers in triangular form we get the

following pictures where the number in the (v + l)th place in the
(n + l)th row from below is βn,v
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P = 11 1 \υ
1 1

1 1 1
1 1 1 1

1 1 2 1 1
1 1 2 2 1 1

1 1 3 3 3 1 1
1 1 2 3 3 2 1 1

1 1 2 2 3 2 2 1 1
1 1 1 1 1 1 1 1 1 1

n] 1 1 1 1 1 1 1 1 1 1 1

P = 13 1

1 1

1 1 1
1 1 1 1

1 1 2 1 1
1 1 2 2 1 1

1 1 3 3 3 1 1

1 1 3 4 4 3 1 1

1 1 3 4 5 4 3 1 1
1 1 2 3 4 4 3 2 1 1

1 1 2 2 3 3 3 2 2 1 1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1

1 1 1

1 1 1 1

1 1 2 1 1

1 1 2 2 1 1

1 1 3 3 3 1 1

1 1 3 5 5 3 1 1

1 1 4 6 7 6 4 1 1

1 1 4 6 9 9 6 4 1 1

1 1 4 6 10 10 10 6 4 1 1

1 1 3 6 9 10 10 9 6 3 1 1

1 1 3 5 7 9 10 9 7 5 3 1 1

1 1 2 3 5 6 6 6 6 5 3 2 1 1

1 1 2 2 3 3 4 4 4 3 3 2 2 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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= 19 1
1 1

1 1 1
1 1 1 1

1 1 2 1 1
1 1 2 2 1 1

1 1 3 3 3 1 1
1 1 3 5 5 3 1 1

1 1 4 6 8 6 4 1 1
1 1 4 7 10 10 7 4 1 1

1 1 5 8 13 14 13 8 5 1 1
1 1 4 8 13 15 15 13 8 4 1 1

1 1 4 7 13 15 18 15 13 7 4 1 1
1 1 3 6 10 14 15 15 14 10 6 3 1 1

1 1 3 5 8 10 13 13 13 10 8 5 3 1 1
1 1 2 3 5 6 7 8 8 7 6 5 3 2 1 1

1 1 2 2 3 3 4 4 5 4 4 3 3 2 2 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The first triangle is in [1] III. 4 (compare also Problem VI. 3.10)
and the other ones are computed by using methods explained there.
The symmetry of the triangles suggests the following result.

THEOREM 1. (1) β..,_._,,_t = eM

( 2 ) β p _ Λ _ v _ l f y = entV

( 3 ) en>u, = eVtn

Proof. The third relation is a consequence of

(see [1] III. 2.7b).
The fourth relation follows from (see [1] III. 2.5)

To prove (1) and (2) we are going to find a formula for en,v or rather
for the generating function

The proof is rather technical and will use the method of Fourier
series. For the notation see [1] Ch. V. 4.
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The number αn>r of all components of Sr Vn+i is up to r = p — 1
given by the p first coefficients of

where

1 C*
τjrn(t) = — I gjίφ)(\. + cos <p)dcp

un j(t) — — \ 9n(φ) cot -2-(sin jφ — sin (j — l)^)d^
2ττ j-χ 2

with

^.(^) = Π (1 - te*-*"*)-1 .
i/=0

By considering the decomposition of S r Fn+i into the virtual indecom-
posable &[(r]-modules Wt for all i ^ 0 (see [1] I. 1.9) we find that
the number of free components of Sr Vn+1 (for r < p) will be given
by the p first coefficients of

Hence

will give the number en,r of nonfree components for r = 0, 1, 2, ,

The first part

Σ

is computed in [1] V. 4.7.
The second sum becomes

= lim-A- Γ flr.(9>)cotf Σ

-sin ((2i + ΐ)p - lVJcίφ

= lim-L Γ g . ( 9 , X i + cos,
2 J 9 ,

w-*oo 2τr J-JΓ s m

Using that
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Φn — l im \ gn(φ)(l + COS φ) — : ^^-dφ

we get

= lim - 1 - Γ ff.(9,)(l + cos y ) Bin (2i» + l)yp - sin
2 J sm

cos (2m + —)pφ

2π J - CQSpφ
If* V 2

\ g(φ)(l + cos p)
= lim — \ gn(φ)(l + cos

— 2ττ J -
2

We want to rewrite this limit as a sum containing the pth roots
of unity. Making a linear substitution we get the Dirichlet kernel
in the integrand and then we can use Lemma V. 4.8 in [1].

Put φ = π + 20. Then we get

) n = Km 1 Γ , . (
m^<^ 2ττ J - -

2 -

— cos-
P

sm
2μπs

p p

11 \L — τe )

To get any further we have to treat the cases n even or odd separately.

Case 1. n is even.
Then eiin~2v)π - 1 and we get with a = eί2z/p

~ _ j ^ y Δ — a a

2p P=o ή

( * ) = -±- Σ (2 - a" - a-")
2 p

where H is the group of pth roots of unity. Gn>r is the homogeneous
Gaussian polynomial defined in [1] Ch. II. 4

We also used the formula II. 4.3 in [1]
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Π (1 - X^YHΓ = Σ Gr+v.r(X, Y)t" .
j=0 i/=0

From the definition of the Gaussian polynomials we get

a n d

Gn+VtJy9 7 - 1 ) = 0 i f p - n £ v ^ p

Hence

It follows

where

that

(1

e,v =

—

1
Σ(i-

- Σ (i - y)Gn+y.n(y,
p H

- Σ U

Then βw,v = eΛ,p for v = 0, 1, , p - 1. But

and hence ^ ^ = eΛ>v for all v ^ 0 and

?.(*) = 7 (*)
From (*) we infer that

Vnit'1) = -t^ηn(t)

and ηn(t) is symmetric in the sense of Stanley (see [1] V. 5.1). Using
V. 5.6 in [1] we get

βΛf-v = e«,v-»-i for y > w .

But entP_v — eny^ — en^-n-γ and replacing v by v + ^ + 1 we get

which proves (1).
From (3) entV = βVfΛ we get (2) from (1)
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and we are done in case n is even.

Case 2. n is odd.
Then e^-2u)π = - 1 and

% = i- Σ 2 - g -« = ( 1 + t,γι Σ ^ ̂  _

2? " - j j ( 1 + ία<«-2v,P)

We get

and it follows

The proof is then finished as in the even case.

We note that we also have solved problem VI. 3.15 in [1].

THEOREM 2. SrVn+1 has exactly one nonfree component when
n + r = p — 2. In fact

" if n neve,
p-n- L if n is odd .

Proof. ep_n_2tn = enΛ = 1.

For the actual computation of the numbers en,v we can get a
formula involving the number of restricted partitions. By II. 4.6
in [1] we have

m=0

where A(m, v, n) is the number of partitions of m into at most v
parts all of size <jw.

PROPOSITION 3. We have

(- l) χ y = Σ A(m, v,n)~ Σ A(m, v, n)
m=0 m=0

2m=vΛ 2m=vw+l

where the congruences are mod p.
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Proof. By the proof of Theorem 1 we get when n is even

en,> = - Σ (1 ~ 7)GΛ+Vfn(7, 7)-1

= — Σ (i - 7) Σ Akm>* »> n)rn~2m

, ) Σ
P γeH

But

0 if j *t 0 (mod:

V if ό =

finishes the proof. The case when w is odd is similar.

EXAMPLE 4. Combining Theorem 1 and Proposition 3 we can
write down a purely combinatorial identity equivalent to Theorem 1.

Let n be fixed and define vf — p — n — v — 1. Then entV — βn,y/ or

~ ΣΣ, w) - Σ A(m, v, n) = Σ ^-(w» ^'

where the sums run over O ^ m ^ w o r O ^ m ^ v% respectively.

REMARK 5. Since Λr Vr+n = Sr Vn+ί we have also computed the
number of nonfree components of the exterior powers for which
similar symmetry relations are valid.

EXAMPLE 6. Let us show how to compute the central number
e66 = 18 in the triangle for p = 19 (this is the worst case). By the
formula in the proposition

e6>Q = A(18, 6, 6) - A(9, 6, 6) - A(2&, 6, 6) = 58 - 22 - 18 = 18 .

As a check we also compute the decomposition

S«V7 - 2Vi + 3F5 + 2V7 + 4F9 + Vn + 3F13 + 2V15 + V17 + 40F19

and we read off e6)6 = 2 + 3 + 2 + 4 + 1 + 3 + 2 + 1 = 18.

ACKNOWLEDGMENT. I would like to thank Robert Fossum who
in spite of my ironic comments insisted in computing the triangles
up to p = 11. Thus he discovered the nice-looking pattern.
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