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AND UNIFORMITY

DAVID A. DRAKE AND DIETER JUNGNICKEL

We continue our study of the c-iΓ-structures introduced
in Part I of this paper; these are triples (φ,Π,Πf) where
φ: Π -> Πf is a well-behaved incidence structure epimorphism.
This paper is concerned with uniformity and regularity of
c-ϋΓ-structures. We obtain connections with PBIBD's ARBD's
and transversal designs.

Introduction. This paper is a continuation of our paper "Klingen-
berg structures and partial designs I" [6]. In the previous paper,
we considered generalizations of protective Klingenberg and Hjelm-
slev planes (PK-, resp., Piί-planes) and investigated congruence
relations and solutions. The present paper is devoted to the study
of the notions of uniformity and regularity.

It is well-known that a Pif-plane Π is uniform if and only if
77 induces an ordinary affine plane in each point neighborhood
(Liineburg [17]). This formulation of the idea of uniformity is
herein generalized (in two ways) to c-i£"-structures: the induced
incidence structures are now required to be "(s, r; μ)-nets. These
0, r; μ)-nets (which simultaneously generalize the classes of nets and
affine resolvable designs) are considered in the first section of the
present paper (numbered §5). These structures are, in fact, the
duals of transversal designs (λ not necessarily = 1) which were in-
vestigated by Hanani in [10]. Uniformity and pre-uniformity are
then studied in §6.

In §7, we generalize the notion of a regular PZ-plane (Jungnickel
[13], [16]) to that of a regular c-Z-structure and are led thereby
to the use of difference methods. We obtain a theorem characterizing
the invariants of all regular, balanced, minimally uniform Jϊ-struc-
tures that is similar to the main result of Part I (Theorem 3.9).
Finally, the notions of the preceding sections are combined in §8
where we study regular pre-uniform if-structures. We obtain a
complete characterization of the invariants in a special case, but
there remains an interesting open problem.

The notation used in this paper agrees with that of Part I and
hence in general with that of Dembowski [5]. We decided to
continue the numbering of Part I: thus the first section of the
paper is called §5, and references like "Theorem 3.9" or "(2.5)"
refer without saying to Part I.

389
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5* (s, r; μ)"nets* In this section we examine (s, r; μ)-nets, a
common generalization of the familiar concepts of net (Bruck [3])
and affine resolvable design (Bose [2]). These (s, r; μ)-nets are just
the duals of the transversal designs of Hanani [10]; they will be
used in the next section to study certain c-l£-structures.

DEFINITION 5.1. An incidence structure with parallelism Σ =
(Sβ, 33, /, ||) is called a net of order s, degree r and type μ (briefly,
an (s, r; μ)-net) if it satisfies the following axioms:

(5.1) each point is on precisely one line of each parallel class;
(5.2) some parallel class has precisely s^2 lines, and there are r ^ 3

parallel classes;
(5.3) lines from distinct parallel classes meet in precisely μ^ 1 points.

If furthermore

(5.4) there exists a natural number λ such that any two points
are joined by either 0 or λ lines,

then Σ is called an affine resolvable partial plane of order s, degree
r, type μ and index λ (briefly, an (s, r; μ)-ARPP (of index λ)).

PROPOSITION 5.2. Let Σ be an (s, r; μ)-net. Then Σ has v: = s2μ
points and b: = sr lines; each parallel class contains s lines; and
each line has k: = sμ points. Also Σ is a design if and only if it
is a point cohesive ARPP if and only if it is an affine resolvable
design (ARBD).

Proof. Let slf s2, s3 be the numbers of lines in three distinct
parallel classes. Count all double flags {p, G, H) as G and H vary
over two distinct parallel classes to obtain s^μ — s^^μ. The rest
of the argument is routine.

The following result was proved by Hanani [10, Lemma 5].
Lenz has given an alternate unpublished proof which utilizes linear
algebra. Here we present a third proof which seems somewhat
simpler to us; in addition, some of our intermediate steps will be
used in the proof of Proposition 5.7.

PROPOSITION 5.3 (Hanani). Let Σ be an (s, r; μ)~net. Then

(5.5) r ^ s'μ "~ 1 .
s — 1

If we have equality in (5.5), Σ is called complete. Then (s — l)\(μ — 1)

whenever Σ is complete.
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Proof. Choose any point p of Σ1 and label the remaining
v — 1 = s2μ - 1 points by qt (i = 1, , v — 1). Let xt: = [p, qt\.
Counting in two ways the flags (qif G) with p, qJG yields

(5.6) Σ a?i = Φμ - 1) .

Counting the flags (qi9 H) with p, qJG, H where G is a fixed line
through p yields

Σ xt = (sμ - 1) + Σ (xt ~ 1)
(5.7) qi1G QiIG

- (sμ - 1) + (r - l)(μ - 1) .

Summing (5.7) over all lines G through p, we obtain

(5.8) Σ x\ - Φμ - 1 + (r - ϊ)(μ - 1)]

but, in general, (ΣΓ=iαi)
2 ^ mCΣΓ^i^2) (cf , e.g., [11, p. 245]). Hence

by (5.6) and (5.8),

r\sμ - I)2 ̂  (s2μ - ΐ)φμ - 1 + (r - ΐ)(μ - 1)]

which reduces to

r ί 8 μ + μ + t

s — 1 s — 1
hence, if Σ is complete, (s — l) |(μ — 1).

COROLLARY 5.4. In an (s, r; μ)-ARPP, X(sμ — 1) = sμ — I
(r — l)(/ί — 1) holds, so the index X is determined by s, r, and μ.

Proof. Apply (5.7).

EXAMPLES 5.5.

( a ) Nets in the usual sense (of order t and degree r) are here
(t, r; l)-nets. It is well-known that the maximum value of r is t + 1,
which agrees with (5.5).

(b) In Proposition 4.9, we exhibited (q, cf + q + 1; g)-nets; these
are complete by (5.5).

( c ) For each μ for which there exists a Hadamard matrix of
order £μ, there is a complete (2, Aμ — 1; μ)-net (Hanani [10, 2.1]).

(d) There exists an (s, 7; μ)-net whenever μ ^ 2 (Hanani [10,
Theorem 3]).

PROPOSITION 5.6 (Bose). Lβί 2? 6β α^ ARBD with parameters v,
6, k, 7% λ, μ. Γfeew there exist natural numbers s and m such that
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(5.9) v = s\l + ms •— m), b — ms2 + s2 + s , k = s(l + ms — m) ,

r = 1 + s + ms2 , λ = 1 + ms , μ = 1 + ms — m .

Considered as a net, Σ has parameters (s, r; μ).

Proof. Substitute s for n and m for £ in [2, (2.44)], and use
the fact that μ = Jc2/v [2, p. 108].

PROPOSITION 5.7. Let Σ be an (s, r; μ)-net. Then Σ is complete
if and only if it is an ARBD.

Proof. Let Σ be an ARBD. Then by (5.9), r = 1 + s + ms2 =
s(l + ms-m) + (1 + ms-m) + (m(s- l))/(s —1) = sμ + i« + (jw —l)/(β —1);
thus JE is complete by 5.3. Conversely, assume that Σ is complete.
Then r = (s2μ — l)/(s — 1) by 5.3. Let λ be the average number of
lines joining a given point p of Σ to the remaining points qt (i =
1, •••, v — 1). Using the same notation as in the proof of 5.3, we
see that Σ< χi = ̂ (s2μ — 1). Hence by (5.6), X = (sμ — ΐ)/(s — 1).
Computing the invariance

σ - Σ (λ - Xi)2 ,
i

one gets 0 (using (5.6) and (5.8)). Hence we have xt — λ —
(sμ — T)/(s — 1) for all i; thus I7 is a design and hence (by 5.2) an
ARBD.

THEOREM 5.8 (Bose [2], Shrikhande [20], [21]). An ARBD with
parameters given by (5.9) exists in at least the following cases:

( i ) s a prime power, m — 0;
(ii) s a prime power, N a natural number and m = 1 + s +

• + s*-1;
(iii) 8 = 2, m = 1 or 2.

Aw ARBD with parameters given by (5.9) cannot exist in the
following cases:

( i ) there is a symmetric (ms2 + s + 1, ms + 1, m)-design but
no symmetric (ms3 + s2 + s + 1, ms2 + s + 1, ms + l)-design (e.g.,
m = s — 3);

(ii) s ami m are odd; ίw addition, either k is not a square,
or sm ΞΞ 1 (mod 4) and the squarefree part of s contains a prime =
3 (mod 4);

(iii) m is even, and s is odd; in addition, either μ is not a
square, or s + m = 1 (mod 4) and the squarefree part of s contains
a prime = 3 (mod 4);

(iv) s Ξ 2 (mod 4), the squarefree part of s contains a prime =
3 (mod 4).
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PROPOSITION 5.9. Denote by N(s) the maximum number of pair-
wise orthogonal Latin squares of order s. If N(s) ^ r — 2, then
there exists an (β, r; μ)-net Σ for every μ ^ l . If r = s + 1, Σ may
be required to be point cohesive.

Proof. The assertion is well-known for μ = 1. Let p19 •••, pv

be the points of such an (s, r; l)-net. Replicate each point μ times;
if a line of the original net contains the points ph, • ••, pu, define a
line of the new net by taking all the corresponding replicated points.

PROPOSITION 5.10. There exists an (s, r; μ)-net Σ if and only if
there exists a μ-set (see Definition 4.3) of r symmetric (s2μ x s2μ)-
matrices Mlf * ,Mr satisfying

(5.10) Ml = sμMi and md = 1 for all i, j .

A point cohesive (β, r; μ)-net exists if and only if there exists a
μ-sβt with the above listed properties which also satisfies

(5.11) Σ< Mϊ^J.

Proof. Assume first the existence of an (s, r; μ)-net. Define the
Mi as in the proof of Proposition 4.8. Then row i of Ms will be
the incidence vector of the uniquely determined line in parallel class
^3, through point pt. By definition, the Mt are symmetric. Since
Σ satisfies (5.3), {M» •• ,Λfr} is a μ-set. If the (i, fc)-entry of Mά

is 1, rows i and k of j are identical; hence their inner product will
be sμ If the (i, &)-entry of Λfy is 0, pu and pk are on distinct lines
from parallel class ^ ; as these lines do not meet, the inner product
of rows i and k will be zero. Thus M\ = sμM^

Assume conversely the existence of a μ-set of symmetric
(s2μ x s2μ)-matriees M19 •••, Mr satisfying (5.10). Take as points of
Σ the symbols plf *- ,pv with v: = s2μ. Take as lines in 'parallel
class' φi the point sets given by the rows of Λf<. By (5.10), each
row of Mi must contain precisely sμ entries 1. Again by (5.10),
two distinct rows of Mt which meet at all must in fact be identical;
thus they induce the same line of Σ. Hence Σ will satisfy (5.1).
Also, lines from distinct parallel classes will meet precisely μ times,
as {Mίf , Mr} is a μ-set of matrices; then Σ satisfies (5.3). Finally,
there are s2μ rows in Mif and each line of Sβ* is induced by sμ rows
of Mi. Hence each parallel class contains precisely s lines, and Σ
is an (s, r; μ)~τιet. Now the truth of the second assertion should
also be easy to see.

COROLLARY 5.11. An ARBD with parameters s, m as described
in 5.6 exists if and only if there exits a (1 + ms — m)set of sym-
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metric matrices M^ of order s2(l + ms — m) which satisfies

(5.12) Ml =.8(1 + ms — m)Miy and m^ = 1 for all i, j

(5.13) X, Ml = s(l + ms)(l + ms - m)J + s\ms - m + I)2/-.

Proof. Apply 5.6 and the proof of 5.10.

COROLLARY 5.12. Assume the existence ofr — 2 mutually or-
thogonal Latin squares of order s. Then for all μ^l there exists
μ-set of r symmetric matrices s2μ which satisfies (5.10).

Proof. Apply 5.9 and 5.10.

6* Uniform c-ίΓ-stnictures. In this section we consider two
special classes of c-if-structures: pre-uniform and uniform c-K-
structures. These are generalizations of the notion of uniformity
for ordinary PiZ-planes. The existence of pre-uniform, resp., uni-
form c-iΓ-structures over given gross structures is equivalent to the
existence of certain (s, r; c)-nets, resp., ARPP's (Theorem 6.14, Pro-
position 6.19, Corollary 6.20).

DEFINITION 6.1. A c-if-structure Π with parameter t Φ c is
called pre-uniform provided that

(6.1) p ~ q, G ~ H, pIH and p, qIG always imply qlH.

Π is called uniform (of index λ) if, for some natural number λ,
the following property also holds:

(6.2) \ί p ~ qy p Φ q and [p, q] Φ 0, then [p, q] = Xt and dually.

Property (6.1) is one of the standard definitions for uniformity
in the case of Piϊ-planes; in this special case, (6.2) is automatically
satisfied with λ = 1 (cf. Proposition 6.2).

PROPOSITION 6.2. A pre-uniform K-structure is uniform of
index 1.

Proof. Let p ~ q Φ p and [p, q] Φ 0, say p, qIG. There are
precisely t neighbor lines of G through p (which by (6.1) all contain
q). Since Π is a l-i£-structure, nonneighbor lines intersect in at
most one point of a given point neighborhood. Hence a line H with
H Φ G cannot contain both p and q. Thus [p, q] = t; and by duality,
[G, H] = t or 0 f or G - H Φ H.

PROPOSITION 6.3. The classes of pre-uniform and uniform c-K-
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structures are self-dual and thus satisfy the principle of duality.
Again we refrain from writing dual statements of the results
obtained.

DEFINITION 6.4. Let Π be a c-iΓ-structure, p be a point of Π.
Denote the set of all points neighbor to p by p'. For any line G,
let G(p) be the set of all points on G which are in p'. Let S5(j>)
consist of all G(p) with \G(p)\ Φ 0. Then we call Π(p): = (p\ 33(p), ε)
the incidence structure induced in the neighborhood of p. Π(G) is
defined dually.

PROPOSITION 6.5. Let Π be a c-K-structure with parameter t Φ c.
Then the following assertions are equivalent:

( i ) Π is pre-uniform;
(ii) c divides t (write s for t/c), and the incidence structure

Π(p) induced in the neighborhood of p is an (s, [p']; c)-net for all
points p of Π.

Proof, (i) ==> (ii): Let Π be pre-uniform. Call the induced lines
G{p) and H(p) parallel if and only if G ~ H. As 77 is pre-uniform,
each point of Π(p) is on precisely one line of each parallel class.
Each line G(p) contains precisely t points, and Π(p) has exactly t2/c
points; thus each of the [pf] ^ 3 parallel classes consists of t/c = s
lines. Finally, lines from distinct parallel classes intersect in precise-
ly c points of Π(p), since Π is a c-iT-structure. Thus Π(p) is an
(s, [p']; c)-net.

(ii)=*(i). Now let Π(p) be an (β, [p']; c)-net for all points p of
Π. Let p ~ q, G ~ H, pIH and p} qIG. We want to show that
G(p) — H(p), hence that qlH. We assert that lines from different
neighbor classes induce lines from different parallel classes in Π(p).
Thus let K 9̂  L and [K(p)9 L(p)] Φ 0. As K', LΊp\ there are precise-
ly c points r ~ p with rIK, L. So [K(p\ L(p)] == c < t; thus K(p)
and L(p) are not parallel by (5.1). Hence the [p'] neighbor classes
of lines incident with p already induce at least [pf] different parallel
classes of Π{p). As Π(p) has precisely [pf] parallel classes, we must
have K(p)\\L(p) whenever K ~ L. Hence, in particular, G(p)\\H(p);
and thus by (5.1), G(p) = H{p).

COROLLARY 6.6. Let Π be a c-K-structure with parameter t Φ c.
Then the following assertions are equivalent:

( i ) Π is uniform of index λ;
(ii) c divides t (let s denote t/c), and Π(p) is an (s, [p']; c)-ARPP

of index λ for all points p of Π.
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COROLLARY 6.7. Let 77 be a K-structure with parameter t Φ 1.
Then the following assertions are equivalent:

( i ) 77 is uniform.
(ii) Π(p) is a (t, [p']; l)-net for all points p.

Proof. Apply Propositions 6.5 and 6.2.

Corollary 6.7 was proved in [12, Theorem 2.40] in the special
case that 77 is a PϋΓ-plane.

COROLLARY 6.8 (Lϋneburg [17, Satze 2.12, 2.13]). Let Π be a
(t, r)-PH-plane with t Φ 1. Then the following assertions are equi-
valent:

( i ) 77 is uniform.
(ii) Π(p) is an affine plane for all points p.
(iii) t — r.

COROLLARY 6.9 (Jungnickel [12, Corollary 2.42]). Let Π be an
(r, r)-PK-plane. Then 77 is in fact a uniform PH-plane.

Proof. It is well-known (see, e.g., [7, Proposition 2.6]) that the
average number of lines joining a point p with a neighbor point
q Φ p is t(r + l)/(t + 1), i.e., here (where t = r) r. Since p ~ q Φ p
implies [p, q] ̂  t — r, we have [p, q] = r ^ 2. By duality, Π is a
Piϊ-plane. By Corollary 6.8, Π is uniform.

PROPOSITION 6.10. Let Π be a uniform c-K-structure with para-
meter t Φ c Φ 1. Then 77' is in fact a tactical configuration with
fc = r = (λ - l)(ί - l)/(c - 1) + 1.

Proof. By Corollary 6.6, c divides t; and Π(p) is an (s, [p']; c)-
ARPP of index λ for all points p of 77 (with s = ί/c). Let r denote
[p']. Then Corollary 5.4 asserts that X(sc — 1) = sc — 1 + (r - l)(c - 1 ) .
Hence r is indeed independent of p and is given by the formula in
the assertion. A dual argument proves the assertion for lines.

DEFINITION 6.11. A c-ίΓ-structure will be called a c-H-structure
provided that

(6.3) p ~ q implies [p, q] > c ,

(6.4) G - H implies [G, H] > c .

(Cf. Definition 3.4.) A 1-H-structure will, of course, be abbreviated
to H-structure.
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PROPOSITION 6.12. Let 77 be a neighbor cohesive, uniform c-K-
structure with parameter t Φ c. Then Π is a c-H-structure, and
Πr is a tactical configuration with k = r = (szc — l)/(s — 1) {where s
denotes t/c). Furthermore, either c — 1 (and s = r — 1) or s ^

- 3)] < VT.

Proof. As 77 is neighbor cohesive and uniform, we have [p, q] =
Xt^t>c for any two neighbor points p, q, and dually. Thus 77
is a c-iϊ-structure. By Corollary 6.6 and Proposition 5.7, Π(p) is a
complete (s, r; c)-net for the appropriate r for all points p of 77.
Hence by Proposition 5.3, r — (s2c — l)/(s — 1) = k. Clearly s = r — 1
if c = 1. By Propositions 5.7 and 5.6, there exists an integer m
with r = 1 + s + ms2. Thus for c ̂  1, one has s2 <; r — 1 — s,
which yields the desired conclusion.

EXAMPLE 6.13.

(a) Let a tactical configuration 77' with k — r = 11 be given.
If 77' is the gross structure of some neighbor cohesive, uniform
c-X-structure for which t Φ c, then by 6.12, either c = 1 (hence
s = 10, i.e., by 6.10, the induced structures Π(p) would be affine
planes of order 10) or s ^ 3; in fact, the only possible pair for
(s, m) then is (2, 2) (which is conceivable by 5.8 and can, in fact,
be realized, as will be shown in Corollary 6.20).

(b) Similarly, assume k = r = 22. Either s = 21, c = 1 (cor-
responding to an affine plane of order 21, which does not exist by
the Bruck-Ryser theorem [4]); or s ^ 4. The only possible solution
pair (s, m) would be (3, 2) (note that s Ξ> 2 by 6.6, since £ = sc and
t Φ c), which is excluded by 5.8 (iii). Hence no uniform c-Jϊ-struc-
ture 77 over a tactical configuration Πf with k = r = 22 exists.

THEOREM 6.14. Let Πr be a connected incidence structure with
at least 3 points per line and at least 3 lines per point. Define

(6.5) r: = max {[p']: p' e 77'} and k: - max {[£']: G' e 77'} .

Assume that r ^ k. Then there exists a pre-uniform c-K-structure
Π with gross structure Π' and parameter t Φ c if and only if there
exists a (t/c, r; c)-net.

Proof. The necessity is given by Proposition 6.5. Now assume
the existence of an (s, r; c)-net Σ with s = t/c. Construct from Σ a
c-set of (s2c x s2c)-matrices Ml9 , Mr as in the proof of Proposition
5.10. Let B be an incidence matrix for 77'; then each line sum of
B is at most r. Decompose B as the sum of r matrices Plf •••, Pr

having at most one 1 per line (cf. [18, Theorem 11.1.6]). Replace
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each 1 in Pt by Mt and each 0 by a zero matrix. Let A be the
sum of these enlarged matrices, and take A as an incidence matrix
of 77. Then 77 is a c-iΓ-structure over 77' if neighborhood is defined
in the obvious way. That 77 is pre-uniform and has parameter
t = sc follows from the fact that the Λf/s are constructed from Σ.
We leave the details of the proof to the reader.

COROLLARY 6.15. Let77' satisfy the conditions of Theorem 6.14,
In addition, assume that 7 ̂  r ^ k ̂  3. Then, for all sf c ^ 2,
there exists a pre-uniform c-K-structure over 77' with parameter
t = sc.

Proof. Apply 5.5(d) and Theorem 6.14.

COROLLARY 6.16. Let 77' be as in 6.14, k and r as in (6.5).
Then there exists a uniform K-structure 77 with parameter t and
gross structure 77' if and only if there exists a (t,r;ΐ)-net.

COROLLARY 6.17 (Drake/Lenz [7, Theorem 3.1], Jungnickel [12,
Theorem 4.22]). Let 77' be a protective plane of order r. Then the
following assertions are equivalent:

( i ) there exists a (ί, r)-PK-plane 77 with gross structure 77';
(ii) there exists a (t, r + 1; l)-net;
(iii) there exists a uniform (t, r)-PK-plane 77 with gross struc-

ture 77'.

Proof. By [7, Proposition 2.8], the truth of (i) implies that of
(ii).

COROLLARY 6.18. Assume the existence of a (t, r)-PH-plane with
t Φ r. Then there also exists a uniform (ί, r)-PK-plane which is
not a PH-plane.

Proof. Apply Corollaries 6.17 and 6.8.

PROPOSITION 6.19. Let 77' be a connected incidence structure
with at least 3 points per line and dually. Let c Φ 1. Then there
exists a c-K-structure 77 over 77' with parameter t Φ c which is
uniform of index λ if and only if: 77' is a tactical configuration
with k — r = [(λ — ί)(t — l)/(c — 1)] + 1, and there exists a (t/ct r; c)-
MPP Σ.

Proof. The necessity is given by 6.6 and 6.10. Construct 77
from Σ as in the proof of 6.14* Then 77 is pre-uniform with the
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desired parameter t. Note that in this special case all line sums of
B are r; hence, the P/s are permutation matrices, and each Mt has
been inserted into each line of B precisely once. Now let p, q be
two joined neighbor points of 77; then p, q correspond to the same
point of 77', i.e., to the same row of B. As each Λf< has been used
exactly once in that row and the Λf/s come from an ARPP of index
λ, p and q will be joined by precisely Xt lines. The dual argument
for neighbor lines completes the proof that 77 is uniform.

COROLLARY 6.20. Let 77' be a connected incidence structure with
at least 3 points per line and dually. Then there exists a uniform
c-H-sturucture 77 with gross structure 77' and parameter t Φ c if
and only if

( i ) c divides t (let s denote t/c),
(ii) 77' is a tactical configuration with parameters k = r =

(s2c - l)/(β - 1),

(iii) there exists an ARBD with parameters s and μ = c.

Proof. The necessity is given by 6.6 and 6.12. Conversely,
construct 77 as in the proofs of 6.14 and 6.19 to obtain a uniform
c-ϋΓ-structure with the desired parameters. Since we begin with an
ARBD, ΣMiMi ^ J holds; hence 77 is neighbor cohesive; hence, by
Proposition 6.12, 77 is a c-iϊ-structure.

The following result on partial designs is similar to Propositions
2.16 and 2.18.

PROPOSITION 6.21. Let (φ, 77, 77') be a uniform c-H-structure
with parameter t. Suppose that 77' is a partial design on d classes.
Then Π is a partial design on d + 1 classes. If 77' is divisible or
symmetric, so too is 77.

Proof. Let t h e parameters of 77' be nOf •• ,w(f_1; λ0, •• ,λ( ί_1;

j>fy. Then 77 has t h e following p a r a m e t e r s :

(6.6) m< = nfi for all i < d ,

md = f - 1

(6.7) q\i = p}rt
2 for h, i, j < d ,

qίi =Wi for i <d ,

qli — t2 ~ 1 for i < d ,

qd

dd = f - 2

(The remaining q\5 are 0.)

(6.8) μ{ = cXi for i < d ,
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μd = Xt = 1 (where we have written s for tic. By
s — 1

6.5 and 5.2, Π(p) is an (s, [p']; c)-ARBD for each p in 77.
That λ = (βc - l)/(s - 1) now follows from 5.6).

EXAMPLES 6.22.

( i ) Using 6.20, 5.8, and 6.21, one can duplicate the first two
steps of the construction given in Examples 4.10. Specifically, one
begins with a symmetric design 77' whose parameters are (v, k, λ) =
(15, 7, 3). Using s — c — 2, one obtains a uniform 2-iJ-structure 77"
over 77' whose parameters are (v, k, λ0, \) = (120, 28, 6, 12); then
(with c = 1, s = 27) a uniform 1-iϊ-structure 77 over 77" whose para-
meters are (v, k, λ0, λx, λ2) = (120 272, 28-27, 6, 12, 27).

(ii) Let 77' be a (23, 11, 5)-design. By 5.8(iii), there exists an
ARBD with s = 2 and m = 2, i.e., with μ = 3. Then (s2μ - l)/(s - 1) =
11. Thus, by 6.20, one obtains a uniform 3-f7-structure 77 (over
77') whose parameter t = sμ — 6. By 6.21, 77 is a symmetric divisi-
ble partial design with parameters (v, k, λ0, λ,) = (276, 66, 15, 30).

7* Regular c-ίΓ-structures* We now introduce difference
methods; equivalently, we restrict our study to "regular" c-iΓ-struc-
tures, these being generalizations of the regular PTΓ-planes introduced
in [13]. There the gross structure was assumed to be a cyclic pro-
jective plane; here we need suitable gross structures which may be
described by difference methods. The gross structures of the c-K-
structures introduced in § 1 had only to satisfy a few comparatively
weak properties (cf. (1.7)); the main assumption to be added here is
the existence of a nice automorphism group. The resulting gross
structures ("regular" incidence structures) can all be described by
generalizations of ordinary difference families. The main result of
this section will be an analogue of Theorem 3.9, yielding the existence
of many regular symmetric divisible partial designs.

DEFINITION 7.1. A finite incidence structure Ω = (Sβ, S3, 7) is
called regular if

(7.1) Ω is connected, and each block contains at least 3 points;
(7.2) Ω admits an abelian automorphism group Z acting regularly

on 5β and semiregularly on 23.

This definition is quite general: it includes, for example, cyclic pro-
jective planes, regular block designs, regular PiΓ-planes (as in [13])
and the "regular planes of index λ" of [14].

DEFINITION 7.2. Let Z be an abelian group. A generalized
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difference family 35 in Z is a collection of subsets Dlf •••, Du of Z
satisfying

(7.3) IAI ^ 3 for i = 1, « , u ;
(7.4) iΓ is generated by Δx U U Δu where Δ% is the set of dif-

ferences from Di'9 i.e.,

We denote by fc(©) the number of elements in the D/s minus 1, i.e.,

As examples, we mention ordinary difference sets and (v, k, λ)-
difference families (cf., e.g., [9] and [23]), the (t, r)-difference sets
of [13] and the (v, kf λ; w)-difference families of [14].

PROPOSITION 7.3. Let © = {Dίf •••,£>„} be a collection of non-
empty subsets of a finite abelian group Z. One obtains an incidence
structure Ω = (ξβ, 35, /) from ® as follows: 5β = ^, S3 = {A + &'•
ΐ — 1, *• , u xe Z}, I = ε. (Here blocks Dt + a? αm£ A + 2/ are ίo
6e considered distinct unless the pairs (ΐ, a?) a^cί (i, 7/) are identical:
in particular, repeated blocks may occur.) Then Ω is regular if
and only if © is a generalized difference family. Every regular
incidence structure Ω may be described in the preceding manner.

We will not give a detailed proof, as the arguments needed
are largely routine. To help the reader, however, we indicate here
the method of constructing a suitable © from a regular Ω. One
fixes a point p and gives to each point x of Ω the coordinate z from
Z if {p)z — x. Since Z acts regularly on the points of Ω, the union
of the blocks in any block orbit covers the points of Ω. Number
the block orbits by 1, 2, •••,%; from orbit i, select any block B
which contains p, and put Dt equal to the set of all coordinates of
points in B.

For future use, we cite the following well-known result. For
a proof, see e.g., [23, Lemma 2].

LEMMA 7.4. A regular incidence structure is a (v, k, X)-design
if and only if (in the representation of Proposition 7.3) 2) is a
(v, k, xydifference family; i.e., \Dt\ = k for i = 1, •••, u and each
nonzero x e Z has precisely λ representations x = dim — din.

We are now in a position to generalize the notion of regularity
for PϋΓ-planes (see [13]) to arbitrary c-if-structures.
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DEFINITION 7.5. Let 77 be a c-if-structure. 77 is called regular
if it admits an abelian collineation group G — Z φ N such that

(7.5) 77' is regular with respect to Z\

(7.6) N acts regularly on the elements (points or lines) of each
neighbor class of 77.

If 77 has parameter t and 77' is a (v, k, λ)-design, we shall sometimes
call 77 a regular c-(ί; v, k, X)-K-design. As usual, we omit the prefix
c- when c — 1.

One notes that G acts regularly on the points of 77 and semi-
regularly on the lines of 77.

DEFINITION 7.6. Let G = Z@N be an abelian group of order
vF/c. Then a family ® = (A), ΐ = 1, •••, u, of subsets Dt of G,
where 7?έ = {(dih, dihm): h = 1, , &,; m = 1, , ί}, each ^ ^ 3, is
called a generalized (c, t)-difference family if the following two
conditions are satisfied:

(7.7) ®': = {Z>;:i = l, . . . , M } with # : - {dth: h - 1, , fcj is a
generalized difference family in Z;

(7.8) if (i, fe) and (i, fc) are unequal ordered pairs, then every
element y of N has precisely c representations of the form
y — ^ k ^iΛw

S) is called cohesive if furthermore

(7.9) for each nonzero y e N, there is at least one representation
y — dihm dihn.

If for each nonzero y eN, there are at least c + 1 such representa-
tions of y, 3) is called special. If 3D' is an ordinary (v, k, λ)-dif-
ference family, we call SD a c-(ί; v, fc, X)-difference family. Again,
the prefix c- will be omitted for c = 1.

PROPOSITION 7.7. Lei ^: 77 —> 77' 6β α?ι incidence structure epi-
morphism. Then (φ, 77, 77') is a regular c-K-structure with para-
meter t if and only if it can be described as follows:

( i ) ?β — G = Z @ N for some abelian group G;
(ii) S3 = {A + (x, y): i = 1, , u; (x, y) e G} where ® = {Dιy ,

Du} is a generalized (c, t)-difference family;
(iii) I=e;
(iv) 77' is α regular incidence structure relative to 3)';
( v ) ^ is defined by (x, yf = », ( A + (a?, y))# = J5J + cc. (Again

blocks Όi + (a?, i/) αticZ Z>̂  + (xf, yr) are to be considered distinct un-
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less the ordered triples (i, x, y) and (j, xf, yr) are identical.)
Π is a c-(t; v, k, X)-K-design if and only if 3) is a c-(t; v, k, λ)~

difference family. Furthermore, 77 is neighbor point cohesive if and
only if 3) is cohesive, and 77 satisfies (6.3) if and only if 2D is
special. Finally, if u — 1, then 77 is neighbor cohesive, resp., a
c-H-struc-ture if and only if 3) is cohesive, resp., special.

Proof. Let 3D be a generalized (c, £)-difference family, (φ, 77, 77')
be constructed from 5D in the manner indicated. Clearly, properties
(7.5) and (7.6) hold. Thus it suffices to show that φ is a c-jfif-epi-
morphism. Then let (x, y)φ Φ {xr, y')φ, i.e., x Φ xr, and assume that
x, xf I(D'i + a), say x = dih + a, x' = dik + a. Then (a?, #), (a?'f y')I(Dt +
(a, b)) if and only if there exist indices m, n such that y~dihw,-\-b, yf~
dίkn + b; i.e., precisely when indices m, n exist such that dihm—dikn~
y — yf. By (7.8), there are c respresentations of this form, and the
verification of (1.4) is complete. The proof of the dual double flag
lifting property is similar. Then 77 is a regular c-7£-structure (which
clearly has the desired parameter t).

To prove the converse, one constructs © from (φ, 77, 77') as in
the proof of Proposition 7.3. Clearly, 5β, 33, I satisfy (i), (ii), and
(iii), through we still must verify that S is a generalized (c, ί)-
difference family. By (7.5) and (7.6), we may so "coordinatize" 77'
that (iv) and (v) are satisfied. By 7.3, 3)' is a generalized difference
family; i.e., 3) satisfies (7.7). Let (dih, dihm) be any element of any
Dt. Then (7.6) and Theorem 1.25 imply that Ώt contains precisely
t elements (dih, dihx) and that |JV| — tf/c. Thus it suffices to verify
(7.8) in order to conclude that ® is a generalized (c, ^-difference
family. Suppose then that (ΐ, h) Φ (j, k) and y are given. Then
0 e (D'i — dih) Π (JDJ — djk). Since these two lines are unequal, there
are precisely c pre-images of 0 (i.e., points of the form (0, z)) in
the intersection of Di + (~dίh, 0) and Dά + ( — djk, y). For each of
these c points, z — dihm = djkn + y for some m, n. This yields c
representations for y of the form dihm — djkn, and there are no
others.

The assertion on c-ϋΓ-designs follows from Lemma 7.4. Now
consider neighbor points (x, y) and (x, yf). They will be joined by a
line Dt + (a, b) if and only if x = dih + a, y = dihm + b, yf = dihn + b
for some indices h, m, n; i.e., if and only if y — yf = dihm — dihn.
Then each pair of neighbor points will have some joining line Dt 4-
(α, b) if and only if (7.9) holds; i.e., if and only if 3D is cohesive.
Now consider neighbor lines, and assume that u = 1. Let the single
difference set in 3) be denoted by D = {{dh, dhm)}. Then neighbor
lines D + (x, y) and D + (x, yf) will possess a common point (a, b) if
and only if a = dh + x, b = dhm + y = dhn + yf for some indices h,
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m, n; i.e., if and only if y — y' = dhn — dhm for some ht m, n; i.e.,
if and only if S) is cohesive. The arguments for the case that S>
is special are similar.

REMARK 7.8. If u > 1, then (7.9) is not sufficient to imply
neighbor line cohesiveness. The reader may wonder why we did
not modify (7.9) so that the restriction u = 1 would be unnecessary
in the statement of 7.7. This would also necessitate a suitable
modification of (7.12) below to assure the validity of Proposition 7.10.
We have not done so, because we have been unable to find nontrivial
examples of the so modified "i£-matrices." Furthermore, in the case
c = 1, no such examples can exist (as follows from [15, Lemma 2.5]).

DEFINITION 7.9. Let N be an abelian group of order f/c. A c-
(t, k)-K-matrix over N is a matrix A = (ai5) (i = 0, , k; j = 1, , t)
with entries from N such that the following conditions are satisfied.

(7.10) If aih = aim, then h = m.
(7.11) For each pair (i, j) with i Φ j and ί, j e {0, , k}, the list

of differences aih — ajm (h, m = 1, •••,£) contains each ele-
ment of N exactly c times.

A is called cohesive (briefly, a c-(t, k)-CK-matrix) if furthermore

(7.12) each nonzero element of N occurs at least once among the
(k + l)t(t — 1) differences aih — aim with h Φ m.

If each nonzero element of N occurs at least c + 1 times in this
way, A is called a c-(ί, k)-H-matrix. When c = 1, we write simply
(ί, kyK-matrix or (ί, k)-H-matrix as in [13]. When we do not wish
to express ί and fe, we shall abbreviate to c-K-matrix or c-H-matrix
and, if c = 1, to K-matrίx and H-matrix.

PROPOSITION 7.10. Lβί 3) be a generalized (c, t)-difference family
in G = Z@N, $)' be the associated generalized difference family in
Z (see (7.6)), k denote &(S)') (see 7.2). Tfom £&e & + 1 seίs {dihm:
m = 1, , ί} (i = 1, , %; h = 1, , AJJ form a c-(t, k)-K-matrix
A over N. Conversely, given a generalized difference family £)' m
Z îί/z- & = fc(©') α^d α c-(ί, kyK-matrix A over N, one obtains
a generalized (c, tydifference family SD m (? = Z φ JV wiίfe seί5
£>* as follows: for 1 <^ i <* u, D^ — {dίh x A a : h = i, , fcj, where
{Aih} is the set of rows of A.

® is cohesive if and only if A is a c-CK-matrίx; ® is special
if and only if A is a c-H-matrix.

The proof is obvious from the definitions.
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EXAMPLES 7.11.

( i ) Assume the existence of a generalized difference family ®
with k = ifc(SD). Let ί be a natural number for which k <̂  qi for all
i, where t — qλ qn is the prime power factorization of t. Then
there exists a (t, fc)-jK-matrix ([13, Corollary 3.4]) and thus a regular
ϋΓ-structure with parameter t.

(ii) Assume the existence of a (v, k, λ)-difference set. There
exists a (t, fc — l)-Jϊ-matrix and hence a regular (ί; v, &, λ)-iϊ-design
in at least the following cases:

(a) t = (fc — 1)*, where ί; - 1 is a prime power [13, Corollary
4.3];

(b) t — qn(k — 1), where q and fc — 1 are prime powers with
2k ^ q + 1 ̂  k(k - 1) [13, Corollary 5.8];

(c) (ί, jfc — 1) a special Lenz pair (cf. Definition 2.13) [15,
Theorem 2.17].
For further existence results on K- and H-matrices the reader should
consult [13] and [16].

(iii) Applying (ii) to an (11, 5, 2)-difference set (a regular biplane),
we get regular (4n; 11, 5, 2)-ϋΓ-designs and regular (4qn; 11, 5, 2)-jEf-
designs for q = 9, 11,13,17,19 (cf. Examples 4.7). Similarly, a
(19, 9, 4)-difference set can be used to obtain regular (Sn; 19, 9, 4)-iϊ-
designs.

PROPOSITION 7.12. Assume the existence of a (t, r)-K-matrix A.
Then there exists a c-(ct> r)-K-matrix for any natural number c.
If A is a CK-, resp., an H-matrix, then there also exists a c-(ct, r)-
CK-, resp., a c-(ct, r)-H-matrix.

Proof. Let A be the given matrix (with entries from N, say)
and M be any abelian group of order c. If row i of A is Aif let
row i of the new matrix B be M x A<. It is easily checked that
B has the desired properties.

COROLLARY 7.13. Let t be a natural number, t = gx qn the
prime power factorization of t. If r ^ qt for i = 1, •••, n, then
there exists a c-(ct, r)-K-matrix for all natural numbers c.

Proof. Apply 7.12 and [13, Corollary 3.4].

We now want to consider regular balanced ίΓ-structures. We
give a definition which is taken from [15, Definition 2.6], but is here
extended to the case of if-matrices rather than iϊ-matrices.

DEFINITION 7.14. Let A = (aik) be a (t, r)-i£-matrix over N. A is
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called balanced of type n if there exist distinct subgroups E = Un <
Un-λ < < U2 < Ux = N of N such that the following conditions
are satisfied:

(7.13) there are distinct natural numbers λ* (i = 1, •• , n — 1)
such that each x in U\Ui+ί occurs precisely λ* times as a
difference of the form ahj — ahk;

(7.14) there are natural numbers q2, •• ,g5t such that |Z7t| =
(?»? -i Qi+iY = : Mi;

(7.15) for all i = 1, , n - 1; j - 0, , r; k = 1, , ί;

PROPOSITION 7.15.

( i ) Let A be a (t, ryK-matrίx, balanced of type n. Let t<: =
Q2Q3 Qί Then there is a (ti9 r)-K-matrix At that is balanced of
type i, obtained from A by identifying elements mod Ut (i —
1, " , n — 1).

(ii) If A is a (t, r)-K-matrix, balanced of type if then q2 = t2 =
λL = r. Hence r 11. Also,

Hence A is in fact an H-matrix.
(iii) r is a prime power.

Proof. The arguments in [15, 2.7-2.11] hold almost without
change to prove (i) and (ii). Then (iii) is just [15, Corollary 3.3].

PROPOSITION 7.16. Let (φ, Π, W) be a regular neighbor cohesive
K-structure with n = 1 (cf. Proposition 7.7). Then Π is balanced
if and only if its K-matrix A is balanced (cf. Propositions 7.7 and
7.10); in this case, Π is an H-structure and Πf is a tactical con-
figuration with k = r.

Proof. Routine modifications in the proofs of [15, 2.12 and 2.13]
yield the equivalence of balance in Π and in A. For the convenience
of the reader, however, we indicate here the method of constructing
the ίΓ-structures Πά (j = 1, •••,%) from the matrices As (obtained
in 7.15): if D is the "base line" of Π =: Πn, say D = {(dif dih)}, one
takes the sets DU): = {(dίf dih + Uj)} as base line for Π3 , and the
development occurs with respect to the group ZφN/Uj. To obtain
the remaining conclusions of 7.16, one applies 7.15(ii) and Corollary
2.8.
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DEFINITION 7.17 (See [15, 4.1]). Let A be a (ί, r)-iϊ-Matrix that
is balanced of type n. Denote by S^ the set {ajm + [7,+ι: ajm =
aSh mod Z7J. Then A is called uniformly balanced if the following
condition holds:

(7.16) for all i = 1, , n - 1; j = 0, , r; fc, fc' = 1, , ί; either
$5* — SJ jb' = UJUi+1 or there exists an element sc in Z7, such
that SJt - S%, + {x + Ui+1).

PROPOSITION 7.18. Let Π be a regular H-structure that is
balanced of type n. Then Π is minimally uniform {see Definition
2.9) if and only if its H-matrix A is uniformly balanced.

Proof. Make routine modifications in the proof of [15, Theorem
4.3].

THEOREM 7.19 [15, Corollary 4.10]. There exists a uniformly
balanced {t, r)-H-matrix if and only if {t, r) is a special Lenz pair.

THEOREM 7.20. Let Π' be a regular incidence structure with
u = l (cf., 7.3). There exists a regular, balanced, minimally uniform
H-structure Π with parameter t over Π' if and only if {t, k — 1) is a
special Lenz pair {where k is the cardinality of the difference set
for Πf).

Proof. Apply 7.19, 7.16, and 7.18.

We urge the reader to compare the preceding result with
Theorem 3.9. Regarding partial designs, we obtain

COROLLARY 7.21. Assume the existence of a {v, k, X)-difference
set, and let t = q2 qn be a special Lenz number of type n based
on k. Let ut: = Π?=<+i QJ (C^ (2.4)), un: — 1. Then there exists a
regular symmetric divisible partial design Π on n classes with
parameters

(7.17) nQ = {v - l ) ί 2 , n, = u\ - u2

ί+ι for 1 £ i ^ n - 1

(7.18) λ o ^ λ , λ, = g»" g<+ife for l ^ i ^ t t - 1 ;
1 + 9

(7.19) p°00 = (v - 2)t2 ph

u = nt for h ^ 1, h > i

Pίi = nh for h ^ l , h> i

pit - u\ - 2uUι for i ^ l ;

the remaining pϊ3- are 0.
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In particular, such partial designs always exist for

g - 1 q - 1 tf-1

where m ^ 2 αm£ q is a prime power, provided that k — 1 is a
prime power.

Proof. The existence of the (#, k, λ)-difference set implies the
existence of a regular symmetric (v, ft, λ)-design W (i.e., a symmetric
divisible partial design of class number 1) by Lemma 7.4. By
Theorem 7.20, we obtain a regular balanced (ί; v, k, λ)-iϊ-design Π
over Π'. By Propositions 2.16 and 2.18, Π is a regular symmetric
divisible partial design on n classes. The parameters of Π follow
from formulas (2.8) to (2.15) in the proof of Proposition 2.16. The
last assertion is a consequence of Singer's theorem [22].

For numerical examples, the reader should compare 4.7; the
parameters obtained there can be obtained here, too, but for regular
partial designs.

8* Regular uniform c-l£-structures* In this final section we
combine the notions introduced in §§6 and 7 to study uniform,
regular c-iΓ-structures. In particular, we will determine the para-
meters of all regular pre-uniform c-iΓ-structures with a given gross
structure, subject to the condition (c, t/c) = 1; a comparable result is
obtained for regular uniform c-ίf-structures. In the latter case,
one has necessarily 1 = c = u. We will also obtain some more
regular symmetric divisible partial designs.

DEFINITION 8.1. Let A be a c-(t, r)-i£-matrix over N. A is
called pre-uniform if each row of A is a coset of some subgroup
of N. A is called uniform (of index 7) if A is pre-uniform and if
there exists a natural number 7 such that each element y Φ 0 of N
occurs either tΊ or 0 times as a difference of the form au — aik.

One immediately obtains

PROPOSITION 8.2. A pre-uniform (t, r)-K-matrix is uniform (of
index 1). If A is a pre-uniform c-(t, ryK-matrix, then c divides t.
We put s: = t/c.

To provide examples of uniform c-ίf-matrices, we now prove
the following result. Further examples of pre-uniform c-if-matrices
will be provided by results 8.6, 8.7, and 8.8.
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PROPOSITION 8.3. Let q be a prime power, k be a natural num-
ber. Then there are uniform qk — (qk+\ r)-H-matrices with r = qk+1 +
qk _j_ . . . _j- gβ This is the maximum r possible for a pre-uniform
qk — (qk+\ r)-K-matrix.

Proof. We construct the desired matrix in the elementary
abelian group of order qk+\ Consider the projective geometry in the
(k + 2)-dimensional vectorspace V over GF{q). Take the qk+ί +
qk _j_ . . . + i hyperplanes as the rows of a matrix A. As any two
of these intersect in a ^-dimensional subspace of F, we obtain a
qk __ (qk+\ qk+1 + qk + + )̂-jBΓ-matrix, which is clearly pre-uniform.
Now consider any x e V with x Φ 0. If it occurs from a given row
of A at all, it has to occur precisely qk+ι times from this row. But
x will be on precisely qk + + q + 1 hyperplanes; hence A is in
fact a uniform g*-.H-matrix of index 7 = qk + ••• + q + 1.

Now assume that B is a pre-uniform qk — (qk+\ r)-i£-matrix over
some abelian group N of order qk+2. We construct an (s, r; μ)-net
Σ in the following way: points of Σ are the elements of N, and
lines of Σ are the cosets of the lines of B. Then Σ is a (q, r + 1; #&)-
net, as is easily checked. By Proposition 5.3, r + 1 <£ tf&+1 +
?* + . . + 1.

THEOREM 8.4. Lβί Π be a regular c-K-structure, A the c-K-
matrix of Π (cf., Propositions 7.7 αnώ 7.10). TΛew £&e following
conditions are equivalent:

( i ) 77 is pre-uniform;
(ii) /or each flag (p, G), there exists a subgroup U of N acting

regularly on N(p, G): - {q: qIG, q ~ p) and N(G, p): = {H: pIH,
G ~ H};

(in) A is pre-uniform.
Furthermore A is uniform of index 7 if and only if Π is uniform
of index 7.

Proof. Let Dl9 --,DU be the "base lines" of Π (cf. the con-
struction in Proposition 7.7).

(i) => (ii). Let (p, G) be any flag of Π. As Π is regular, we
may assume that G = Dt for some i and that p — {dίh> dihh) for some
h, b. Then N(p, G) - {(dih, dihm): m = 1, , t}. Let i7: = {dαm - dM:
m = 1, , ί}. We assert that C7 is a subgroup of iSΓ. Consider any
fixed element of U, say dikΛ — cίαδ. We have pIDif Dt + (0, dihh —
d i A J . As Π is pre-uniform, we have N(p, D%) = iSΓ(p, ^ + (0, d α 6 —
ώ α j ) and thus U + dίAδ = (U + d α 6 ) + (dα & - d α j , i.e., i7 = U -
(<2α» — (Ziλft). As this holds for all elements of U, U is indeed a
subgroup of N. Obviously, U acts regularly on N(p, (?) = N((dih,
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dtkb), Di). But N(G, p) consists precisely of the lines A + (0, y)
where y e U (if j>I(D, + (0, y)), we have dihb = dihm + y for some m);
thus U acts regularly on NOG, p) too.

(ii) ==> (iii). Consider any row of A, say the row corresponding to
dih9 i.e., {dihί, , diht) (cf. Proposition 7.10). Let p: = (dih, dikί). By
hypothesis, there is a subgroup U oί N acting regularly on N{p, Dt) =
{(dihf dίhm):m = 1, •••, ί}. As p is mapped onto the point (dih, dihm)
by the element dihm — dihl of N and as N is regular on the neighbors
of p, we must have U = {diAm — c£<λl: m — 1, , t). Thus the ele-
ments of the given row of A are a coset of the subgroup U of JV,
i.e., A is pre-uniform.

(iii) => (i). Let p ~ q, G ~ H, p, qIG, pIH. As Π is regular,
we may assume G — Di for some i. Then we will have H = A +
(0, a) for some a? Φ 0, p = (dα, d<A6) = (dih, dihn) + (0, x) for some
Λ, ί>, n and # = (d<fc, dihm) for some m. As the elements of the row
of A corresponding to dίh are a coset of some subgroup U of N,
we will have x = d ίA6 — d α w 6 Z7. Hence dikm — x e U + <Zαm; as
Wαi, , diht} = U + dihm, we conclude dihm - x = d<Ap for some p .
Therefore 9 - (dα, d α J = ((d4Λ, dikp) + (0, αj))I(A + (0, x)) = i ϊ . Thus
/7 is pre-uniform.

The truth of the assertion on uniformity is now clear.

LEMMA 8.5. Let A be a pre-uniform c-(sc, r)-K-matrix. Then
there exists a pre-uniform cc'-(scc', r)-K-matrix B for every natural
number c'. If A is in fact a c-H-matrix, then B may also be
required to be a ccf-H-matrix.

Proof. Let G be any abelian group of order c'. Let row i of
the matrix B be At x G, where At is row i of A.

COROLLARY 8.6. There are pre-uniform qn+kb - (gf*+<A+1>»,

qkb _|_ . . . _|_ qh)-H-matrices for all prime powers q and all natural
numbers b, n.

Proof. Apply 8.3 (writing qb in the place of q) and 8.5 (with

c* = q%

PROPOSITION 8.7. Let t = qt qn be the prime power factoriza-
tion of t. Then there exists a uniform (t, r)-K-matrix whenever
r <: tfi for i = 1, •••,%.

Proof. In [13, Theorem 3.1], a (g, g)-ίΓ-matrix A was construct-
ed for each prime power q. As q is a prime power, Singer's theorem
[22] assures the existence of an ordinary difference set in the cyclic
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group of order q2 + q + 1; thus our (g, g)-i£-matrix corresponds to a
(g, g)-Pi£-plane (cf. [13, Corollary 2.8]), which is uniform by Corol-
lary 6.9. Hence A is uniform by Theorem 8.4. Now assume r ^ q.
Then by omitting q — r rows of A, we obtain a uniform (g, r)~K-
matrix, since c — 1. By the preceding argument, we are assured
of the existence of uniform (qif r)-i£-matrices for i = 1, , n, say
Al9 -—,An. Let A( denote row j of A*. Let B be the matrix
whose ith row is A{ x A{ x x A{. Then it is easily seen that
B is a (£, r)-ίΓ-matrix (cf. [13, Theorem 3.3]). As each At is uni-
form, A\ will be a coset of some subgroup Ut of the group iV* over
which Ai is defined; but then clearly row j of B is a coset of
Z7ΊΘ ••• Θ Z7Λ; i e., 5 is uniform.

COROLLARY 8.8. Let s — gx qn be the prime power factoriza-
tion of s. Then there exists a pre-uniform c-(cs, r)-K-matrix (for
every natural number c) whenever gέ ^ r for i — 1, , n.

Proof. Apply 8.7 and 8.5.

We now consider the special case where (c, s) = 1 and show
that, in this case, the sufficient condition of Corollary 8.8 is in fact
necessary.

LEMMA 8.9 (Jungnickel [15, Lemma 2.3]). Let A be a (t, r)-K-
matrix with tΦl. Then r <* t.

PROPOSITION 8.10. Let C be a pre-uniform cc'-(ccrss\ r)-K-matrix
over N where (cs, crsf) = 1. Then there exist pre-uniform c-(cs, r)-
and c'-(c's', r)-K-matrices A and B such that row i of C is At x Bt

(where Ai and B% are rows i of A and J5, respectively).

Proof. N has order s2c>s'2c'. As (sc, s'c') — 1, N splits into
groups K, M of orders s2cf sf2cf

9 respectively.

Consider any row C* of C. It has sc s'c' elements, and we may
assume w.l.o.g. that it is a subgroup Nt of N (it is the coset of a
subgroup by 8.1, and adding an element to a row of a d-if-matrix
again yields a d-lΓ-matrix). Hence C{ splits into subgroups Kif Mi
of K, M, respectively (of orders sc and s'c', respectively). Let Kt

be row At of matrix A and Mt be row Bt of matrix B. Thus
Ct = Aiζ& Bt. Consider any (x, y)eK@M, and any rows i, j of C
with i Φ j . (x, y) occurs cc' times from (A< 0 Bt) — (A3- © Bό) by
(7.11). Let x occur u times from At — Aj9 and y occur v times
from Bi — Bβ. Clearly uv = ccf. In particular, this holds for y — 0.
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Hence, if 0 occurs precisely v times from Bt — B3, each element x
of K has to occur precisely cc'/v times from At — Aά. As A+ — AQ-
gives rise to s2c2 differences and as K contains s2c elements, each
xeK occurs (on the average and hence precisely) c times from
Ai — Ad. Similarly, each yeMoccurs precisely c' times from Bt — B3.
Thus A and B are indeed c-(cs, r)- resp. c'-(c's\ r)-ϋΓ-matrices which
are obviously pre-uniform.

COROLLARY 8.11. Let Abe a pre-uniform c-{cs, r)-K-matrix with
(c, s) = 1. Let s = qλ qn be the prime power factorization of s.
Then r ^ qt for i = 1, , n.

Proof. By repeated application of 8.10, A may be written as
the "product" of a c-(c, r)-iΓ-matrix and (qi9 r)-if-matrices. The as-
sertion follows by Lemma 8.9.

THEOREM 8.12. Let c, s, r be natural numbers with (c, s) = 1,
s = Qi ' Q% the prime power factorization of s. Then there exists
a pre-uniform c-(cs, r)-K-matrix if and only if r ^ qt for i —
1, •••, w.

Proof. Apply 8.8 and 8.11.

In [15, Theorem 3.1], the following result was obtained by
applying Andre's work on congruence partitions [1].

COROLLARY 8.13 (Jungnickel). A uniform (r, r)-H-matrix exists
if and only if r is a prime power.

Proof. Apply 8.12 and 8.2 to obtain the result for (r, r)-K-
matrices. Then construct an (r, r)-Pi£-plane and apply 6.9.

The results 7.7, 7.10, 7.3, 8.12 and 8.4 together now yield one
of the main results of this section.

THEOREM 8.14. Let Πf be a regular incidence structure cor-
responding to the generalized difference family ®'; let k: = fc(S)')>
c, s be natural numbers with (c, s) = 1, s = qι qn be the prime
power factorization of s. Then there exists a pre-uniform regular
c-K-structure Π with parameter t = sc over Πf if and only if
k <Ξ qt for all i.

COROLLARY 8.15. Let r be a prime power, t be a natural num-
ber with prime power factorization t = qλ qn. Then there exists
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a regular uniform (ί, r)-PK-plane if and only if r SQi for
i = 1, •••, n.

We urge the reader to compare 8.14 and 8.15 to 6.14 and 6.16,
respectively.

THEOREM 8.16. Let Πf be a regular incidence structure with
u = 1 (cf. 7.3), c, s be natural numbers with (c, s) = 1. Then there
exists a regular uniform c-H-structure Π with parameter t — cs
over Π' if and only if the following conditions hold:

( i ) c = 1 and k = s + 1 (where k denotes the block size in Π');
(ii) s is a prime power.

Proof. Assume the existence of such an if-structure Π. By
Corollary 6.20, Πr is a tactical configuration with k = r =
(s2c — l)/(a — 1). By Theorem 8.4, there is a uniform c-(sc, k — 1)-
jff-matrix corresponding to 77. If c Φ 1, we have k > (s2 — l)/(a — 1) =
s + 1, i.e., k — 1 > s, which is contrary to Corollary 8.11. Hence
c — 1 and k = s + 1. But then s is a prime power by Corollary
8.13.

Conversely, for all prime powers s, there is a uniform (a, s)-if-
matrix by 8.13; the assertion follows by 7.10, 7.7, and Theorem 8.4.

This is the second major result of § 8; the reader should compare
it to Corollary 6.20. We have now obtained complete characteriza-
tions of the parameters of regular pre-uniform c-iϊ-structures and
of regular uniform c-H-structures over a given image structure for
the special case (c, a) = l. These results are no longer true if (c, s)Φl,
as the examples in 8.3 and 8.6 show. By applying 8.10, one could
get a complete characterization in the general case, if one could
determine the precise value of the maximum possible r for pre-
uniform p* — (pi+j, r)-i£-matrices when p is a prime. Our Proposition
8.3 only covers the case where i is a multiple of j . The general
case seems to be quite difficult.

Finally we mention that the results obtained in this section give
the possibility of constructing some more regular symmetric divisi-
ble partial designs. We have

PROPOSITION 8.17. Assume the existence of a regular symmetric
(divisible) partial design Πr on d classes with parameters vf and k\
Assume furthermore the existence of a uniform c-(sc, k' — 1)-£Γ-
matrix A. Then there exists a regular symmetric (divisible) partial
design Π on d + 1 classes with parameters as in (6.6) to (6.8) and
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v = s2cv', k = sck'.

Proof. Since W is symmetric, u = 1. Hence one may use 7.7
and 7.10 to construct a regular c-iϊ-structure /7 with parameter sc
from 77' and A; Π will be uniform by Theorem 8.4. The remaining
assertions follow by Proposition 6.21 and Theorem 1.25,

EXAMPLES 8.18. Start with a regular (15, 7, 3)-design, i.e., a
(15, 7, 3)-differenee set (cf., e.g., the tables in [9]); and use a uniform
2-(4, 6)-iT-matrix (see Proposition 8.3) to obtain a regular, symmetric
divisible partial design with v = 15-8 = 120, k = 7-4 = 28, λ0 = 3-2 = 6,
λj. = 3-4 = 12. Using 7.20 and a Lenz number based on 28, the con-
struction can be iterated. (Cf. Examples 4.10 and 6.22.(i).)
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