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Consider two topological spaces X and Y, two maps
f,g:X->Y, and a relation R on Y,RczYxY. A Lefschetz-
type theorem is established with regard to the existence of
an #eXsuch that g(x)Rf(x). Several ideas related to the
Lefschetz Fixed Point Theorem, such as periodic point
theorems, local fixed point index, asymptotic fixed point
and periodic point theorems, are carried over to this more
general situation.

1* Introduction* Consider two topological spaces X and Y,
two maps f,g:X->Y, and a relation R on Y, R c Y x Y. Under
what circumstances must there exist an x e X such that g(x)Rf(x),
i.e., (g(x)t f{x)) 6 R. In this paper we do three things with respect
to this problem. First, we show how to obtain related homology
maps from H*(Y) into itself. Each of these homology maps h is
such that Λ(h) = Σ^o(— l)w trace hn Φ 0 implies g(x)Rf(x) for some
x 6 X. Secondly, we find an interpretation in terms of / and g for
the condition Λ(hr) Φ 0, where hr = hoho- ofe, γ times. We show
that if Λ{hr) Φ 0, then there exist points x19 x2, , xr e X such that
g(xi+ί)Rf(Xi) for 1 <̂  i < r and g{xι)Rf{xr). Thirdly, we show that
there are many situations in which one can assert that Λ{hr) Φ 0
for some r <; N9 where N is determined by the situation at hand.

One application is the following apparently new theorem about
spheres. Theorem 4.5: If /, g: S2n -> S2n are continuous maps such
that f(A) Φ g(A) for all A c S2n with cardinality of A = 1 or 2,
then both / and g are null homotopic. Another application concerns
lines in the complex protective plane as follows. Remark 4.9: If
L is a line in CP2 and / is a continuous map from L into the space
of lines in CP2, then there exists two points a,beL such that /(α)
goes through b and f(b) goes through α.

Section 2 contains some notation and conventions. In § 3 we
establish our central theorems. Section 4 contains applications. In
§ 5 we consider extensions to more than two functions. We outline
a local index theory in § 6. In § 7 we establish some asymptotic
theorems. In the last section, § 8, we discuss a very general situa-
tion involving four spaces, two maps, and two relations.

Several authors have dealt with the problems of fixed points
and coincidence points by similar methods. Fuller [8], Fadell [7],
Brown [3] and [4], and Roitberg [15] deal with fixed points and

451



452 BENJAMIN HALPERN

coincidence points on manifolds. In [13] Lefschetz considers coinci-
dence points for compact metric ANR's. Lefschetz obtains a theorem
involving the Lefschetz number of certain cycle mappings which
depend on choices of cycles in the graphs of extensions of the trans-
formations. This result seems to be related to Theorem 8.1 below.
But, the transformations considered in [13] are not assumed to be
continuous, nor single-valued, nor defined for all points of the
domain. Hence, no attempt is made in [13] to relate these cycle
mappings to induced homology or cohomology maps of the transfor-
mations.

The author would like to thank Professor Robert Brown for his
suggestion which led to this work.

2* Notation. We list here some notations and conventions we
use throughout the paper. We use singular homology and cohomo-
logy. We use the notation and conventions of Spanier [16] for the
various products in homology and cohomology. Unless explicitely
noted otherwise, the coefficients are taken in a fixed field F. We
denote the integers by Z, the reals by /?, and the complex numbers
by C. By "map" we mean continuous function. # A denotes the
cardinality of the set A.

3. Main theorems. We establish here the central result of
this paper, Theorem 3.2. For purposes of exposition we find it
convenient to prove a special case, Theorem 3.1, first. (Actually
Theorem 3.1 is not strictly a special case of Theorem 3.2 because
R is not assumed closed.)

Let X and Y be two topological spaces, and f,g:X-*Y two
continuous maps, and R a relation on Y, R c Y x Y. Suppose n is
a nonnegative integer. Let aeHn(X), and beHn(Yx Y) be such
that φ*(b) = 0 where φ: Y x Y — R —• Y x Y is the inclusion map.
Let hί:Hi{Y)^Hί{Y) be the composite

I'6/ n a

where 6/ and Π a are the maps such that (b/)(z) = 6/« for ^ e ί ί ^ F )
and (n α)(s) = ^ ί l α for ^eiϊ%~'(^). Set ^ = ( - l)wiλ<β Assume
further that Ht(Y) is a finite dimensional vector spaces over F for
each i ^ 0.

For such α, 6 define a Lefschetz J?-number by L(f, g) = Λ(h) =
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Σ(- If trace ht.

THEOREM 3.1. // some Lefschetz R-number L(f, g) Φ 0, then
g(x)Rf(x) for some xeX.

Proof. Consider the following diagram

Y * V v V — 7?

Xx ^ ^

where d(x) — {x, x) is the diagonal map, and T(y, y') — (y\ y) is the
interchange map. If there is no xeX such that g(x)Rf(x), then we
may define a map X: X—> Y x Y — R by setting X(x) = (g(x), fix)),
and the above diagram would commute. It would then follow that
br = λ*o^>*(6) = 0 since φ*(b) — 0 by hypothesis. Hence, to prove
the theorem it is sufficient to show that <&', α> = Λ{h).

Let fa], {βi}> and {7j be bases for H*(X), H*(Y), and H*(X)
respectively. Let 0t} be the basis for H*(Y) dual to {βt}f i.e., (βif

/9y> = δi3-. Define fijt gij9 ath bijf and bti by requiring

We need one preliminary fact before we show (b'f a) = Λ(h).
We first show that bid = 6^. We simply calculate

= Σ bi58u8jk = 6^ .

On the other hand

= Σ bkmδml = δfcZ .
m

Hence 6^ = 6^ as claimed.
We now observe that
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<&', α> = (d*o(f x g)*»T* Σ bjA x βh a)

= Σ *(*)&*</*(&) U £f*(A), α>

where σ(i) = ( - i)*W, <W/β Hence,

<&', α> = Σ σ(ϊ)bjt<f*φd) U Σ <7Λ α>

= Σ o{i)hjiβikif*Φs), yk n α>

= Σ σ(ϊ)bjigik(f*Φd ,

Σ σ(i)bHgikaklflpφίf βp)
ijhlp

Σ ^(i)bii
ijkl

= Σ Σ Σ
ί> i such tbat ijfc

dim βj=p

Note that if dim £,• = p and dim β, Φ n - p, then δ i t = 0. Hence,
in the above expression for <&', α> we may replace

by ( - l)^-^)?>. Thus,

) Σ Σ biiOi1flkιfιs
{j\dimβj=p} ijk

= Σ(-iy»-*»*> trace Λp

= Σ ( - l ) ( ~"*(-l)"' trace

Next we will be concerned with two sequences of functions.
In order to facilitate our notation we will index the spaces and
functions by elements of Zm9 the cyclic group of order m. We
consider zm to consist of the integers 1, 2, , m, so that m = 0 in
Zm. Let % ^ 0 b e a fixed integer. Suppose that for each i e Zm, X%

and Yt are topological spaces, /*:X4-> Yi and gi:Xi-^ Y^ are con-
tinuous functions, ^ c ^ x Y, is a relation on Yi9 α

ί 6Hn{Xi), and
6* efΓ ( r 4 x IT,) with φι\V) - 0 where φ{\ Yt x Γ, - Λ4-> Γ, x F,
is the inclusion map. Let hd: H&Yύ-* HS{Y^ be the composite



A GENERAL COINCIDENCE THEORY 455

Lα1

Set ^ = (-1)™^.
Also assume dim Hό{ Yt) < oo for all j ^ 0 and ΐ e ϋΓm.
We will be using the cohomology cross product for the Cartesian

products of several spaces. In order to insure that the excesiveness
conditions (necessary for the definition and properties of the cross
product) are always satisfied, we will assume that Rt is closed in
Yt x Yi for each i e Zm.

Under these conditions we define a generalized Lefschetz R-
number by

L{{f% {</'}) = Λ(h) = Σ(-1Y trace hs .

THEOREM 3.2. / / some generalized Lefschetz R-number L{{f1},
φ 0, then there are points xt e Xt such that g^iXi+JRifXXi) for

Proof. First we establish some notation. If {A, A') and (B, B')
are two pairs of spaces then (A, A') x (2?, Bf) = (A x ΰ , i x B' U
Af x B), and rel {A, Af) — A!. If a collection of objects {AJ are
indexed by the integers i = 1, 2, , q, then J\At = Ag x A ^ x •
x A2 x Ax. Note the order. This notation is used for the various
interpretations of x, e.g., multiplication in F, Cartesian product of
spaces or pairs of spaces, and cross product in homology and coho-
mology. Consider the following diagram

τiX* - > r e l Π ( ^ x Y« Y* x Yi - Rt)

ΠdA \<P

^ n r x r ^ Π Y x ^Π Xι x x<

Yt - Rt)

where d*: X{^X{ x X4 is the diagonal map, d\x) = (x, x) for α; e X(>

Γ(Π », x »ί-i) = Π V'i x Λ e Π Y< x Γ4 for Π % x v!-i 6 Π y* x Yi-u
and 9? and -ψ are inclusion maps. Set 6 = Π& < eiϊ" m (II Yt x i7*)-
We claim that φ*{b) = 0. It is sufficient to show that b = ψ*(c) for
some c 6 H™ Π (Yt x ^4 > Γs x Γ4 - Λ4). Since 9>4*(δ«) = 0, there
exists a c*ejff"(r4 x Ytt Yt x Γ, - Λ4) such that &* = >γ**(cι) where
-f*: Yί x Yt-*(Yt x Yί, Yi x Y, — -Rj) is the inclusion map. Since
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Ψ = Π Ψ% we may set c = Π c* and then ψ*(c) = Π ̂ (c*) = Π &* = &.
This establishes the claim that <p*(jb) = 0.

Now we reason as in the proof of Theorem 3.1. Consider the
element V = (Π #)*°(Π/ ' x #T o ^*(δ) e-ff*m(Π^). If there is no
sequence xt e Xi9 i e Zm, such that g(xi+1)Rif(Xt) for i e i/m, then we
may define a map λ: Π -Σi -» rel Π ί ^ x ϊ o ^ x 1^ — B<) by setting
Mil %t) — Π δi+ιfaι+i) x f%χi)- The above diagram would then com-
mute. It would then follow that 6' = λ*o<p*(6) = 0 since φ*(b) = 0.
Hence, to prove the theorem it is sufficient to show that ( —1)%(W~1)<6',
a) - Λ(Λ), where a^Ua'e Hnm(U

For each i e ^ m , let {αj}, {/9}}, and {7}} be bases for Ή*(Xt),
-ff*(Yi), and ίf*(X,) respectively. Let 0}} be the basis for H*(Γ,)
dual to {/3}}, i.e., <^ , ^i> = δifc. Define f*k9 g)k, a)h, b)h, and b)k by
requiring

j Π o* =

S} = Σ

We have already established in the proof of Theorem 1 that
b}k = δiy

Using the associative and commutative laws for the cross pro-
duct we get

(Π 6U)Γ* Π h x K = (Π &UMdim ^?J Π ̂ ΐ, x fe

where σ(p) = ( — i)rf -*+»<»-1>]. Here we have made use of the fact
that (Π bliit) Φ 0 implies dim β). + dim *̂fci = n for all i 6 Zm. T*
simply takes /5̂ w from the far left position to the far right position,
commuting past βΐm x ΠΓ"1 /% x $kt of homological dimension n —
dim βfm + n{m — 1).

We now proceed as in the proof of Theorem 3.1.

Σ
= Σ Π ̂ (dim \

Σ TT /11 o(n —

In the last equality we have used the fact that if dim βfm Φ
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dim 7}x, then g)mh = 0, and if dim Ίι

h Φ w-dim aι

Pl, then a\ιPl = 0, and
if dimaι

Pι Φ dimβj^, then f\,ιkL = 0. Hence, by summing over kx with
dim βi± = r first, we find

<δ', α> = Σ (-ly -'H'+ ̂ -1" t raced ,
r

and so

( —l) c*-1><6', α> = Σ ( - l ) r trace λr = Λ(h) .
r

4* Applications* First we note some immediate specializations
of Theorem 3.1. Suppose X and Y are compact, closed, oriented
^-dimensional topological manifolds, and a e Hn(X) is the fundamental
class for X, and beH*(Yx Y) is the image of the Thorn class
of Y under the map φ*: H*(Y x Y, Y x Y - ΔY) -+H\Y x Y)
where ΔY is the diagonal of Γ a n d f : YxY-+(Y xY, YxY-ΔY)
is the inclusion. Then Λ(h) = •-4(/*o(Πα)°flf*°(δ/)) is the Lefschetz
number for / and ^ and Theorem 1 with R — ΔY reduces to the
Lefschetz's coincidence point theorem. If we specialize further and
take Y = X and g ~ lxf then we obtain the Lefschetz fixed point
theorem for oriented manifolds.

We now discuss some consequences of Theorem 3.2. Suppose in
Theorem 3.2 we have m - pq, Xi+q = Xif Yi+q= YJt fi+q=f*t gi+g=-
g\ ai+q=a\ and bi+q - 6* for all ieZm. Now let kr: Hr{Yx) -> H^Y,)
be the composite

α2*
• H*-'(X%) H - ' ( Yq) > H—(Xq+1)

&1/] I n α 2 ¥1 ΐ | n α « + 1

• ^ f 2 ^ q I ^ f ί+1

Set kr = ( —l)wfc r. Clearly, for the fer of Theorem 2 we have hr =
(fc,.)2' = fcrofcro .ofcr, p times. Hence, Λr.= ( —1)W2>?% = (( — l)*βrjfcr)

p =
kϊ, and so fc = kp: H^Y,)-+H*(Yt). Now we may apply the theory
developed in [9], [10], and [12] for dealing with the Lefschetz's
numbers of iterates. We will use Theorem 4 of ]10] to illustrate
how most of the theorems of [10] may be carried over to the present
context. In algebraic terms, Theorem 4 of [10] is essentially the
following result. Let ch ^ denote the characteristic of

THEOREM 4.1. Given a finite sequence V = {Vlf •••, VN} of
finite dimensional vector spaces over Jβ", and T: V -+ V a sequence
of linear maps T{: Vt —* Vt. If

(a) Ti has a nonzero eigenvalue for some even i, and
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(b) Γ, - 0 for all odd i,

(c) ch &~ 0 {2, , n}, where n = Σieven dim F*

Λ(Tj) = Σ * ( - 1 ) ' ίrαcβ Tf ^ 0 / o r some j , l ^ j S Eleven dim V,.

THEOREM 4.2. Given a topological space X and two maps f,
g: X-* Sn where n^2 is even. Either

(a) both f* and g*:Hn(Sn: &~)-*H*(X\&~) are zero for all
fields ^ such that ch ̂  Φ 1 or 2, or

(b) f{Xf) = g(X') for some Γ c l with %X' = 1 or 2.

Proof. Without loss of generality we may assume X is con-
nected. Suppose that #*: Hn(Sn) —> H\X) is not zero with coeffici-
ents in a field j ^ \ Set b, = j*(τ) where τeHn(Sn x Sn, Sn x S Λ - j )
is the Thorn class of Sn and j: Sn x Sn-+ (Sn x Sn, Sn x Sn - j) is
the inclusion map. Let s0 be the canonical generator of H0(Sn) = Z.
Then δ,/β0 is a generator of #*(£*) ~ Z. Consequently g*(bjso) e H*(X)
is not zero. Hence (g*(bjso), a) Φ 0 for some α 6 Hn{X). Let ĉ  be
such an α. Let x0 be the cannonical generator of HQ(X) s Z and x0

the dual generator of H\X). Now we have 0 Φ (g*(bj8Q), at} =
<ί0Ufir*(61/s0)>-<x0, (g*(bj80)) Πa,). Hence (ί/*(&1/80))nα1 = ίaj0 with £^0.

Let fc be defined as in the paragraph preceding Theorem 4.1.

Then, fco(s0) = f*o(Γia1)og*o(bJ)(80) = Λ(te0) = ίs0 and hence k0 Φ 0.
It is clear now that Theorem 4.1 applies with Vt = H^S") and

Γ = fc. It follows that either [̂(fc) ^ 0 or Λ{¥) Φ 0. Hence (b) holds.
Similarly, if f*: Hn(Sn)-* Hn(X) is not zero for some field of

coefficients, then (b) holds.

We would like to use Hopf's theorem on homotopy classes of
maps into Sn to interpret geometrically condition (a) of Theorem 2.4.

REMARK 4.3. We will need the following elementary algebraic
fact whose proof we leave to the reader.

If an Abelian group G, homomorphism /: Z —> G, and integer
n ^ 2 satisfy

(a) G has no element of order (prime)2,
(b) G has no element of order 2 or 3 or or n,
(c) f®l\Z®^-^G®^ is zero for all fields jT~ which

satisfy c h ^ g {2, 3, , n},
then / is zero.

THEOREM 4.4. Given an even integer n^2 and a topological
space X which has the same homotopy type as an n-dimensional
CW-complex, and two maps f, g:X-> Sn. Assume Hn(X; Z) has no
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element of order (prime)2, nor of order 2. Either
(a) both f and g are null homotopic

or
(b) f(Xr) = g{X') for some X'aX with %X' = 1 or 2.

Proof. Assume (b) does not hold.

We apply Theorem 4.2 and conclude that/* and g*: Hn(Sn; ^r)-+
Hn(X; ^) is zero for all fields &~ such that ch &~ Φ 2. Since
Hn+1(X; Z) — 0, the universal coefficient theorem which expresses
H*( ;^) in terms of H*(-;Z) implies / I (x) 1, gl ® 1: H\S*; Z) ®
J ^ -> Hn(X; Z) (x) J^~ are zero for all fields &* such that ch J^~ Φ 2
where /£, #J: H\Sn; Z)->Hn(X; Z) are the induced cohomology map
with integer coefficients. Now from Remark 4.3 we see that /J
and gl are zero. Finally, both / and g are null homotopic by Hopf 's
theorem.

COROLLARY 4.5. // /, g: S2n —> S2n are continuous maps such
that f(A) Φ g(A) for all A c S2n with %A = 1 or 2, then both f and
g are null homotopic.

Proof. Set X = S2n in Theorem 4.4 and consider the case n = 0
separately.

REMARK. Responding to a preprint of this paper Professor
Dold has given an elegant short proof of Corollary 4.5 relying only
on properties of the cross product and intersection number.

Next we present an application of Theorem 3.2 where the rela-
tion R is not taken to be equality. Let Y = CP2 = the complex
protective plane. We consider CP2 to be defined as the quotient of
C3 — {0} by the equivalence relation ~ which sets (u, v, w) ~ (Xu, \v,
Xw) for all (u, v, w)eC3 — {0} and λ 6 C— {0}. Denote the equivalence
class of (u, v, w) by [uf v, w]. We say U — [u, v, w] is perpendicular
to U' = [u', v', wr], (notations: U ± U'), provided uur + vvf + wwf = 0.
This notion is well defined, i.e., it does not depend on the choices of
(u, v, w) and (ur, v', w') representing U and U'.

THEOREM 4.6. Given a topological space X and two maps
f,g:X-> CP2. Either

(a) both /*, £*: H\CP2; &~) -» H\X; &~) are zero for all fields
^ such that ch &~ Φ 2,
or

(b) f(x) _L g(x) for some xeX,
or
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(c) f(x) JL g(xr) and f(xr) ± g(x) for some x, x ' e l .

Proof. By considering / and g restricted to the components of
X it is readily seen that the theorem is reduced to the case where
X is connected. So assume X is connected. We wish to apply
Theorem 3.2 as we did in the proof of Theorem 4.2. Here we have
R = {(U, U') G Y x Y\U± U'}, where Y = CP2. The only significant
difference between the present proof and the proof of Theorem 4.2
is in finding an appropriate bίeH\Yx Y). We consider this point
and leave the rest of the proof to the reader. What we need is a
b,eH\Yx Y) such that

( i ) bjso = s2 where s0 is the cannonical generator of H0(Y) =
^ and s2 is a generator of H\Y) ^ J^.

(ii) i*(6x) = 0 where i:YxY-R->YxY is the inclusion
map.

It is well known that CP2 is a complex analytic manifold of
complex dimension 2. It is easily verified that RaYxY is a
compact connected complex analytic submanifold of complex dimen-
sion 3. Hence Y x Y and R are orientable smooth manifolds of
(real) dimensions 8 and 6 respectively. Pick orientations for Y and
R so that now Y x Y and R are oriented manifolds. Let V=Y x
Y. The Thorn Isomorphism Theorem and the Tubular Neighborhood
Theorem give a generator reH2(V, V - R; J H = H0(R; ̂ ) = ^
with the following property. [See Milnor [14] pages 67 — 69 for
definitions and proofs. Though Milnor uses homology with Z coeffi-
cients in [14], the relavent part, pages 67 — 69, may be done using
homology with S^ coefficients.] If M is a compact oriented sub-
manifold of V of (real dimension 2 which intersects R transversally,
and [M] e H2(M; JΓ) is its fundamental class, and h: M —• V and
j : V-»(V, V — R) are the inclusion maps, then j*oh*[M] — R-Mr,
where R-M is the intersection number of R and M.

We apply the above formula to the case M = S2 x p0, where we
consider S2 = {[u, v, w] e CP21 w = 0} and p0 — {[u, v, w] e CP21 v ~
w — 0}. By a straight forward calculation one may verify that
S2 x p0 intersects R in exactly one point, ([0, 1, 0], [1, 0, 0 ] ) e 7 x Y,
and this intersection is transverse. Hence R-(S2 x p0) = ± 1 depend-
ing on the orientation we choose for S2 x p0. Choose the orientation
of S2 = S2 x p0 such that J2 (S2 x p0) == 1. Now we have i*°ft*[S2x
p0] = r. Let r be the generator of H\ V, V - R; ̂ ) ^ ^ dual to
r. Set bx = j*{r)eH2(Y x Y). Condition (ii) for b, follows from
the exact sequence for the pair (Y x Y, Y x Y — R).

Next note that
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<Jbίf ft*[S2 x.po]> = <i*(f), h*[S2 x pj> - <f, j*oh*[S2 x po]>

= <?, r> = 1 .

Since CP2 can be written as CP2 = S2 U (a 4-cell) and ft: S2 x po-±
CP2 x CP 2 is the inclusion, we have ft*[S2 x p0] = s2 x sQeH2(Y x Y;
J^) where s2 is a generator of JEΓ2( Y; ^ Q = ά^. Let s2 be the
generator of H\Y; ^) dual to s2. Then, (bjso, s2) = <6ly s2 x so> =
<6X, ft*[S2 x p0]) = 1. This shows that ft^s,, = s2. We have thus veri-
fied condition (i) for bx. The rest of the proof follows closely the
proof of Theorem 4.2 and is left to the reader.

Next we prove an analog of Theorem 4.4.

THEOREM 4.7. Given a topologίcal space X which has the same
homotopy type as a 2-dimensional CW-complex, and two maps
f, g: X-+CP2. Assume Hn(X; Z) has no element of order {prime)2,
nor of order 2.

Either
(a) both / and g are null homotopic

or
(b) f ( x ) ± g ( x ) f o r s o m e xeX

o r
( c ) f(x). _L g(x') and f(x') 1 g(x) for some x, xf e X.

Proof. Assume both (b) and (c) fail to hold.

Just as in the proof of Theorem 4.4 we can conclude that
/*, #*: H\CP2; Z) -* H\X) are zero. Write CP2 = S2 U (a 4-cell) and
let ψ: S2 -> CP2 be the corresponding inclusion map. Then f*: H\CP2;
Z) —> H\S2; Z) is an isomorphism. By cellular approximation / ~
ψof and g - ψog' for some / ', g': X^ S2. Then 0 = / * = f'*<>φ*
and 0 = #* = 0'*°ψ* and so / '* = g'* = 0. Thus / ' and gf are null
homotopic and consequently / and g are also null homotopic.

COROLLARY 4.8. If CP1 is any complex protective line in CP2

and f: CP1-*CP2 any continuous function, then there exist a, be CP1

such that f(a)±b and f{b)A_a.

Proof. Note that (1) CP1 = S2, and (2) the inclusion map
g: CP1 —> CP2 induces isomorphism on H2(CP2; Z) = Z and consequent-
ly g is not null homotopic. Theorem 4.7 now gives the desired
conclusion.

REMARK 4.9. One can identify CP2 with the space of lines in
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CP2 and then alb can be interpreted as saying that the line a goes
through the point b. Now Corollary 4.8 becomes: If L is a line in
CP2 and / is a continuous map from L into the space of lines in
CP2, then there exists two points a,beL such that/(α) goes through
b and f(b) goes through a.

5* Higher order coincidence problems* Consider two sets X
and Y and a finite sequence of functions ft: X —> Yf i — 1, 2, , N.
A point x e X such that

Λ(x) = ΛG*0 = = /*(*)

is called a coincidence point for the sequence fi9 1 <£, i <ί N. In
Theorem 3.1 (with R taken as equality) we considered the case JV=2,
and we call a? in this case a simple coincidence point. When N^Z
we will refer to x as a higher order coincidence point. The adjec-
tives "simple" and "higher order" will be applied also to the problem
of finding or proving the existence of coincident points (or iterative
analogs as in Theorem 3.2).

The purpose of this section is to make the observation that a
higher order coincidence problem may be reduced in a useful manner
to a simple coincidence problem. The reduction is done by consi-
dering Ϋ = YN~" and f,g:X-+Ϋ defined by f(x) = (/,(«), fcx), ,
/Y-I(B)) and g(x) = (/2(x),/3(4 •• ,ΛrO&)) f o r a l l # e X . Then α e X i s
a simple coincidence point for / and g iff x is a higher order coin-
cidence point for the sequence f19f2, •••,/#• One may now apply
the preceeding results to / and g. In applying §§3 and 4 to / and
g one sometimes finds that there exists a n m ^ l and xs-eXf jeZm,
such that f(Xj) = g(xΰ-+1) for j e Zm. Expressed in terms of the //s
the condition f(Xj) = g(xj+ι) for jeZm means fx{xά) =f2(xj+1) = /3(%+2) =
. . . = /̂ (ccy+ .̂i) for j e Zm. The hypotheses which one encounters in
§§3 and 4 are usually expressed in terms of /*: H*(X; ά^) —> H*(Ϋ;
&~) and £Γ*:jff*(Γ;^)->iϊ*(X; J^Π. The homomorphism Λ may
be expressed in terms of /iH£: H*(X; ^) -> ̂ ( Γ ; &~), j = 1, 2, ,
iV — 1 as follows. Set X = X^"1 and use the Kϋnneth formula to
obtain ίΓ*(X; J O = ®f=i1 #*(**; ^~) and fΓ^Γ; ^ ) - Q&H^Y,;
&~), where X, - X and Γy = Y" for all j . Let ^ X - > X be the
diagonal map given by d(x) — (x, x, , x) eXN~1 = X for all xeX.
Now we may write

/* = (/i* Θ/2* ® -(8)Λr-i*)oίi*

This is the desired formula. Reasoning similarly for g* we find
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Hence g*(c2 X cz x x cN) = /?(c2) U /3*O3) U U f%{cN) where c, 6
H*(Y;^) for i = 2, 3, •-, iSΓ

We consider one example. Let X = S2* x S2Λ and Y = S2* with
w- ̂  1, and suppose flf f2, /3: X -> Y are three maps. The bidegree
of ft is the pair of integers (aif β{) where at = degree ft \S2n x q
and A = degree /< | p x S2* for any p, q e S 2\

THEOREM 5.1. 1/ α£ Zeαs£ one of the numbers «i/32+A#2>
β2az, aβ1 + βzax does not vanish, then there exists AaS2n x S2n

such that #A ^ 4 αwd ft(A) = /2(A) = /3(A).

Proof. Let / and # be defined as in the discussion above. Set
the coefficient field F equal to the rationale. Let a be a generator
for H2nS

2n and α0 the canonical generator for H0S
2n, and let α and

α0 be the corresponding dual generators of H2n(S2n) and H%S2n). Let
τ 6 iϊ2 ί t(S2 t l x S2% S2n x S2* - J) be the Thorn class for S2n correspond-
ing to a. Set b - j*(τ) e H2%S2n x S2n) where j : S2n x iS2% -> (S2 ΛxS2 n,
S2n x S2w — Δ) is the inclusion map. Then b/a0 = α. Set αx = α x a e
H4n(X) and 6L = 6 x 6 6 H*\Ϋ x Γ), where ? = Y2 = S2M x S 2 \ It
is easy to check that ft (a) = α,α x ao+ββQ x a e H2n(X) = H2n(S2n x
S2n). Next, a straight forward calculation similar to the calculation
made in the proof of Theorem 4.2 yields ko(aQ x αo)=(α2/33+/32ct3)αox
α0 where &0 = /*<>( n a1)og*o(f>j): Ho(Ϋ) -> JBΓ0(?). If aJ3B + /92α3 ̂  0,
then Theorems 3.2 and 4.1 give the desired conclusion. This takes
care of one case. The other two cases follow by permuting the
functions /„ /2, /3.

6. Local index. Consider two topological spaces X and Yf a
relation R in Y, RaYxY, and elements aeHn(X) and Ve
H\Y x F , Γ x 3Γ-i2). For each open set F c l , and pair of
maps /, g: V -> F such that C = {α? 6 F | βr(ίc)ίί/(ίi?)} is a closed subset
of X we can define a local index /(V, f, g, a, b', R) as follows. Let
φ:X-+(X,X- C) and f (V, V - C) -» (X, X - C) be the inclusion
maps. Since C is closed in X, ^ : jffΛ(7, V~C)-+ Hn(X, X - C) is
an isomorphism by excision. Set ar>c = ψlι°φ*{a) eHn(V, V — C).
Let (jr, / ) : (F, 7 - C) -> (Γ x 7 J x Γ - R) be the map defined by
(βt f)(χ) = (̂ (a?), /(a;)) for all α; e V. Now set

/(F, /, Λ α, &', Λ) = <(#, /)*(6'), αF,c>

where (flf, / ) * : H%Y x Yf Y x Γ - jβ) -* -ff•( V, V - C).
This approach to defining a local index seems to be well known

to the experts for the case R = equality. See [1] page 558, and
[5]. Consequently we discuss only briefly some of its important
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properties. It is immediate that / is linear in a e Hn(X) and in
V eHn(Y x Y,Ύx Y - R). Also, the following naturality property
in R is clear. If RcR' and fc(7x Y, Y x Y - #')-> (Y x Y, Yx
Y — R) is the inclusion map, then J( F, /, #, α, δ', Λ) = I( F, /, g, α,
&*(&'), #') where &*: iϊ*(Γ x Y, Y x Γ - R) -> 23Γ ( r x Γ, Γ x Γ-Λ').

It is an elementary exercise in diagram chasing to verify that
if V, V c X are open and CaV and C c F' are closed in X, and
7 ί i F ' = 0, then

avuv,oυo> = 3^v,c) + Λfar'.c) e #„( F U F; F U F' - C U C) ,

where i: (F, C) -> (F U V, C U C) and j': (V, C) -» ( F U V, C U C)
are the inclusion maps. It follows that if /(F, /, gy a, b\ R) and
I(V',f',g',a,b',R) are defined and F n F ' = 0 , then J(FU F',
/ U / ' , g U </', α, 6', Λ) - I( F, /, Λ α, 6', R) + I( V, Γ, g', a, 6', R) where
the maps f\Jf: V\J V -> Γ and ^ U ̂ ': FU F' -> Γ are induced
from / and / ' , and g and #' respectively.

The following properties follow easily from the definition. If
V,V'<zX are open subsets with V a F, and {% e V\g(x)Rf(x)} c V,
then I(Vff, g, a, V, R) = I{V\ f\ V\ g\ V, a, V, R). If F:Vx I-*Y
and G: V x I —> F are a homotopies from / to / ' and # to g' respec-
tively such that {xe V\G(x, t)RF(x, t) for some tel} is closed in
X, then I(V, f, g, a, V, R) = I(y, / ' , g\ a, V, R). Finally, / is "nor-
malized" as follows. If V = X, then I(X, f, g, a, V, R) = Λ(/>(nα)o
9*°Φ/)) = the Lefschetz iu-number L(/, gr) based on α and 6=i*(6')β
ίrw(Γ x Γ), where j : Γ x Y^(Y x Y, Y x F - i?) is the inclusion
map.

Now consider the situation in Theorem 3.2 and the higher order
coincidence situation. Both these situations reduce to the simple
coincidence situation. This is implicit in the proof of Theorem 3.2
and explicit in the discussion of higher order coincidence points. In
this way the local index described above carries over to these other
situations.

7* Asymptotic theorems* An asymptotic fixed point theorem
for a function / : X —> X is a theorem asserting the existence of a
fixed point for / under hypotheses on the iterates fn of /, especially
for n large. An asymptotic periodic point theorem uses hypotheses
on fn for n large to conclude that fn has a fixed point for n
rather small. In this section we will show how the asymptotic
fixed point theorems of Browder [2] and asymptotic periodic point
theorems of Halpern [11] have analogs in coincidence theory.

The key observation for our study of asymptotic coincidence
point theorems is that x e X is a coincidence point for the functions
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f, g:X-+ Y and the relation RczY x Y, i.e., g(x)Rf(x), iff a; is a
fixed point for the set-valued map g~ι<>Rof; X->2X, i.e., x e g~\R(f(x))),
where R(y) — {y' e Y\y'Ry] for all yeY. In general, a set-valued
function F from a set A into a set B is an ordinary function from
A into 2B = the set of all subsets of B, (notation F: A -> 2s). If h:
A—* B is an ordinary function, then h~ι: B —> 2̂  denotes the set-
valued function which assigns to each beB the set h"\b) c A. If
Γ c i x ΰ is a relation, then Γ can also be thought of as a set-
valued function T: J3-> 2Λ defined by T{b) = {a e A\aRb} for all beB.
If F: A-+2B and G:B-^2C are two set-valued functions, then their
composite G<>F:A-+2C is defined by G°F(a) = \JbeF(a)G(b) for all
aeA. Also, if A! c A and JP: A -> 2δ, then set F(A') = {JaeΛ F(a).

Now suppose f, g: X—> Y, RdY x F, and ^ e l for ieZm with
m ^ 1. The points ^έ satisfy g(xi+ι)Rf(xt) for ie Zm iff ^ is a fixed
point for the mth iterate of the set-valued function g^oRof, i.e.,

The following lemma will allow us to translate the results of
[2] and [11] into coincidence theory.

LEMMA 7.1. Given topological spaces X, Y, and Z and maps
f:X—>Z and g: Y-+Z, and a subset RaZ x Z} and elements
aeHn(Y) and beHn(Z x Z) such that i*(b) = 0 where i: Z xZ -
R —> Z x Z is the inclusion map. Suppose cl g~\R(f(X))) c Y' c Y,
where Y' is open. Then (r\a)og*o(b/)of*(H*(X))c:K(H*(Y')), where
k: Yr —> Y is the inclusion map.

Proof. Set R' = f^JJo/fl). Let a: Y - R' -> Y, β:Y-+(Y,
Y — R')f and j: Z x Z -> (Z x Z, Z x Z — R) be the inclusion maps.
The following diagram commutes

( Γ x X, (Y -R') x X)

(Y, Y - R')x X^^^{Z x Z, Z xZ - R)

YxX -?^-+ ZxZ

where (g x / ) ' is induced by g x f. Since i*(b) = 0, 6 = j*(b) for
some beH%Z x Z, Z x Z - R). Let veHp(X) and set t = g*°(b/)°
f*(v) e Hn-%Y). Now we will show that (a*(t), s) = 0 for all
β6fl»_P(Γ-Λ'). Indeed,

x
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- <j*(b), (g x /)*(**(«) x v))

- <b,j*°(g x /)*(<**($) x *0>

- <bj (g x /)'*°(/3 x l),(α*(β) x v)>

= <δ, (flr x /)'•(#•,(«•(«)) x v)>

= 0

because β*(a*(8)) = 0 by exactness. Hence α*(ί) = 0 and so t = £
for some t e .&•-*(Y, r - J F ) . The cap product pairs £Γ -'(Γ, I T - )
and Hn(Y, ( Γ - 22') U F') with H9(Y9Y'). Our assumption that
F'Del22' guaranties that (Γ —j?', F') is an excisive couple. The
naturality of the cap product now gives:

iM* Π α) = t*(£*(*) Π α) = ί n 7*(a)

where 'f: Y-+{Y, Y') and 7: r - > ( r , (Y-Rf) U Γ') are the inclusion
maps. But (Γ - R) \J Y' = Y and hence Bn(Y, (Γ - R) (J Γ') =
fl^r, F) ^ 0. Thus ^ ( ί Π a) = 0 and so ί n α =(nα)^*°(ί>/)°/^) e
k*Hp(Y') by exactness.

REMARK. Lemma 7.1 is related to the properties of the transfer
homomorphisms (Umkehr-homomorphisms). See [6] pages 308-314.

THEOREM 7.2. Let X and Y be two compact, path connected
Hausdorff spaces, /, g:X-^ Y two maps, and RaY x Y a closed
subset. Assume that there exists a beHn(Y X Y) such that <p*(b) =
0 and g*(b/y0) Φ 0, where <p: Y x Y — R —> Y x Y is the inclusion
map and y0 is the canonical generator of H0(Y). Assume also that
JB"*(X) and HJJΓ) are of finite type, and chF =0, where F is the
field of coefficients. Set ψ — g~~λoRof; X —>2X. If there exists an N
and an open set Γ c l such that / ( I ) c Γ and 7^:Hi(Xf)->
Hi(X) is zero for i odd, where 7: X' —> X is the inclusion map,
then there exists an m ^ Σ< even Tank 7^ and elements x3- e X for
j e Zm such that g(xί+1)Rf(Xj) for j e Zm.

Proof. Since g*(blyo)eHn(X) is not zero, there is an aeHn(X)

such that <0*(δM>), a) Φ 0. Hence

o Φ (o
= <£o U

= (x0, (g*(b/yQ)) n α>

where x0 is the canonical generator of H°(X). Therefore
(b/){yo)Φθ and hence f*°(na)og*o(b/)(y0) = ay0 with a Φ 0. Let
ki:Hi(Y)->Hi(Y)jinά fc : Ht(Σ) -> jfft(X) be the composites fc4 = Λo
(na)og*o(b/) and fej = (nα)ogr*o(6/)o/ϊiί in the following diagram
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Πα

+HIY) Hi{X)^Hi{Y).

Set ki = (— l)niki and k\ = ( — l)n%. From the commutative property
of the trace function, trace AB — trace BA, we conclude that Λ(kp)~
Λ(k'p) for all p ̂  1. From this observation, Theorem 3.2, and the
proof of Theorem 1 of [11] it follows that it is sufficient to show
that rank k[N ^ rank 7*f for all i. We accomplish this by repeated
application of Lemma 7.1.

We will construct a sequence of open sets 1 ^ 1 , 0 ^ i ^ N,
such that

{ I ) JLQ = Λ.

( 2 ) ^ ~ W C X;
( 3 ) f (cl X, +1) c X, for 0 <. j < N.
We will construct the Z/s by induction. Set Xo = Xf. Then

conditions (1), (2), and (3) hold for those j's for which they make
sense. Assume now that XQ9 X19 , Xo- have been defined and satisfy
(1), (2), and (3) where applicable. Set R~ι = {{y, y')eY x Y\(y'9 y) e
R}. Using the compactness of X and Y it is easy to see that
ψN-j-i(X) i s closed and X'J+ι = /"*( Y - R~\g{X - X/))) is open. From
f i l l e d it follows that ψN~i-\X)cXJ+1. So by normality
there exists an open set Xi+ι c X such that

CZ ̂ L^ ψi CI Cl JLj+i d -Λ. j+ι

It is easy to verify that ψ<cl X3-+1) c ψ(X'j+1) c JΓ̂  , and so the induc-
tion step is complete.

Now we can show inductively that

Aά: kf'(H*(X)) c 7N-J*(H*(XN~J)) C H*{X)

where 7#_, : X^_i -> X is the inclusion map.
Since X = ψ\X) aXNc:X, statement Ao holds trivially. Assume

statement A3 . Let j t : cl Xt —> X be the inclusion map. Then

= (Π a)og

by property (3) and Lemma 7.1. (Note that ψ (cl XΛr_3 ) is closed.)
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Hence by induction we get

It now follows that rank h\N ^ rank 7^ for all i, as we wished to
show. This completes the proof.

REMARK. It is not hard to see that under the hypothesis of
Theorem 7.2 {xeX\xeψm(x) for some m ^ l } c r X \ Indeed, if xe
fm(x), then x e ψm c ψmfm(x) c ψmψmψm{x) c <zψNm(x). Also ψN(x)cz
X' implies f + ί ( I ) = ^ ( I ) c f ( I ) c Γ . Hence xefN™(x)c
fNm(X) c X'. Thus the xί9 j e Zm in the conclusion of Theorem 7.2
satisfy x^eX' for jeZm.

REMARK. An alternate theory of asymptotic periodic coincidence
point theorems can be developed by starting from the observation
that there exists a coincidence point xeX for the functions /, g:
X—» Y and the relation E c F x Y, i.e., g(x)Rf(x), iff there exists
a fixed point yeY for the set-valued map fog~ιoR; Y—>2F, i.e.,

8* A very general coincidence problem* Consider four sets
X, X', Y, Yr, two functions f:X-*Y, g: X' -> Y', and two relations
S c X x X' and β c 7 ' x 7. A coincidence pair for this situation
is a pair (a?, x') e X x X' such that #&' and g(xr)Rf{x). If we take
X = X', Y = Y' and S = equality, this problem specializes to the
type of problem already considered. In this section we will show
how all the preceeding results can be extended to this more general
coincidence situation. To this end we define a slant product pairing
ίP(X') and Hn(X x X') with Hn_p(X), which will have the same
role as the cap product did in the preceding development. We use a
fixed field ̂  for coefficients. Given topological spaces X and X' such
that iϊ*(X) and iϊ*(X') are of finite type, and elements c' e HP{X')
and heHn(XxXr), define cf\heH^v{X) by requiring <c, c'\h) = (ex
c', h) for all c 6 Hn~p(X). This product is to be compared with the
cap product as follows. Consider the case where X = X'. The
equation

(a) <c, c'\h} = <c x c', &> is formally the same as
(b) <c, c'ί lα) = (cU c', a) where aeHn(X). The equivalence

between (a) and (b) becomes more than formal when h = c£*(α),
where eZ:X->X x X is the diagonal map. For then

<c x c', h) = <c x c', <2*(α)>

= <d*(c x c'), α>
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Hence cV*(α) = c ; n α for all aeHn(X) and c'eH^X). In the
extension from the special case X — X', Y= Y', S = the diagonal =
{(x, x)\xe X) a X x X, to the general case, we replace c'Πα =
cV*(«0 where c' e H*(X) and a e Hn(X), by cV*W where c' e iP(X'),
a 6 Hn(S), and ψ: S -* X x X' is the inclusion map.

We illustrate how the results of §§ 3-7 can be extended to this
more general coincidence situation by proving the following analog
of Theorem 3.1.

THEOREM 8.1. Let X, X', Y, Y' be four topological spaces, f:
X->Y, g:X'->Y' two maps, and RaY' x Y and SczXxX'
two relations. Suppose n is a nonnagative integer. Let ae
Hn(X x Xr) and beH\Yf x Y) be such that η*(a) = 0 and φ*(b) =
0, where η: X x X' -> (X x X\ S) and φ: Y1 x Y - R -> Y' x Y are
the inclusion maps. Assume H*(X), H*(X'), H*(Y), and H*(Y')
are of finite type. Let ht: H^Y) —> Ht(Y) be the composite

Hn-\Yf) -^U H*-%X')

l I \α

wnere b\ and \a are the maps such that (b/)(z) = bjz for
and (\a)(t) = t\a for t^Hn~l(Xf). Set h< = (-l)n%. If Λ(h) =
Σ{ — I)1 trace ^ ^ 0 , then there exists a pair (x, x') e X x X' such
that xSxf and g{xr)Rf{x).

Proof. Consider the following diagram

S- . Y' x Y~ R

φ\ \ψi
X x X'^Y xYf — Y' x Y

where T(y, yr) = (y\ y) is the interchange map. Set b' = ψ*o(f x g)*o
T*(b) 6 Hn(S). If there is no ordered pair (a?, x') e X x Xf such that
xSxf and g(xf)Rf(x), then we may define a map λ: S —» Yf x Y — R
be setting λ(cc, xr) — (g(x')f f{x)), and the above diagram would com-
mute. It would then follow that V = λ*o<p*(Z>) = 0 since φ*(b) = 0
by hypothesis. We have also assumed that 7]*(a) — 0. Hence a =
φ*(af) for some af e Hn(S). To prove the theorem it is clearly
sufficient to show that <&', a') = A(h). Note that
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Now the calculation showing that <δ', a'} — A(h) is essentially the
same as the calculation in the proof of Theorem 3.1. Just replace
Πa by \a.

Similar adjustments can be made with the other results of the
preceding sections.

The analogous problem to the problem considered in Theorem 3.2
will be refered to below as the "general composite problem." This
problem involves two sequences of functions fn: Xn —> Yn and gn:
X'% —• Yn-ι' for n 6 Zmf and two sequences of relations, Rn c Y'n x Yn

and S% c Xn x X'n, for n e Zm9 and asks for an x e Xίf such that x e
SιogiloRw,ofmOm 'of2°S2o9~ϊloRιofι A natural question is: Is there a
nontrivial generalization of the general composite problem? We will
observe here that what appears to be a "most general" coincidence
problem involving functions and binary relations can be viewed as
a special case of the general composite problem.

Suppose Twn e Zm is a sequence of spaces and for each neZm

either (a) Fn\ Tn -> Tn+1 is a function from Tn into Tn+1, or (b)
Fn — g~ι where g: Tn+1 -+ Tn is a function from Tn+1 into Tn, or (c)
Fn c Tn+1 x Tn is a relation.

Problem Q. Find an « 6 ϊ\ such that α? 6 (Π» ^)(^) To reduce
problem Q to a general composite problem we simply set Fn = /w

or gn or i2% depending on whether case (a) or (b) or (c) applies to
FnJ and set all the other functions and relations in the general
composite problem equal to the appropriate identity maps or relations.
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