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To an analytic function L(z) we associate the differential
operator L(D), D denoting differentiation with respect to a
real variable x. We interpret L as the generator of a pro-
cess with independent increments having exponential mar-
tingale m(x(t), t)= exp (zx(t) — tL{z)). Observing that m(x,
—t)—ezCl where C—etLxe~tL, we study the operator calculus
for C and an associated generalization of the operator
xD, A—CD. We find what functions / have the property
that un~Cnf satisfy the evolution equation ut~Lu and the
eigenvalue equations Aun—nun, thus generalizing the powers
xn. We consider processes on RN as well as R1 and discuss
various examples and extensions of the theory.

In the case that L generates a Markov semigroup, we have
transparent probabilistic interpretations. In case L may not gene-
rate a probability semigroup, the general theory gives some insight
into what properties any associated "processes with independent
increments" should have. That is, the purpose is to elucidate the
Markov case but in such a way that hopefully will lead to practi-
cable definitions and will present useful ideas for defining more
general processes—involving, say, signed and/or singular measures.

IL Probabilistic basis. Let pt(%} be the transition kernel for a
process p(t) with stationary independent increments. That is,

ί pί(a?) =

The Levy-Khinchine formula says that, generally:

etξ'pt(x) = etL{ίξ)

R

where L(ίξ) = aiξ - σψ/2 + [ eiξu - 1 - iζη(u)-M(du) with
jΛ-fO}

η(u) = u(\u\ ^ 1) + sgn^(M ^ 1) and ί u%

 2M(du)< <*> .

Denoting d/dx by D, this states that L(D) is the generator of the
process p(t). It follows that

m(t) = e*pι*)-w) is a martingale

95
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for every \z e C, Rez = 0. And this is clearly equivalent to the
condition that L generates p. We define hk(x, t) by

Observe that de/dz = (x + tL'(z))e(z) which is the basis for § IV.
Note that this expansion is good only in case the distribution of
p(t) has all moments finite. In fact, define moment functions

hk(x, t)=\(x + y)kpt(y) = etUD)xk .

And check that,

V 1 * h (r? +\ . όzx\ c>zVfn (nι\ •— ι>z%+tL{z)

o k\ J«

Thus if pt(x) has only moments up to order α, then define hk for
0<*k<a, say. Also, k need not be restricted to integer values,
but generally keR, k ^ 0. We set Hk(x, t) = hk(x, — t).

Note that since for t > 0, s < t,

then E(Hk(ρ(t), ί) | 0 ^ p(u) ^ s) = Hk(ρ(s), s). That is, Hk(ρ(t), t) is
a martingale for every &. From the above remarks it follows:

(1) hk(x, t) = # 0 + |0(ί))fc, ί ^ 0.
(2) £7^0 + /o(t), s) = Λfc(a?, t + s), t, s ^ 0.
( 3 ) Ehk(x + pit), - t) = xk, t^ 0.

In the following we develop an operator calculus associated with
these hk and study various properties and extensions based upon
the above preliminaries.

Ill* Notations*

(1) d/dx will be denoted by D.
(2) L(D) will be "any" function of D that is thought of as

the generator of a process with independent increments. L is
assumed to have constant coefficients (independent of x and t); and
generally L(0) = 0.

(3) EX or <X> will be used to denote expected value.
(4) t, the "time", is independent of all x and D variables.

Generally t ^ 0.
Other notations are standard or will be explained as they arise.

The functional calculus for D will be implemented by Fourier trans-
form as needed to facilitate and clarify computations.
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IV* Algebraic structure. Assume given an operator C such
that

[D, C] = DC-CD = 1.

For example, C = x as a multiplication operator. By induction it
follows readily that

[D\ C] = τDτ~ι

and

[A Cr] = rCr~ι , r > 0 .

Thus for any polynomial or analytic function φ(D),

[φ(D), C] = φ'(D) ,

φf denoting the derivative of ψ. So, even for nondifFerentiable φ,
denote [φ(D), x] by φ'.

PROPOSITION. Set C = x + t[φ(D), x]. Then [D, C] = 1.

Proof.

DC -= Dx + tDφ(D)x - tDxφ(D)

τ= xD + 1 + tφ(D)Dx - txφ(D)D - tφ(D)

= xD + 1 + tφ(D)xD + ί0(D) - txφ(D)D -

Since [J5, x] = 1, this checks that [D, φ'] = [̂ , ^'] = 0. Denote by A
the operator CD. Then the following hold (by induction).

[A, Ck] = fcCfc

[Afc, C] - C((A + l)fc - Ak) .

Similarly,

[D\ A] = fei)'

and

[A Afc] = ((A + l)k - Ak)D .

Given a function φ(D), such that ^(D)l = 0, set C = a; + ί̂ ' Assume
Al = 0. Define hk(x, t) = Ck±. Then the following properties hold:

( 1 ) Chk = hk+1.
( 2 ) Dhk - ftft^i.
( 3 ) AΛfc = CDhk = Mfc.
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( 4 ) dhjdt = φ(D)hk.
( 5 ) hk(x, 0) = xk.

The generating function e(z) = Y£(zkl~k>\)hk has these properties:
( 6 ) de/dz = Ce, e(0) - 1.
( 7 ) C*β(s) = ezChk.

The above are easy to check using the commutation relations noted
previously. It is worthwhile to check #4 explicitly:

For k = 0, fefc = 1 and dhjdt = 0 =
For fc = w + 1, fefc = Ch» and

dt n dt

- Cφ)hn + Cφhn

since

Φ' = [Λ »] - [Λ C] .

The condition ^1 = 0 comes only in proving #4; the condition A1 = Q
for #2. #3 follows from #1 and #2. These /^ thus generalize the
powers xk.

REMARK. In case φ is analytic, φ(D) = 'ΣiΌ>apDp/Pl> Λe fefc are
the determinants of a family of matrices of dimension k. This is
seen as follows. Set C = x - ty\ fl"fc(aj, ί) Ξ hk(x, - t) = C*l. Then,

i (p - 1)!

i (p — l)!(fc — p + 1)!

o L P J

Thus, iϊfc = det (a? — Ak) where the matrix Ak has entries:

1 s = r + 1

0 s > r + 1

Γ r - 1"
t

- 1
αr_s+1s ^ r + 1 .

In the probabilistic case, φ is chosen to be the generator L. Then
the moment polynomials hk can be computed as Ckl. The relations
(hk(ρ(t), — ί)> = 0 yield the moments /*t = \ykPt(y) and, conversely,
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the original definition yields the hk in terms of the μk, hk =

Σ [£}
EXAMPLES.

1. L = D. C = x + t. A = (a? + ί)2λ &fc = (a + tf.
2. Brownian motion. L = (1/2)D2. C = x + ίL' = x + tD. A =

f
A* = \ (a? +

J

f
= \ (a?

and iϊ fe are the Hermite polynomials.
3. Poisson process. L = eD — 1. C = x + £e&. The first few

polynomials are:

hQ = 1. h,! = x + t *

h2 = x2 + (2x + l ) ί + ίa .

4. Singular case. L = log D. Then C = x + ί D " 1 . A = xD +
The equations JL/̂ fc = M& become:

a fe' + th = kh
yielding

/^ = α^~ έ .

Choosing h0 = x~* gives:

defining g! = Γ(q + 1).

V* The operator C* As in § IV, given a generator L(D),
define C = cc + £L'. For general functions L(D), L(0) = 0, set

pt(a?) = — I e-«*e*L(<e) whenever this
2π J«

may be defined; e.g., if necessary, as a distribution.

PROPOSITION. The solutions to Cf = λ/ are of the form

f - k(t)pt(X - a?) .

Proof.

xf + tUf — Xf becomes by Fourier transformation

i4-} + W{iξ)f - Xf
dξ
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which has the solution / = fc(ί)e-"VSSL'(' )W = k(t)e-iλξetLiiζ) .

REMARK. Recall from IV that as long as Ah0 — 0, Ahk — khk.
This indicates that there is a 2nd series, besides Ckl, formed as
follows. Take h0 = D^ιpt( — x), D~ι denoting indefinite integral.
Then by the above proposition with λ == 0, Ah0 = CDh0 = 0. Now
define hk = Ckh0. Then hk_v is actually k\ times the kth indefinite
integral of pt( — x) and Ahk = khk.

Now proceed to study in more detail the operator C acting on
functions in general.

DEFINITION. A function f(x, t) is harmonic by definition when

Then it will be seen that:

THEOREM. If f is harmonic, then u — ezCf is harmonic.
Defining fk = Gkf, then

COROLLARY. // / is harmonic, then fk is harmonic for all
k ϊ> 0. In fact, ezGf harmonic means

—ezCf = LezCf and to conclude that fk isdt

harmonic note that differentiating with respect to z commutes with
both djdt and L.

First compute ezGf.

LEMMA 1. Set Λ(D) - L(D + z) - L(D). Then

e*cf r= e

z*etΛf.

Proof. Let ψ = U. For u = ezCf,

— = Cu = xu + tψu .
dz

Apply Fourier transformation to yield, for v = ύ:

^ + tψ(ίξ)v
dξ

which has for solution
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as is readily seen, say, by applying Feynman-Kac for the deter-
ministic process p(z) = iz. Thus,

u= [eiξxf(ξ + iz)

Since ψ = L', [Zψ(D + s)ds = L(D + z) - L(D) .
Jo

The theorem will require the aid of the following.

LEMMA 2. For any φ(D),

xf = ezxφ(D + z)f .

Proof. Utilizing Fourier transformation for the left-hand side,

φ{D)e"f = \eίζxφ{iξ)

z)f(ξ)

Finally the proof of the theorem:
Let df/dt = L/. Then, for u = βzί

e V /) = ββ V Λf + β« V
a* dt

- e"e'XL(D + z) - L(D) + L(ΰ))/ - ezxetιL(D + s)/

= Lt6 by Lemma 2.

REMARKS. 1. Particularly, when LI = 0, e(» = e*cl is harmonic.
In fact,

= etL<D)β'*l , by Lemma 2,

__ etL{z)ezx - ^ ^ i ^ i s the required result.

2. Note that by Lemma 2, generally,

ezCf = e**e*uD+*)e-t

- etLβ**e-*Lf.
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Differentiating with respect to t yields an alternative proof of
the theorem. See §IX.

3. In the probabilistic case, the theorem implies that if / is
harmonic, u = ezCf, then fk(p(t), — t) and u(p(t), — t) are martingales.

EXAMPLES.

1. Brownian motion.

Λ = UP + z)- L{D) = —z2 + zD.
Δ

So

e«>f = e*xeΛ/*f(x + zt) .

2. Poisson process.

A = eD(e* - 1) .

So

ezCf - e" Σ -^ ^-f(x + n) .

o n\

3. Singular process.

A = log (D + z) - log D = log (1 + zD~ι) .

e°f = e"(l + zD'Jf

And

4. UP) = D"I6. A -

e"f - β V8 ί / βJ/ (a? + - ^ - ^

VI* The operator A* Given C, define A = Ci?.
This section continues the previous one to analyze the eigenvalue

equations Afk = &/fc.

PROPOSITION. A/ = 0 if and only if Afk = &Λ, /or k ^ 0.

Proo/. Set w = ez(7/.
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An = CDezxetΛf

= C(zu + 6zGDf)

= zCu + e

- zCu

2 ; w

Thus, z(d/dz)zk = kzk implies AC*/ = fcC*/. This follows also from
the commutation relation [A, Ck] = kCk.

To see how A acts on functions in general, solve the equation

d u =Au
da

thus computing eaΛf.

PROPOSITION.

e«Af = eaxDetGf

where

G = L(De«) - L(D) .

This is analogous to the result for C, replacing translation by
z with multiplication, exponential translation.

Proof. Apply Fourier transformation to

du du , jr . du

da dx dx

yielding, for v = ύ,

dv d

da dξ
-(iξv)

The solution is seen to be

by applying, say, Feynman-Kac for the deterministic process /θ(α) =
ίe"α. Thus,
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u = (β« /(ίβ-β)β Jfi

Setting t = 0 yields eβ*V(a0
Substituting ψ == L'f

DetGfk = e β f c

L'(Des)Desds = L(Dea)
o

Combining these two propositions gives

THEOREM. Af = 0 i / αwd owZi/ if

L(Dea) -

EXAMPLES.

1. L = D. A - (a? + *)!>. And

e « y = et{9"-l)Df(xe") = /(a;βα

Eigenfunctions are (x + ί)&

2. Brownian motion. A = xD + tDz.

0 ,

ί )

G = Aί) 2 (β 2 α - 1)
Δ

And

Eigenfunctions are ΛA(a?, t) where hk(x, — t) are Hermite polynomials.
This is essentially the Ornstein-Uhlenbeck process.

3. Poission process. A = xD + teDD.

G = eDe" - eD

And

k

iPJ
xea)

4. Singular process. A = xJD + ί.

G - log J9βα - log D = α
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And

e«Af = eatf(xe«) .

Eigenfunctions are x16'*, as seen previously.
5. Cauchy process. L = — \D\.

G= -\D\(e«-l).

And

e«Λf = —[ f(xea + t(ea - "> ^ Λ dy

π J

For example, set

Then

— \h{xe° + £(eα - 1)?/) dy = βα/%(α;) , for all α ^ 0 .
π J 1 + ί/2

VII Multidimensional theory. In the case where xeRN and
= (jDlf Dv , i?^) the exponential martingale is

The natural extension of the one-dimensional operator C is the
vector operator

C = (Clf , CN)

with components

C, - xs + ί[L, ajj = Xj + tξ^- ΞE Xj + tLj .

The generating function

* &!

where the usual indexing notations, e.g., zk = z*1 z^N, are em-
ployed, is again represented as β"cl. The corresponding basic
theorem of § V will be the main topic of this section.

THEOREM. Given L(D) = L(Dt, , DN). For C as defined above,
f harmonic implies ez'cf is harmonic.

The proof will follow from the explicit form of u = e*'cf.
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PROPOSITION. The operators Cά commute.

Proof.
Let d = x + tLx and C2 = y + tLy be two C/s. Then

0,0, = (x + tLx){y + «!,„)

= xy + taLy + ίLβi/ + £LβLy

= ^ + txLy ^

= xy + taLy + ί̂ /L,. + tLxy + ίL^L^

which is symmetric in x and y since L^ = L^̂ .
By the proposition,

ez'cf = Π β'^ίf (independently of the order of the product)
3

and by the results of §V,

ez'cf = ez^Xiel ^eZ2X2et 2 eZN

where

Λy = L(A, , A + «i, , ̂ ) ~ L(D) .

Similarly, the operators A3 = aĵ Dy + ίl/^ JDj commute and

ea'Af = eaίXlΣ>1etGι eaNXNDNetGNf

where

Proof of the harmonicity theorem. For u = ez'cf,

. = Σ eZίXletAl eziXjet/i'ΆjβZ3'+lX'+ietA3'+1 eZNXNet4Nf
dt 3

t dt

While, using Lemma 2 of § V sequentially (i.e., by induction),

Lu = Le*ιXιetΛι βZN*NetANf

2 . . . 6tΛNf

. . . QzNxNβtΛNf
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REMARKS 1. Using Remark 2 of §V, it is clear that

e"cf = Π etLe*t*>'e-tLf = etLez'xe~tLf .
3

2. As before, check that, for LI = 0, the exponential generat-
ing function satisfies

Note the general formula as for one dimension:

By the above remarks,

ezCl = etLe*'*e~tLl = etLezx = etMx)e"9

as required.

EXAMPLES. Here (^, a?2) = (», y), (zlf z2) = («, w).
1. L = A ΰ , . ^! = ^Dy. Λ2 = ̂ D,,

and

= e"v+**e*t"f(x + wt,y + zt) .

2. L = 2). - (l/2)ΰ,2. Λ = 2. Λ = -(w;2/2) - wDy

and

^ y _
w2</2/(x, y - wt) .

VIII* Further examples and remarks*
A. Homogeneity.
If the generator L has homogeneity such that aL(D) = L(acD),

then

becomes, substituting z —• αc^,

Thus,

hk(acx, at) = akchk(x, t)

or equivalently tkchk(x, 1) = hh(xt*f t), for every
On Λ^, αL(D) = L(αcD) means
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Ua^D,, . . , aβ»DN) = αL(A, , DN) ,

and akc = α*'β.
B. Higher Order Operators. Extensions.
Consider the equation

dz

This is of the type

du with L = V
dz 6

So the solution is

u = ezCf = β'V / - e**+ 3t/β\ f(x + —

On the other hand, for convenience setting t = 1, the Feynman-Kac
formula gives for Brownian motion b(z)9

This suggests considering operators C of the form ψ(x) + tφ(D).
In case either ψ or φ generates a process, then the solution is of
(generalized) Feynman-Kac type. By Fourier duality,

for C = ψ{x) + tφ(D) , set C = ψ(i-ΛJ) + ^(^) .
V dξ J

Denote by p the process generated by φ(D) and by q the process
generated by ψ(i(d/dξ))—assuming that these are well-defined in some
sense.

Set u = ezCf and v = u =

andf(&)tt + ^(J9)^ and
dz ' dz

Then with < > corresponding to expectation with respect to
the process indicated,

u = (f(x 5

v

Applying Fourier transformation to v and u yields the dual
representations:
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The solution u is represented in terms of either the p or q process.
In particular, then, if processes are defined for generators of,

say, polynomial type of degree < n, then any process generated by
a polynomial of degree n should satisfy the constraints imposed by
the above duality requirements. E.g. For deg φ = n, define p
implicitly by requiring u(p) = u(q), using φ as a potential for all
choices of ψ9 deg ψ < n.

In this way, inductively, a process and corresponding stochastic
calculus is built up for all polynomial generators L(D). By appro-
priate limiting procedures, extensions to operators with continuous
generators and variable coefficients would result.

For example, for φ = D*/6, ψ = — x2/2, b(z) Brownian motion,

for all suitable functions /.
C. Relation with field theory.
In case L is skew-adjoint, C will be self-ad joint and conversely

any set-up with Hermitian operators such that [D, C] — 1 is essen-
tially of the above type by Stone-Von Neumann. C is the "creation
operator" and D the "annihilation operator", A the "number ope-
rator"; hn are the Wick products. See, e.g., Simon [7] and references
there, Segal [5, 6] and Miller [3].

IX* Functional calculus for C* Fundamental operators V)p+
From §V,

Expanding in powers of z yields

Cn = etLxne~tL .

In particular

C = etLxe~tL .

So φ(C) is defined for any function φ for which

φ(G) = etLφ(x)e~tL makes sense.

Note that in particular, φ(C)f can be defined for harmonic / by

φ(C)f = etLφ(x)f.
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Defining C directly, as above, yields an operator for any L
that generates a group; for general Markov semigroups, with
possibly variable-coefficient generators, φ(C)f is defined for harmonic
/ at least.

Before defining the fundamental operators, first recall Leibniz'
rule for differentiating a product. It yields the following:

LEMMA. {General Leibniz formula.)
As operators,

Consequently,

Note. Assumptions on ψ are φ are not stated explicitly, de-
pending on the domains involved. For the proof, it is assumed that
ψ can be approximated by polynomials in some reasonable manner.
See, e.g., recent notes on pseudo-differential operators, Taylor [10]—
also references are there to papers by Kohn, Nirenberg, and Hor-
mander—for technical clarifications concerning the generalized
Leibniz formula.

Proof.

DrΦ = Σ I -JΊΓDr~k by basic Leibniz' rule .

Or,

Ψ kl 8xk 3Dk

For ψ - Σ crD%

kl dxk dDk r ^ ki dxk dDk

Using this formula,

C = etLxe~tL = x + [etL, x]e~tL = x + tU as previously defined.

And

φ(C) - e^φ{x)e~tL = Σ-V- |^-%(A ί)
p^o pi 3xp
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defining

ηv{D, t) = e~tL~^etL .

These are the fundamental operators.
In particular,

.PA

It is now seen that the moments

This enables the formulation of the basic theorem as follows.

HARMONICITY THEOREM.

The following are equivalent:
(1) f is harmonic.
( 2 ) ezGf is harmonic.
( 3 ) φ(C)f is harmonic for all suitable φ.

(4) Σ I %n~PVpf is harmonic for n ^ 0.

Proof.
1 => 2 and 3:

For u = φ{C)f,
d u Lu + etLφ(x)e~tL ( — -L)f=Lu, as for Remark # 2 in §V.
dt

3 ==> 4: follows from the above formula for Gn via the general
Leibniz lemma.

4 ==> 1: )?0 = identity.

EXAMPLE. The gamma distributions.
Consider the case

Pt(y) - ^ ^

S o L = - log(1 - D), L' = (1 - D)-1. And

= ί(ί + 1) (ί + p - 1)(1 - D)~* .
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Cn = (1 - D ) - ^ ( l - DY

and

C M - (1 - Z>)-*fic* .

Now it is easy to see that setting t = — n yields qn(x) —
(x — nL'yi — (1 — D)*x* an orthogonal system on [0, oo) relative to
e~x, i.e., they are essentially the Laguerre polynomials. Recall the
definition of Cnl in terms of moments of Pt. This yields formally

(x + vTy

Γ,
 e d y

o Γ( — n)Γ{-n)

with

Γ(-n)

From the formula for ηn,

μ r = Vrl =

Γ( — n) Jo

(n — r)\ (n — r)!

since (1 - D)"1! = 1.
If the gamma function were defined for negative integers, the

first formula for μr would give

Γ(-ri) (n-r)\

This shows that it would be consistent to define

Γ{— n) — ~ if only ratios are computed .
nl

That is, define Γ(0) = ζ, with O ζ = 0Γ(0) = Γ(l) = 1. Then setting

also preserves the basic property xΓ(x) = Γ(x + 1) as indicated by
the computation of μr. Note that Γ has simple poles at — n for
n ^ 0 with residue (— l)n/n\.

Finally, note the difference between the Laguerre and Hermite
systems.

Hn(x, t) = (x — tD)n 1 are orthogonal for t > 0 for the measure
with density e~χ2/2t while Ln(x) = (& — w(l — J9)"1)" 1 requires setting
t — — n to have an orthogonal system with respect to the single
density e~x(x ;> 0).
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Generally, Hn — (x — tU)n 1 does satisfy a generalized three-term
recurrence relation,

xH. = tLΉ. + H,+ι .

IXa* Appendix to Section IX* Computing ηp. The following
formula for computing the η's is convenient in the case L is analytic.

PROPOSITION.

Proof. ηN = e-tL[d/dD]NetL. Multiply by aN/N\ in the formula
above and sum. The left-hand side becomes:

Γ °° πNT
σt{L[D+a)-L{D)) __ o v r k I ^ V N

2
N=I

Expanding the exponential and collecting terms corresponding
to each aN yields the formula.

REMARK. Observe that, for t = 1, the coefficient of Lf^ L ^
is the number of ways of grouping N elements to have pk groups
of k elements each.

X* The number operator* Vacuum functions. This section
continues § VI as a further study of the operator A. Recall that
in one dimension

A = CD = etLxe~tLD = etLxDe~tL .

In the multi-dimensional case, the vector operator A acts in
each coordinate. As seen in § VI, Af = 0 implies that Asfk = kόfk

for each multi-index k. A scalar operator can be defined that acts
similarly.

DEFINITION. The number operator is the scalar operator defined
by

A = C'D =

In the following, A will denote this scalar operator; As will
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denote components of the original vector operator.

PROPOSITION.

(1) Aόf == 0 for 1 ̂  j ^ N implies Afk = \k\fk.
( 2 ) In fact, Af — 0 implies Afk = \k\fk.

Proof.
(1) follows from above remarks.
(2) Aez'cf=etLx Dez χe-tLf

= etLx-ze"*e-tLf+ etLez'xx-De~tLf
= z-Dze

tLezxe~tLf.
Since,

etLez'xx*De~tLf = ez'cAf = 0 .

The conclusion follows as in the one-dimensional case.

DEFINITION. A vacuum function f(t, x) satisfies by definition:
(1) df/dt = Lf, i.e., / is harmonic.
(2) A / = 0 .
Thus, fk are harmonic functions and eigenfunctions of A as

well. The usual choice for the vacuum, as seen previously, is the
constant function 1. However, in singular cases, e.g., Example 4
of § IV, other choices may be necessary.

In the case / is independent of t, the vacuum conditions simplify.

PROPOSITION. When df/dt = 0, / is a vacuum function if and
only if

(1) L/=0.
( 2 ) a?.JD/=O.

Proof. To verify (2). Note that since / is independent of ί,
setting t = 0 in the equation Af — 0 reduces to (2).

Conversely, assuming (1) and (2) yields:

Af = etLx-De~tLf - etLx-Df - 0 .

Regarding equation (2) of the above proposition, note the follow-
ing.

PROPOSITION. x Df — 0 if and only if f is homogeneous of degree

zero, i.e.,

f(Xx) — f(x) for scalar λ .

Proof. x-Df^O implies e«x'Df = f(x) = f(eax), for scalar a.
Differentiating f(Xx) = f(x) with respect to λ yields the converse.
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A "general solution" is thus of the form

with α's such that Σ α i — 0 a n ( i the Qa functions of one variable.
Note that any analytic / homogeneous of degree zero must be
constant.

EXAMPLES.

1. Brownian notion. L = 1/2 Σ A- C* = α,- + tDs.
A = C JD = ΣOM?/ + *Z>|). Since any harmonic / is analytic, the
only vacuums are constant functions.

2. L = DxDy. Cx = x + tDy. Cy^y + tJ3β.
JL = xDx + 2tDxDy + /̂Z)̂ , A harmonic function is of the form

/ = F(x) + G(y) .

And X'Df = 0 yields

SJF'COO + ^G'(y) - 0

or

a?jF"(a?) = constant = — yG'(y) .

Choosing the particular solutions

F = log a; , G = — log 2/

yields

So

n = e
zC*+wCyf =V/ = e-»+«+«« log JL wt

is harmonic and Aw = (^Dz + wDw)u.

For ft%m = C;C,W/, A^.m = (rc + m)fewm .

E.g.,

Λ10 = #(log x — log y) — έ/?/ , Afc10 = hi0 .

hn = (αy + ί)(log a; — log y) , Afcn = 2hn .

3. L = JD. - D2,. C. = a? + ί. Cy = y - 2tDy.

A = xDx + tD9 + »!>, - 2ίl>;.

For /, homogeneous of degree zero, of the form
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to be harmonic yields the equation

VQ> + 2Γ-* Ί Q ' + Γ - Ϊ . T Q " - 0 .

Thus, yQf = 0 and Q must be constant.
In case / depends on t, the remark in § V regarding the 2nd

series indicates the canonical choice

/ - J D - W - a) = Γ P«(- »)d» = t Pt(v)dy .
J-00 J-a>

Harmonicity follows immediately from

and the commutativity of the operators d/dt, L, and D~\
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