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1. Introduction. Implicit in the work of Rankin [6]
and explicit in the work of Petersson [5] is a formula con-
necting the Petersson inner product of two holomorphic
modular forms with a residue of the Dirichlet series formed
with the products of the Fourier coefficients of the two
modular forms. In view of the modern group theoretic in-
terpretation of the eigenfunctions of the Hecke operators
as unitary representations of an adéle group, it appears
that the ideas of Rankin and Petersson may have wider
applicability; for example they may relate to multiplicity-one
problems in the theory of automorphic representations. The
purpose of this note is to extend these ideas to real analytic
modular forms.

In §2 we recall the results of Petersson and Rankin and show
(see Theorem 1) how the residue at s = 1 of a certain Euler product
can be used to distinguish whether two eigenfunctions of the Hecke
operators are orthogonal or not. In §3 we describe the essential
nature of the method and derive (see Theorem 2) a formula which
expresses the Petersson inner product of two real analytic cusp forms
which are eigenfunctions of the Hecke operators as the residue at
s = 1 of an Euler product.

2. Holomorphic cusp forms. Let H be the upper half plane
and Let I' be the group of linear fractional transformations of
H:z 1+ 0(z) = (az + b)/(cz + d), with a,b,¢,decZ and ad — bc = 1.
Let dR2 = y*xdy be the SL (2, R)-invariant measure of H. Let k be
a positive integer and let

f(z) = Zl a(n)q*, 9(2) = g b(n)q", ¢ = exp (2wiz)
be two holomorphic cusp forms of weight k¥ on the group I'; let »

be a prime and suppose that f(z) and g(z) are eigenfunctions of the
Hecke operator T,:

(FIT)(z) = 2 a(np)q* + p* 2 a(n)g™ = a(p)f(z) ;

with a similar formula for g(z). A particular case of Petersson’s
formula (Theorem 6, [4]) is the following.
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g = SDmf(z)g_(?)y"d.Q

= ST (k)4z) * Res Ly, ,(s) ,

were
Ly,(s) = 3 am)b(m)n~**, Re (s) > 1 .

If we use the multiplicativity of the coefficients a(n), b(n) and the du-
plication formula for the gamma function, then Petersson’s equality
can be rewritten in the form

<f: g> = 2—,‘ IE'Sls L(S, Ty X 75,,) ’

where
2(4m)~ g2 (s + kb — 1)I"(s)C(2s) “Z a(n)b(n)n s+
= 2—kL(3, Ty X ﬂg)
= 27*[(s, w; X W)L(8, Ty X T,)
and

I'(s, s X w,) = Gr(8)Gr(s + 1)Gr(s + k& — 1)Gr(s + k), Gr(s)

- ).

C(s: Ty X 71',,)

il 1

? (l - )"pﬂpp—s)(l - )"pﬁznp_s)(]- - X,J],,p“)(l - xpﬁpp_a) ’
a(p) = PV, + Ny), b(D) = VY, + 7y) -

REMARK. The Euler product L(s, 7; X w,) is related to those
introduced by Langlands ([2], p. 10).

With the above notations we can restate Petersson’s result in
the following form

THEOREM 1. Let f(2) and g(z) be cusp forms of weight k on the
Jull modular group I’ which are eigenfunctions of all the Hecke
operators. Then f(z) is orthogonal to g(z) if and only if the Euler
product

L(s, s X w,) = I'(s, Ws X ®E(8, Ty X T,)

18 regular at s = 1.
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3. Real analytic cusp forms., Let f(z) and ¢(z) be two real
analytic cusp forms in the sense of Maass [4]. Let

o’ 0

s-v(Ze )

y ox* + oy*

be the Laplace-Beltrami operator for the upper half plane and
suppose that

1— 2\ 1—%
df = , dg = .
f 3 f g 59
Observe that because of the positivity of the Laplace-Beltrami operator
the nonzero numbers » and » must lie in the imaginary axis or in
the interval between —1 and 1. Suppose that f(z) and g(z) have
Fourier expansions about the cusp at infinity of the form, z = 2 + 4y,

f(z) = goa(m)y‘/sz(anmly) exp (2rimzx) , al) =1,
g9(z) = % b(n)y'*K,(2r |n|y) exp 2rinz) , 1) =1,

where K,(z) is the modified Bessel function. If f(z)is an eigenfunction
of the Hecke operators then Maass ([4], Theorem 12) has proved that

1 .
1—a(pp™ +p>’

;:‘,la(n)n”’ = ];[

similarly for g(z). To simplify our notation we suppose that f(—2) =
f(z) and ¢g(—%) = g(z). For Re(s) >1 we have the Euler product
identity

por s () (A3 (=)
X g,oa(n)m)n““
_ L'(s, mp X (s, wr X 7,)
A(2s)

_ L 7, X wy)
A(28) ’

where
I'(s, m; X ;) = Gr(s + N + N)Gr(s + X — N)Gr(s — N +9)Gr(s — N —7) ,
1
’ KTy) = -~ - - 0470 1y —2Y ’
S T = S — N — ML = N
a(p) =N, + )"o:nr b(p) =17, + 77011’ 7\'11)"2 = 77p772» =1,

and A(3) = Gg(s){(s). This equality follows from the formal power
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series identity

1—- T
(1 - 7\‘177717T)(1 - k’%’?z’T)(l - 7\:1,7]2, T)(l - 7"2» OpT)

3. a(p b I =
With these notations we have the following result.

THEOREM 2. Let f(z) and g(z) be two real analytic cusp forms
on the full modular group I' which are eigenfunctions of all Hecke
operators. Let L(s, m; X m,) be the Euler product introduced above.
Then we have

o) = Res L(s, n; X 7,) .

In particular f and g are orthogonal if and only if L(s, w; X ,)
18 regular at s = 1.

Proof. Let

1

Sp:{z=x+'éy:}w]§2 yzO}.

Let I', = {(5 qf’) neZ} and let D(I") be a fundamental domain for

I’ in H. We then have the formal congruence identity

(") S, = >, oD(I').

el

Now for Re (s) sufficiently large we have

[, r@itas
r<81 . f(z)@dx)ys—zdy

0 —

(

= |"(2 2 ambmKex i minK,xiay) | eremdn)y-ay

"'i

= = 3 am)itm) (| Kz [m| K2 | m | v)y~dy) -

n

The interchange of the order of summation and integration is justified

by the fact that uniformly in x both f(z) and g(z) are O(y*) (resp.

O(y~?)) when y — oo (resp. ¥ — o) for some positive constants A and B.
We now use the well known identity ([3], p 102)

SwK,,(at)K,(at)t*‘dt

R - AN
2771 - )
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XF(l-—C—;#+v>r(1—C;#——u)r<1—-5~2—p+v)

xF(l_C;‘“_”>

which is valid for Re(a) > 0 and Re(1 — { + ¢t +=v) > 0. We apply
this identity with ¢ = 2zny and { =1 — s to obtain

SSP f(2)g(@)y dQ
- (R () (=)
x P(E=2=1) 5, atmiKmm ™
= () () ()
P r(s—_%——;—yz—>§a(7n)b(m)m‘s
_ L,y X @)
= Al

We now use the congruence identity (*) for the region S, to obtain

|, f@a@wde

”f (2)g(2)y*dQ-0 .

oe [ SD(
By the automorphy property of f(z) and g(z) we get
f(@)g@y dRe0 = f(2)g(z)Im o(2))'dQ ,

and therefore

Ls,m; X 7,) _ 2)9(R)E(z, 258 — 1)dQ2
411{28) SD(I‘)f( ) ( ) ( ’ ) ’
where

E@z 8) = 3 (Ima(z)*+”

LIl
is the well known Eisenstein series associated to I'. The Fourier
expansion of E(z, s) is ([1], p. 46)

1 A(S) 1—~8)/2
E(z, s) = gyt + (1—-s)/
(@) =y A + 07

2 o »
-+ s{lml) p1/2 i o lm 62,~wm3
gﬁ Az + 1) m|” Y r(2lm|y)
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and the only poles of the summation term are those arising from
the zeros of Riemann’s Euler product A(s + 1). Hence the only pole
of FE(z,8) at s =1 comes from the numerator in the expression
A(s)]A(s + Dy /2, In fact a well known application of the Kronnecker
limit formula gives the Laurent expansion in a small neighborhood
of s=1

1
s—1

E(, 25 — 1) = % + %(c — log 2) — % log (3°] 4(2)])

+ Se(n)s — 1",
were
4@ =q Il A — ¢

In particular it should be observed that the residue of E(z, s) at
s = 1 is independent of 2. Therefore we have

Res Smf(z)g(—zSE(z, 2s — 1)dQ

= (gmmf(z)j(z—)dg). Res E(z, 25 — 1)

*3<f,g>-

T
On the other hand

L(s, ;s X 7,)
R g
S T 44(2s)

— 3 Res L(s, m; X 7,) .
2w =

This completes the proof of Theorem 2.
ReEMARK 1. The functional equation for the Eisenstein series

__ A _
E(z, S) = ME(Z, 3)

leads to the funetional equation

L(lgs,ﬂfxm> =L(1;S,7tf><rc,>.

2. The residue of L(s,n; X w,) at s =1 can be thought of as
an intertwining operator.
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3. In[7], Shimura has used the connection between the Petersson
inner product and L-series to study the arithmetic properties of the
periods of Eichler differentials.
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