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Let G be a finite group, and suppose that
A: G—>GL(#, C)

is a (complex) representation of G with character 3. A
(complex) linear relation for A is a formal complex linear
combination > ,.;a,9 such that > ,.ca,4(g) =0.

We prove the following theorem, which determines the
linear relations in terms of the character y.

THEOREM. Let A be a representation for a finite group

G, let y be the character of A, and let {g,, - -+, g} be a subset

of G. Then }*.,a;g; i® a relation for A if and only if
b1 x(g:970a; =0, for all i=1,---, k.

Nore 1. If C is the kxk matrix whose ij-entry is x(g:95") and
a is the column vector whose jth entry is a;, then the above con-
clusion can be rephrased as follows:

k
>, a;g; is a relation for A = Ca =0.
7=t

NoTE 2. The above theorem is a generalization of a result by
Russell Merris [3]. His result may be stated in the following way.
Let y be an irreducible character of G, let M be the matrix ob-
tained by applying y to the entries of the multiplication table of G,
let A be any representation of G affording ¥, and let S be a subset
of G. Then {A(g)|g€ S} is linearly independent if and only if the
rows of M corresponding to S are linearly independent. Our result
strengthens Merris’ result in three ways: (1) the condition about
irreducibility is removed, (2) a way to determine the coefficients of
any relation is given, and (3) smaller matrices are involved.

Proof of Theorem. Let %, ---, %, be the irreducible characters
of G, and let CG denote the complex group algebra of G. For each
k=1, .-, 7, let

¢ = (xk(e)/lG!)NZG 1{(9)g -

Then ¢, is a central idempotent of CG and corresponds to a repre-
sentation of G with character y, in the following way:

Let R, denote the principal ideal of CG generated by c,, and let
Z, be any minimal left ideal of CG contained in R,. Then
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R,~Hom(Z,, Z,) and the irreducible group representation

given by left multiplication has character 7,. Furthermore,
{e, -+, ¢} is a set of mutually annihilating central idempotents of
G such that

¢+ G+ - F+c,=¢.

See [1, pp.233-236] and [2, p.257].
We can write A in terms of these representations as follows:

Ar~nA DnAD--- DnA,

where n, is a nonnegative number given by 7, = (), Y-
Now let

n
L =3 a;9; .
=1

Then L is a relation for A4 if it is a relation for those irreducible
representations A, such that (x, ¥.) # 0. It follows that L is a rela-
tion for A iff ¢, = 0, for those k such that (¥, %) #* 0.

Define

o= @@G) %299 -
A straightforward calculation shows that
¢ = 3 (6 LU0 -

Because of the mutual annihilation property,
¢L =0 — ¢, L =0 for all ¥ such that (y, %) #0.

Thus L is a relation for 4 if and only if ¢L = 0.

Left multiplication by ¢ is a linear transformation on the complex
vector space CG, and thus ¢ has a matrix N with respeet to the
basis G for CG. The g, h-entry of N is (x(e)/|G|)x(gh™). Also with
respect to this basis, L corresponds to the column vector with a; as
the g;th entry, and zero otherwise. With a slight abuse of notation,
this becomes a,, = a; for i =1, -+, k and a, = 0 if g = g, for all .

Since G is finite, we have y(¢7*) = ¥(¢), and thus N is hermitian.
Since ¢ is a positive linear combination of mutually annihilating
idempotents, all eigenvalues of ¢ and hence of N are nonnegative.
Thus N is hermitian positive semidefinite, and so there exists a set
of vectors {v,e C'?'|ge G} such that the g, h-entry of N is (v, v,),
where {,) is the ordinary hermitian inner product on C'¥!. Thus
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we can write:

OL = 2 <vﬂr 'vh>ahg :ygc‘: <vg) ’U>g

g,he@

where v = Jcq Qs = Dy A0,

If ¢eL, =0, then <v, v> =0, for all geG. This implies that
{Ve55 ) =0, for 1 =1, «-+, k.

Conversely, if (v,,v) =0, for i=1,.--,k, then {v,v) =0.
Sinee ¢, ) is the usual hermitian inner product on C'¢!, this implies
that » = 0. But then {v,, v> =0, for all geG. Thus ¢L = 0.

Thus ¢L = 0= (v,,v) =0, for all 1 =1, ---, k.

But (v, v) =0 — ]Z:l (Vg Vg005 = 0
— (/|G 2 Ug0a; = 0
= él x(g.95)a; = 0.
Thus L is a relation for A iff

k
> Ag07a; =0, forall j=1,---, k.
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