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The boundary behavior of proper holomerphic maps
between two smoothly bounded pseudoconvex domains in
C* is studied by means of the Carathéodory metric. The
Holder continuity of such maps is proved in case the image
domain satisfies some technical conditions; these are satisfied,
for example, by sirictly pseudoconvex domains and convex
domains with real analytic boundary.

In recent years it has become clear that pseudoconvex domains
with smooth boundary may exhibit rather pathological behavior in
the absence of striect pseudoconvexity (cf. the examples of Kohn
and L. Nirenberg [13] and Diederich and Fornaess [4]). Therefore
it might be of interest to consider conditions weaker than strict
pseudoconvexity and to extend classical results to more general
settings.

Investigations related to Holder estimates for solutions of the
d-equation (cf. Range [18]) have led the author to introduce a
technical refinement of the following classical condition (cf. Behnke
and Thullen [1], p. 29): The domain D is called totally pseudocon-
vex at PeoaD if there is an analytic hypersurface M, in a neighbor-
hood U of P, such that M, N D = {P}. The refinement involves two
parts. First, there should be supporting analytic hypersurfaces M,
for all points {€dD near P, and M, should depend smoothly on .
Next, in order to obtain estimates of some sort, one needs finite
order contact between M, and 4D at {. The resulting condition is
called uniform total pseudoconvexity of finite order (cf. Definition
1.8 for the precise formulation). Simple examples of domains which
satisfy this condition at every boundary point are strictly pseudo-
convex domains and convex domains with real analytic boundary.

In this paper we prove the following generalization of a eclassi-
cal result.

MAIN THEOREM. Let D, and D, be bounded domains in C™ with
smooth boundary. Assume that D, 1s uniformly totally pseudocon-
vex of finite order at every point PedD,, and that D, has a Stein
netghborhood basts. Then there s a > 0, such that every proper

1 Theorem 2.2 and, as a consequence, the Main Theorem, are valid without assuming
the existence of a Stein neighborhood basis, provided one assumes high differentiability
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holomorphiec map F:.D,— D, 1is Hb'lder_ continuous of order «; in
particular, F extends continwously to D,.

ADDED IN PROOF. The Main Theorem holds without requiring
the existence of a Stein neighborhood basis for D,. The necessary
modifications for the proof are sketched in footnote 1.

For D, strictly pseudoconvex (plus a mild restriction for D,) the
Main Theorem was proved by Henkin [9] and, independently, by
Pinchuk [16]; a somewhat weaker result was obtained by Vormoor
[20]. Based on these results, the author [17] proved the Main
Theorem for biholomorphic maps between domains with piecewise
smooth strictly pseudoconvex boundary. By a different method,
Fefferman [5] proved that a biholomorphic map between strictly
pseudoconvex domains with C* boundary extends as a C= diffeomor-
phism D, - D,.

The proof of the Main Theorem uses the argument of Henkin
and Pinchuk. The main analytic tool is an estimate for the Cara-
théodory metric of the image domain D,. For strictly pseudoconvex
domains such an estimate was obtained by Henkin and Pinchuk, and
also by Graham [6], by approximating the domain by balls and
using supremum norm estimates for 8. The proof given here is
based on an explicit local construction, and the passage from local
to global is handled by Hormander’s L? estimates for d; in particular,
one obtains a new proof for the strictly pseudoconvex case.

Briefly, this paper is organized as follows. In §1 we introduce
the various notions of total pseudoconvexity and prove some basic
results; in particular, we discuss the relationship with (Euclidean)
convexity and the existence of peaking functions. The estimate for
the Carathéodory metric is proved in §2. In §3 we combine a
result of Diederich and Fornaess [3] and the estimates of §2 with
the techniques of Henkin and Pinchuk to prove the Holder continuity
of proper holomorphic maps.

The results in §1 were, essentially, obtained in 1975, but they
have not been published in detail before. The author has lectured
on several occasions about different versions of these results in the

of the boundary. In order to see this, one observes that in the proof of Theorem 2.2
the d-closed (0, 1) forms «;, 1<j=n, which are defined on D., satisfy, for each k€N, an
estimate |lallot @ =7k llaslley o, where 0<y:<occ. By Kohn’s global regularity result
([12], Theorem 3.19) and Sobolev’s Lemma, for sufficiently large %k there is a bounded
solution operator T::C%,Dnkerd— CYD) for 3. So u;=Ti(a;) satisfies ou; = a; and
lu,llet@) = By HL&(DE) for some constant By; this estimate is sufficient to complete the
proof of (2.2).



THE CARATHEODORY METRIC AND HOLOMORPHIC MAPS 175

context of Holder estimates for 9, notably at the 1975 Seminar on
Spaces of Analytic Functions in Kristiansand, Norway, and at the
1975 AMS Summer Institute on Several Complex Variables in
Williamstown, Massachusetts (cf. [18]). Initially, uniform total
pseudoconvexity of finite order was formulated in terms of special
coordinate systems which are now relegated to a technical device;
the version adopted here, which emphasizes the supporting analytic
hypersurface, seems the more natural one. The problem of finding
a tractable characterization of total pseudoconvexity in terms of
local invariants of the boundary remains open; its solution should
contribute to a better understanding of pseudoconvexity.

NotaTiONS. For xe R* and EC R", d(x, ) denotes the Eucli-
dean distance from = to E. For acC", the components of a are
denoted by a,, ---, @,; We sometimes write a¢ = (a/, @,), Where o’ =
(@, *++, @,_,) € C*; the Euclidean norm (3, a,@,)"* is denoted by |al.
For PcC” and ¢ > 0, B(P, ¢) denotes the open ball in C* with center
P and radius ¢; 4 denotes the open unit disc in C with center 0.

For a C' function f in a neighborhood of PeC”, 3f(P) denotes
the (1, 0) form of = >~ df/0z,(P)dz,. The natural pairing between
a cotangent vector @ at P and a tangent vector v at P is denoted
by {a, v); in particular, {of(P), v) = D, df/oz,(P)v,.

A domain DcC™ has a C* boundary at PeoD, 1<k £ oo, if
there is a C* function 7: U— R defined on a neighborhood U of P,
such that dr(P)# 0 and DN U=1{z¢c U:r(z) < 0}; a function 7»
satisfying these conditions is called a defining function for D at P.
The real tangent space of 0D at P is denoted by Tx(0D), and the
complex tangent space T (0D) NV —1 Tx(3D) is denoted by H(6D);
for any defining function r, H,(0D) = {v € C*: < or(P), v > =0}.

In order to avoid the use of many constants, we adopt the
following convention: If A(x) and B(x) denote expressions which
depend on a variable z € R', A(z) < B(x) means that there is a con-
stant K, 0 < K < o, such that |A(x)| < K|B(z)| for all z under
consideration; A(x) ~ B(x) is equivalent to A(x) < B(x) and B(x) S
A(x).

1. Total pseudoconvexity. We first discuss some properties
of the simple point version of total pseudoconvexity which may be
of independent interest.

DErFINITION 1.1. A domain D in C™ is called totally pseudocon-
vex at the point Pe oD if there is a monsingular analytic hypersur-
face M in o neighborhood U of P, such that MNDNU={P}. M
ts called a supporting analytic hypersurface for D at P.
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From now on we will assume that D has a C' boundary at P;
the coordinates of C" and the defining function » for D are chosen
so that P=0, H,(0D) = {zeC" z, =0} and 0r(0) =dz,. If M is a
supporting analytic hypersurface for D at 0, the tangent space of
M at 0 coincides with H(oD); so, near 0eC"”, M can be deseribed
as the graph of a holomorphic funection g defined in a neighborhood
U of 0eC . MN(U xXC)={#,2,eU xXC.z,=g&)}. To say
that D is totally pseudoconvex at 0ecodD is therefore equivalent to
the following: There is a holomorphic function g on U’, with g(0)=
0, such that vz, g(z")) > 0 for z' == 0.

It will be convenient to linearize M by a suitable holomorphic
change of coordinates. Choose a holomorphic function ¢ on a neigh-
borhood U of 0, such that M N U = {z e U: ¢(z) = 0} and d¢(0) = dz,.
Define F: U—C" by w = F(z) = (z/, ¢(z)); the Jacobian matrix F,,
of F at 0 is the identity matrix; hence, after shrinking U, F: U —
F(U) is biholomorphie, and

FUnNM)=FUN{weC:w,=0=FU)NHGFDNU)) .

we thus have the following definition equivalent to Definition 1.1.

1.2. D s totally pseudoconvex at P e dD if there is a holomorphic
change of coordinates w = w(z) in a neighborhood U of P, such that

wD N U)N Hyp@w(D N U)) = {w(P)} .

So, geometrically, total pseudoconvexity is just the biholomor-
phic image of convexity in the directions of the complex tangent
vectors. The following result shows that by relaxing the regularity
of the coordinate change at P, one can achieve convexity also in
the remaining tangential direction.

PROPOSITION 1.3. Let D be totally pseudoconvex at PecdD. Then
there are a neighborhood U of P, a neighborhood Q of DN U—{P}, and
a biholomorphic map G:Q— G(2)TC* with the following properties:

(a) G extends continuously to P and G(P) = 0;

b)) GDNU-{P)c{weC* Rew, > 0}.

Proof. Choose the coordinates of C", r and F as before;
o = roF ™ is a defining function for F(D N U) at 0, and 4,0(0)=dw,.
By assumption, there is ¢ > 0 such that o(w’, 0) >0 for 0 < |w'|<ec.
Therefore, by Taylor’s theorem, if |w| < ¢ and w' # 0,

o(w) = p(w', w,) = p(w', 0) + 2 Re aa;’ (', 0)-w, + o(|w,]|)

n

>2Rel-w, + o) |w,] .
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Choose U so small that o(1)-|w,| < |Rew,| + |Im w,| for we F(U);
if p(w) =< 0, one obtains

0>2Rew, — |Rew,| — |Imw,]|,
or
(1.4) —Rew,> — |Imw,| for we F(D N U) with w' # 0.

This shows that, on F(D N U — {P}), —w, omits the nonpositive
real axis R~. If one chooses that branch of the square root defined
on C — R~ which satisfies VI = 1, V' —w, is holomorphic on C — R~
and, by 1.4, satisfies RevV'—w, >0 for we F(DN U — {P}), and
hence for we F(2), where 2 is some neighborhood of DN U — {P}.
If S(w)= (w',V —w,), the map G = SoF is biholomorphic on 2 and
satisfies (a) and (b).

REMARK. As the proof shows, the singularity of G at P is
quite simple. It is not known whether one can choose G holomor-
phic at P, so that 1.3(b) still holds.?

COROLLARY 1.5. Let D be totally pseudoconvex at PcoD. Then
there is a mnetghborhood U of P such that P is o peak point for
the uniform algebra A(D N U).

Proof. The function h(z) =exp[—G.(2)] is in ADNU) and
peaks at P.

By using Kohn’s global regularity result for o [12] and standard
techniques (cf. Pflug [15], or Hakim and Sibony [8]), one obtains
the following global version of 1.5.

COROLLARY 1.6. Suppose D is a bounded pseudoconvexr domain
with smooth boundary. If D is totally pseudoconvex at P, then P
13 a peak point for the uniform algebra A(D).

Furthermore, by a variation of the proof of a result of Rossi
([19], Theorem 5.13), Corollary 1.5 implies:

COROLLARY 1.7. Suppose D has a C* boundary mear P and
D 1s totally pseudoconvex at P. Then P is a limit point of strictly
pseudoconvex boundary points of D.

For the details of the simple modification required, see, for
example, [8].

2 T, Bloom recently found an example for which there is no such map G holomorphic
at P. (cf. Duke Math. J. 45 (1978), 133-148.)
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We now come to the parametrized version of total pseudocon-
vexity.

DEFINITION 1.8. Let D have a C*' boundary at P€oD, and let
r be a defining function for D. D is uniformly totally pseudocon-
vex at P if there are positive constants 8, ¢ and a C-mapé: 0D N
B(P, 6)x B(P, 26)—C, such that, for all {€dDNB(P, 6) the following
are satisfied:

(i) &, ) ©s holomorphic on B ({, 0);

(ii) ¢(C7 C) = 0 (I/’I’l/d dz¢lz=c # 0;

(iii) 7r(z) > 0 for all 2 with ¢, 2) =0 and 0 < |z — (| <e.

Clearly Definition 1.8 implies that D is totally pseudoconvex
at all points { €D near P; the supporting analytic hypersurface
for D at { is given by M, = {z: ¢, z) = 0}.

For {e€oD, we denote by =, the orthogonal projection 7,C"—
H(oD).

1.8 (Continued). D is uniformly totally pseudoconvex of finite
order at P if, in addition to (i), (ii), (iii), there are m € N and 7v>0,
such that

iv) r@@) = 7|xlz — Q™ for all z€ B, ¢) with &, z) = 0.

REMARK 1.9. Definition 1.8 is independent of the choice of
holomorphic coordinates in a neighborhood of P and of the particular
defining function » which appears in (iii) and (iv). The smallest
integer m for which (iv) holds with some constants v and ¢ for all
{e0D in a neighborhood of P is called the order of 0D at P. Note
that if Dc C* with n > 1, one must have m = 2.

By multiplying » and ¢ by suitable nonzero functions of {, one
may further assume

(v) 167(0)| = 1 and or(0) = d.g|,. for CedD N BP, d) .

ExampLE 1.10. A bounded domain D C R* with a C' boundary
is called totally comvex if for each PecdD the tangent space T,(0D)
intersects D only at P. If DcC® is totally convex, then D is uni-
formly totally pseudoconvex at all points PedD; in fact, if r is a
defining funection for D in some neighborhood U of 0D, the funec-
tion ¢(g, z) = D, 0r/ol(O)(z, — ;) satisfies 1.8(i)-(iii).

ExAmpPLE 1.11. Let D be strictly Levi pseudoconvex at PedD,
i.e., if r is a C? defining function for D near P, the Levi form

“ o'r _
’ -Py = —_— U j
L(r V) ;jil STaT, (P)vv
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satisfies, with some 7 > 0,
L{r; P,v) = 7|vf® for ve H,(0D) .

By continuity, it follows that L(r; ¢, v) = 7/2|v]* for ve H,(0D) and
{e€oD near P. It is classical that in this case D is uniformly totally
pseudoconvex of finite order 2 at P; the function ¢ is given by

1 & or .
-é‘ lélm(@(zz — C=; — &y) .

Typically, this is proved by choosing r strictly plurisubharmonie
(ef. Gunning and Rossi [7], Chapter IXB); however, it is easy to
obtain this result by just using any defining function r, as follows.
By Taylor’s expansion,

(@) =) + 2Re¢((, 2) + L(r; L, 2 — ) + o(lz — LP);
fix {eaD; for z with ¢({,2) = 0 one has z — { = n(z — O +o(|z —|);
therefore, for some ¢ > 0, one obtains
r(z) = L(r; 2 — ) + o(lz — () 2 12 L(r; {, m(z — ()
= 7/4|m(z — Q)P for all ze B, ¢) with ¢, 2)=0.

669 = 3 T0e — ) +

If D is not strictly pseudoconvex at P, it is usually condition
1.8 (iv) which is hardest to verify. KEven though one may be able
to obtain for each {¢dD near P an estimate 7(z) = 7.|m(z — {)|™
for z e B(, ¢;) with ¢((, z) = 0, there remains the nontrivial problem
of choosing v, ¢;, m, independently of {. As an example, consider,
for m > 2, even, the domain B, = {|z,]> + |2,|™ < 1} with defining
function r,(z) = |2,]* + |z,|™ — 1. B, is totally convex, and at points
¢ =, )eoB, with {, # 0 it is strictly pseudoconvex. If ¢((, 2) =
< or,(£), # — >, one obtains the following estimates for {edB,
and ze B, 1) with ¢, z) = 0:

Velm(z — OF =2 v lmnle — O™, if {;#0;
Tn(Z) 2 .
1iz(z = O, i£{=0.

Here, for {, % 0, v, > 0 is, essentially, the eigenvalue of the Levi
form; since v, —0 as {,— 0, the constants one obtains by the
“obvious” point estimates do not depend continuously on { at non-
strictly pseudoconvex boundary points. Nevertheless, as pointed out
in [18], one can show that B, is uniformly totally pseudoconvex
of finite order m.

More generally; one has the following result.

PROPOSITION 1.12. Let D be a bounded domain in C* with real
analytic boundary. Suppose D is uniformly totally pseudoconvex
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ot every point PeoD, and that the function ¢, z) given by 1.8
can be chosen real analytic in ({, z). Then D is uniformly totally
pseudoconvexr of finite order at every PedD.

COROLLARY 1.13. Let D be a bounded convex domain in C™
with real analytic boundary. Then D is uniformly totally pseudo-
convex of finite order at every PeoD.

To prove the corollary, observe that the hypotheses imply that
D is totally convex; the conclusion then follows by 1.10 and the
proposition.

In order to prove 1.12 we first introduce the parametrized
version of the coordinate system given by 1.2; this will be used
in §2 as well.

Thus, suppose D is uniformly totally pseudoconvex at P, and
let U == B(P, 0), ¢, r(2), and ¢(C, z) be as in 1.8, so that (i), (ii), (iii),
and (v) are satisfied. Choose smooth orthonormal sections E%“(),
«oe, E@() of the holomorphic tangent bundle H(3D) over 6D N U.
For {eoD N U define the holomorphic map z — w = F.(z) by

w, = X EOQ@ — L), v =1, n—1and w, = 4, 2) -

The Jacobian matrix (F,).. has rows EV(Q), - -+, E* (), (8¢/02,(, L),
eee, 00/02,(, 0), and so it is unitary, by (v). After shrinking the
neighborhood U of P, one may choose ¢ >0, d > 0 so small that
F, maps B(, ¢) biholomorphically onto the neighborhood F,(B(C, ¢))D
B(0,d) of 0 in C* for all {€oDN U. Also, one may assume that
F, and F;' have uniformly bounded Jacobian matrices; hence there
are positive constants A,, 4, such that

(1.14) Alz — 2% | 2 | F(z) — F (%) £ 4|z — 2*|
for z, 2*e B, ¢) .

The analytic hypersurface {z¢ B((, ¢): ¢, 2) = 0} is mapped by F,
biholomorphically into {weC": w, = 0}. The function p;, = r-F;! is
a defining function for F.(D N B, ¢)); a calculation shows

(1.15) 0,0.,0) = dw,, .
The conditions (iii) and (iv) are, respectively, equivalent to
(iit Dbis) p(w',0) >0 for 0 < |w'| < d;

(iv bis) o(w,o)=v|w|™ for 0 Z |w'|<d.

Proof of Proposition 1.12. By assumption, the functions r and
¢ may be chosen real analytic, which implies that the map F.(z)
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constructed above may be chosen real analytic in ({, 2). One thus
obtains a nonegative real analytic function R({, w’)=p.(w’, 0) defined
on 2=EDNU) x {w eC*:|w'| <d}. Let Z={{, w')e2: RC, w')=
0}; by (iii bis), Z = {({, w')e 2: w' = 0}, and d(({, w"), Z) = |w'|. By
a theorem of Lojasiewicz ([14], p. 124), given U'c cU and 0<d'<d,
one can find a constant v > 0 and a positive integer m, such that

R w") = vd((& w"), Z)" = v|[w'[* for {edDN U’ and [w'|=d’.
Thus (iv bis) holds.

Finally, by modifying the proof of Proposition 1.3, one obtains
a more precise estimate for 4(C, z).

PRrROPOSITION 1.16. Suppose D is uniformly totally pseudocon-
vex of finite order m at the point PecoD. Let ¢(C, 2) satisfy (1)—(v)
in (1.8) for {edDN B(P,d). Then there are comstants A, ¢* > 0,
such that

(vi) 18 »)| = Ald(z, dD) + |Im ¢(C, 2)| + |C — 2["]
for £eaD N B(P, ) and zc DN B, ).

Proof. Fix {eoD N B(P, d) and introduce o, = o F ;' as above.
Taylor’s theorem, 1.15 and (iv bis) imply, for |w] < d,
oi(u’, w,) = pw', 0) + 2 Re (20w, 0)-w,) + of|w, )
=z 2Rew, + 7w |™ + o1)-|w,]|,

where o(1)—~0 as w — 0, the convergence being uniform in {, as
o(1) depends only on the modulus of continuity of the first order
partial derivatives of roF';.

Since m = 2, |w'|™ = |w|™ + o(1)-|w,]; thus, if 0<d*<d is
chosen so small that the combined terms o(1):|w,| satisfy o(1)-|w,|<
IRe w,! + |Imw,| for |w| < d¥ one obtains

1.17) —2Rew, + |Rew,| = —p(w) — |Imw,| + v]w|™ for |w|<d*,
and hence

Choose ¢* so small that F.(B(, ¢*) < Blo, d¥). If ze B(, ¢*), the last
inequality and (1.14) imply

3| Reg((, 2)| = —r(2) — [Im o, 2)| + vAjz — (™.

Since |7(2)| = d(z,0D) for zeD and 5|¢| > 3|Reg| + 2|Img|, it
follows that



182 R. MICHAEL RANGE

16(C, 2)] = d(z,0D) + | Im ¢(C, 2)| + 74,12z — {|™
for ze D N B, ¢).

2. The Carathéodory metric. The infinitesimal form C), of the
Carathéodory metric on a domain D in €™ is defined as follows: for
zeD and veCn,

Cp(z, v) = sup {| (0f(#), v>|: f: D—— 4, holomorphic} .
For a holomorphic map F: D, — D, one trivially obtains
Co,(F(2), Fy v) = Cp(z, v),

where F',, denotes the Jacobian matrix of F at z. Furthermore,
by restricting f: D— 4 to the ball B(z, d(z, D)) c D and applying
Cauchy’s derivative estimates, one obtains

LEmMMA 2.1. The Carathéodory metric satisfies
Cp(z, v) = |v|d(z,0D)™*
for all ze D and veC™.

The main result of this section is the following estimate from
below for the Carathéodory metric.

THEOREM 2.2. Let D be a bounded domain in C* with C
boundary, and let r be a defining function for D defined on a
neighborhood of D. Suppose that D is uniformly totally pseudo-
convex of finite order m at every point PeoD, and that D has a
Stein meighborhood basis'. Then

Cp(z, v) Z |v| d(z, D)™™ + |{or(»), v)| d(2, 0D)™
for ze D and veC™.

REMARK 2.3. C,(z, v) may grow faster than d(z, dD)V™ for
certain tangential vectors v, but in general, no better estimate is
possible for all v. As an example, consider D = {z€C* |z, |*+|2,[*+
12,)* <1} and P =(1,0,0)c0D; one can show that D is uniformly
totally pseudoconvex of order 4 at P; for » = (0,1, 0) and »* =
(0,0, 1)e H,(0D) one obtains Cy(z, v) ~ d(2, 0D)™"* and C,(z, v*) ~
d(z, 0D)™"* as z — P along the inner normal to D at P.

The proof of Theorem 2.2 involves a technical local result which
we state separately. First we define, for {€dD, o > 0 and ¢ > 0,

2 6,8) =DNBE U= d/2<|z—L] <52 <¢f.
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MAIN LEMMA 2.4. Let D be uniformly totally pseudoconvexr of
order m at PcoD. Then there are positive real numbers o, €, a, M,
such that the following holds.

For each xe DN B(P, d), +f {,€0D N B(P, 20) is chosen so that
lx — &,| = d{x, 8D), there are

(i) functions hi, ---, h% defined and holomorphic on 2(,, 8, ¢),

(ii) an orthonormal basis vf, «--, v of C" with v perpendi-
cular to H.(0D),
which satisfy the following conditions:

(iii) |h5(2)| = M for z€ 2, 0,¢), =1, -+, m;

@iv) |<ohi(x), viy| = d(x, D)™™ for d(x,dD) < a and f=1, ---,
n — 1;

(v) |<{onix), viy| = d(x, D)™ for d(x, 0D) < a.

We first show how the Main Lemma implies the theorem.

Proof of 2.2. Fix PeoD; for xe€ DN B(P, d)let hf, -+, h% be the
functions given by the Main Lemma. The essential part of the
proof involves replacing these functions by functions H% j=1,:+-, n,
whieh are holomorphic on D and still satisfy properties (iii), (iv),
and (v) above.

Choose y € C*(R) such that 0 <y =<1 and
(1 for ¢t < 58/8

t) =
x®) 0 for t = 746/8;

define, for { €C", the function ¥, € C3(C") by

x:(2) = x(lz = C|) .

Now fix xe DN B(P, ) with d(x, 0D) < 4/2; to simplify notation, we
will omit the superscript « in A% and v}, and we set { = {,; unless
otherwise noted, the index j runs from 1 to =.

Set a; = d(x.h;) on R, 6, ¢); &; extends trivially as a a-closed
Cy, — form to the domain D, = DU {z:7(z) < e}. Choose a Stein
domain G, such that Dcc Gc D,. By Hormander [10], there are
functions u; € C*(&), such that ou; = a; and

sl S llaillee S sup ki) = M.
z€ 2(5,5,¢)

By interior elliptic estimates for 9,

(2.5) Szlelg ()] < ull e + HéuiHL”"(G) <K-M.

Define H; = yh; — u;; H; is holomorphic on D, and by 2.4 (iii)
and (2.5)
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|Hiz)| =1+ K)-M =M for zeD.

Furthermore, observe that u; is holomorphic on G N B(, 58/8); since
for ze DN B, 6/2) and w¢ G N B, 56/8), |z — w| = min (6/8, dist
(D, C* — @) > 0, it follows that for some constant K,

oui(2)| < lluilliee = Ko»M for ze DN B(E, 6/2) .
From 0H(x) = oh;(x) — ou;(x) one thus obtains
[<0H ;(x), vy | = |Ohi(®), v;)| — Ky M,

which implies that (iv) and (v) in 2.4 still hold with H; instead of
h;, provided d(z, 0D) < a’, where 0 < a’ < a is suitably chosen. Since
H;/M': D— 4, one has Cy(x, v;) = 1/M'|{(6Hx), v;»|; it follows that

Cy(z, v;) = dx, 0D)y™™, j=1+---,mn—1,
and
Co(zx, v,) = d(x, D)™ .
By 2.4 (ii), this implies
Cy(x, v) = |v| d(x, 0D)™™ + | (or(x), v)| d(x, 0D)™

for all ve C"; here z is any point in DN B(P, é) with d(x, 0D) < a’,
and the constant implicit in = is independent of x. A standard
compactness argument now shows that the above estimate holds for
all xe D.

Proof of the Main Lemma. The plan of the proof is as follows:
one first constructs the required functions and vectors with respect
to the coordinate system w = F, (2) given in §1, and then one pulls
back everything to the domain D.

We use the notation developed in §1. 0 > 0 is chosen so small
that for all { €D N B(P, 26) the biholomorphic map F, is defined on
B(Z, 0) and p, = roF';' satisfies (1.17) for |w| < d* i.e.,

(2.6) —2Rew, + |Rew,| + | Imw,| = —po(w) + 7|w|™.
By (1.14), if ¢ is chosen sufficiently smali, there is & > 0, such that
F{z:02<|z—C| <) cfw: b < |w|<d¥.
Let ¢ = vb™/2 and define
R©) = {w: |w] < d*, p(w) <0} Ufw:d <Jw| < d, p(w) <ée};
observe that F.(2(, 9, €)) c R().
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(2.6) shows that for w e R({) the function w, omits the nonnega-
tive real axis; hence one can define a holomorphic branch of wi™
on R({). For j=1,---,n —1 we define holomorphic functions ¢;
on E({) by g;(w) = w;-w;"™; then

2.7) (%_—g,-)(w) —w/m, j=1, e m—1.

From (2.6) one obtains

4w, =z¢e if b<|w|<d? and p(w)<ce;
4w, = vlw|™ = v|w;™ if |w|<d and p(w)<O0;

this implies that there is a constant M such that
(2.8) lgiw)| < M for weR(), j=1,---,m—1.

In order to define g, we modify the function f(w)=exp (=1 —w,)
which was used in the proof of Corollary 1.5; f is well defined and
holomorphic on R(), |flw)| <1 for we R({) and f(w)— 1 for w—0.
Fix y € R({) and let @, be the holomorphic automorphism of 4 which
sends ¢ = f(y) to 0 and 1 to 1. Since |p(¢)] =1 — |g»)™ and

1—lgl=1—|f®)|=1-exp(—ReV =y, s V7.l
it follows that

Py @) = 1ya |72

Therefore, if one defines gi=¢;,(, of, one obtains, by the chain rule,

(2.9) }gfvz‘@ A
and
(2.10) lgt(w)] < 1 for we R() .

Now fix e DN B(P, é) and choose {,c€aD N B(P, 20) such that
|lo — &,| = d(x, aD). Let y = F. (x), and set h% = g;oF, for j=1,
cee,n — 1, h% = g4oF,. Then, by (2.8) and (2.10), conditions 2.4 (i)
and (iii) are satisfied. From the explicit form of the matrix (F).,
(cf. the definition of F, in §1), it follows that the vectors +% =
(FHeo0fowy), 5 =1, -+, n, satisfy 2.4 (ii). Let tj = (F}),(0/0w;);
then

vi =t + o(lx — L, |) = & + o(d(z, D)) ,
and therefore there is K < o, such that
[<Ohy(z), v; — 1] = K
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whenever d(x, D) is sufficiently small. Also, ¥y, = é(x, {,) implies
Y. S |l — &, | = d(z, D). Hence, there is @ > 0, such that for all
xe DN B(P, 6) with d(z, dD) < a one obtains, by (2.7),

(@), v | = |ohite), 1|~ K = | 2y | ~ K

= d(z, oD)¥™ for j=1,---,m — 1,
and, by (2.9),

@@, 00| = | 2w |~ K = dw, oD)" -
This completes the proof of the Main Lemma.

3. Proper holomorphic maps.

LeEMMA 3.1. Let D, and D, be bounded pseudoconver domains
wn C™ with smooth boundary. Then there is a positive integer |
such that every proper holomorphic map F: D, — D, satisfies

d(z, 0D,)" < d(F(2), 0D,) < d(z, 0D,)"*
for all ze D,.

Proof. By a theorem of Diederich and Fornaess [3], there are
continuous functions ¢,: D, — R, v = 1, 2, with the following proper-
ties:

(i) @,|D, is smooth and plurisubharmonic;

(ii) .|D, <0 and ¢,13D, = 0;

(iii) for some l€ N, (p,)! is smooth on D,.
1ii implies
(3.2) | (x)| < d(x, D) for xeD,.

Let 4, = @,oF. Since F is proper, +, is continuous on D,, and
it satisfies (i) and (ii) with respect to D,.

In order to push forward ¢,, observe that F: D, — D, represents
D, as a n-sheeted branched analytic covering over D,. Define 4, on
D, by

Yo(Ww) = max {SDl(zl)r A @1(21)} ’

where {z,, ---, 2;} = F'(w), counted with multiplicities. +r, is con-
tinuous on D, and plurisubharmonic on D, (cf. [16], p. 646); also,
¥, | D, < 0 and 0D, = 0.

The classical normal derivative lemma [11], also known as Hopf
lemma (cf. [2]), implies

(3.3) [y (2)| = d(z, 0D,) for xeD,v=1,2.
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By combining (3.2) and (3.3) one obtains
d(z, 0D,) < (v.(2)] = |@u(F(2))| < d(F(2), 0D,)""
and

UF(2), 0D,) < [:(F(2)| = [9(2)] < d(z, 0D,)"" .

THEOREM 3.4. Let D, and D, be bounded ‘domains wn C™ with
smooth boundary. Suppose there is 6>0 such that the Carathéodory
metric of D, satisfies

() Coy(w, v) 2 |v| d(w, 0D,)™

for all weD, and veC®. Then there is a >0, such that every
proper holomorphic map F:. D, — D, s Holder continwous of order
«, i.e., there 1s K < o>, such that

|F(2) — F(z")| < K|z — 2*|* for all 2, 2¥eD,.

Proof. The hypothesis (*) implies that D, is a domain of holo-
morphy, hence pseudoconvex. If there is a proper holomorphic map
F.D,— D, then D, must be pseudoconvex also, and hence 3.1
holds. So one has all the ingredients which are required to apply
the classical argument of Henkin and Pinchuk. As the argument is
very short, we include it here for the convenience of the reader.

By applying (*) to F(2) and F, v, and by Lemma 2.1, one
obtains

B vl d(F(2), 0D,) " < Cp(F(2), Fliw) = Cp (2, v) = |v]d(z,0D)7" ;
by multiplying with d(£(2), 0D,)° and 3.1,
\F. v < |vld(z, 0D) """,
i.e.,
1 F. || < d(z,0D)7", with a =6/l > 0.

The analogue of a classical result of Hardy and Littlewood now
implies that F' is Holder continuous of order «.

Theorem 2.2. and Theorem 3.4 clearly imply the Main Theorem
stated in the introduction. From Corollary 1.13 one obtains the
following special case of the Main Theorem.

COROLLARY 3.5. Let D, and D, be bounded convex domains in
C* with real analytic boundary. Then every biholomorphic map
F: D, — D, extends to a homeomorphism F: D, — D,.
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Open Problems 3.6. Some natural questions arise at this point.
First, one would expect that the extension F in 3.5 is differentia-
ble, or even real analytic, up to the boundary. Next, one may ask
whether Corollary 3.5 remains true if one only assumes that D, and
D, are bounded pseudoconvex domains with smooth boundary. Finally,
one may consider similar questions for proper holomorphic maps;
specifically, can the Main Theorem be strengthened to yield a diffe-
rentiable extension to the boundary? It appears that methods quite
different from those used in this paper would be needed to attack
any of these problems.
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