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CONTRACTION SEMIGROUPS IN LEBESGUE SPACE

RYOTARO SATO

Let (T,:t>0) be a strongly continuous semigroup of
linear contractions on L,(X, %, ¢), where (X, 23,p) is a o-
finite measure space. Without assuming the initial continuity
of the semigroup it is shown that (T,: £{>0) is dominated by
a strongly continuous semigroup (S,: t>0) of positive linear
contractions on L,(X, %, p), i.e., that |T,f|=S,!f| holds a.e.
on X for all feL,(X,%, ) and all ¢>0. As an application,
a representation of (7,:¢{>0) in terms of (S,:¢>0) is obtain-
ed, and the question of the almost everywhere convergence

b
of llbg T.fdt as b—+0 is considered.
[}

Introduction. Let (X, 2, ¢) be a o-finite measure space and let
LX) =L)X, 2, 1), 1 £ p £ o, be the usual Banach spaces of real
or complex functions on (X, 3, ¢t). For a set AeZl, L,(A) denotes
the Banach space of all L, (X)-functions that vanish a.e. on X — A.
If feL,(X), we define supp f to be the set of all xe X at which
f(z) = 0. Relations introduced below are assumed to hold modulo
sets of measure zero. A linear operator 7T on L,(X) is called a
contraction if || T}, <1, and positive if f = 0 implies Tf = 0.

Let (T,:t > 0) be a strongly continuous semigroup of linear
contractions on L,(X), i.e.,

(i) each T, is a linear contraction on L,(X),

(ii) T\T, =T, for all {,s > 0,

(iii) for every fe L(X) and every s>0, lim,_, || T.f — T.f|l,=0.

Under the additional hypothesis of strong-lim,.., T, =1 (I
denotes the identity operator), Kubokawa [6] proved that there
exists a strongly continuous semigroup (S,:t > 0) of positive linear
contractions on L,(X) such that |T.f| < S,|f| a.e. on X for all fe
L, (X) and all ¢ > 0. The main purpose of this paper is to prove
the same result, without assuming any additional hypothesis. We
then obtain a representation of (T,:t > 0) in terms of (S;:¢ > 0)
which is a continuous extension of Akcoglu-Brunel’s representation
([1], Theorem 3.1), and a decomposition of the space X for (T;: ¢>0)
which asserts the existence of a set Y e such that T,fe L(Y) for
all feL,(X) and all ¢ > 0 and also such that if fe L(Y) the;n T.f

converges in the norm topology of L,(X) as t— +0 and 1/b g T.fdt
0
converges a.e. on X as b — +0.
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Existence theorem. Our main result is the following existence
theorem.

THEOREM 1. If (T,:t > 0) is a strongly continuous semigroup
of linear contractions on L,(X), then there exists a strongly con-
tinuous semigroup (St > 0) of positive linear contractions on
L(X), called the semigroup modulus of (T,:t > 0), such that

(1) [T.fl =8 1fl (feLl(X),t>0).
If 0 feL(X), S, is given by

(2) Stf:sup{rh---z'tnf:iti:t, ti>0,n§1}

where T, denotes the linear modulus of T, in the sense of Chacon-
Krengel ([3]).

Proof. For 0 < feL/(X) and ¢ > 0, put
M(tyf> = {Ttl"'z-tnf:iti =t t>0,n= 1} .

Since |zl = || T|l, <1 and 7,c,.f = 7,,.f for all £, s >0, we see

that if ¢, and g, are in M(t, f), then there exists a function & in
M(t, f) such that

max (g, g) = h and [, = [[f]], -
Thus it is possible to define a function S,f in L,(X) by the relation:
S.f = sup {g: g€ M(, f)} .

It is clear that |[S,f|. < ||f], and S,f = 0. It is easily seen that
if ¢ is a positive constant and f and g are nonnegative functions in
L/(X), then

S(cf) = ¢S.f and S(f + g) = S.f + S .

Therefore S, may be regarded as a positive linear contraction on
L/(X). By the definition of S, it follows that

8.8, = 8., (t,s>0).

It is now enough to prove the strong continuity of (S,:¢ > 0).
To do this, we first show the following result:

(3) lim [|o.f —2.f =0 (FeL(X), 5>0).

To see this, we may and do assume without loss of generality
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that f is nonnegative. Let € >0 be given. By [3] there exist
functions g, € L,(X), 1 £ 7 < n, such that

l9:l = f and [|7.f — max [Tyl <e.
Since (T,:t > 0) is strongly continuous on (0, ), we can take a
0 >0 so that |s — t] < 0 implies || T.g, — T,9:ll, < e/n for each 1<
i1 =n. Fix a t>0 so that |s —¢| < 6. We then have |||T,g:] —

[T, =l T.9; — T.9:ll, < ¢/n for each 1 <7 < n, and so it follows
that

[[e.) — max [ T,g,] ||, < 2e .
1ZiSn
By this and the fact that z.f = max|T.g.|, we get
15isn

e f - )l = H(lrngiang [ Tg;| — /)l < 2.

Therefore

(4) lim [(e.f = ©.f)7ll = 0 -

Next, lett > s and write £ =s + a. Since
(zotf — /)7l = e — 7571,
it follows that
(5) lim (e — 7)1 = 0.

On the other hand,
T, 0 = (Tt f — T )" — (@t f — ) + 7S .
Thus, by (5), we have that
H(Tars — )l £ it f — o 0L
< eoutof — /)7L + Hezaz Sl = [z fll
< eatef = 7.7 — 0

as a — +0, because ||7,|[, £1. This and (4) establish (8).
We next show that

(6) lim [[S.f — S.fll =0 (FeL(X), 5>0).

To see this, we may and do assume without loss of generality
that f is nonnegative. Let & > 0 be given, and choose a function
g € M(s, f) so that



254 RYOTARO SATO

Hsz - gH1<8:

where ¢ is of the form
g =71y 7, , i‘,ti =s,and £, >0 1 <7< n).

=1

Let s, > t,. Then
,L_i(ftnf - tsnf)Hl

g — (7 'Ttn,._fsnf”x = HTtl"'fz,

sl S — o, fls
and hence, by (3),

(7) lim Hg - Ttl"'ftn,ifsnfigl =0.

-
Sy =ty 0

Let us write t =¢, + --+ +¢,_, + s,(> s). Since
S.f -8z, 7, 7S —9+@—8F),
it follows that
Sf =S =lzvy 7,0 —gl+19g =SSl
This and (7) yield that
limsup [|(S.f — S.f/)7l, =e.

t—s--0
Since ¢ is arbitrary,

lim [|(S.f — Sl = 0.
Hence

WS = SO L = IS = 871 + ISl — IS F L
= I6Sif = 8./ 1h—0

as t-»>s + 0, because ||S,f|l, =< ||S,f|l. for all ¢ > s. This proves (6).

Using (6), it is now direet to show that the semigroup (S,: t>0)
is strongly continuous on (0, ), and we omit the details.

THEOREM 2. Let (T,:t > 0) and (S;:t > 0) be as in Theorem 1.
Then T, converges strongly as t — +0 if and only if S, converges
strongly as t — +0.

Proof. If T, = strong-lim,,., T, exists, then (T,:¢=0) is a
semigroup and strongly continuous on [0, <»). Hence we can apply
the same arguments as in the proof of Theorem 1 to obtain that
lim, ., ||S.f — z.f ], = 0 for all fe L(X), where 7, denotes the linear
modulus of T.
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Conversely, if S, = strong-lim,_ , S, exists, then, for all f ¢ L(X),
the set {I.f:0 <t <1} is weakly sequentially compact in L (X),
since [T.f| < 8,|f| and lim,.,o||S,|f| — S| f||li =0 (cf. Theorem
IV. 8.9 in [4]). Thus, by Lemma 1 of the author [8], T, converges
strongly as ¢ — +0.

The hypothesis of being a conti‘action semigroup can not be
weakened in Theorem 1. To see this, we give the following example,
motivated by S. Tsurumi.

ExaMPLE. Let X be the positive integers, 3 all possible subsets
of X, and ¢ the counting measure. Let ¢ >0 be given. By an
elementary computation, there exists a real constant », with 1/e <
r < 1, such that

(8) 1 <sup{r‘(jcost| + |sint|):t =20} <1l +e¢.
For feL(X) and t > 0, define

T.f(2n — 1) = r*[f(2n — 1) cos nt — f(2n)sinnt] (n=1)
and

T.f@2n) = r[f(2n — L) sinnt + f@n)cosnt] (n=1).

It is easily seen that (T,:¢ > 0) is a strongly continuous semigroup
of linear operators on L,(X) satisfying [|T.|. <1 + ¢ for all £>0.
Furthermore

(9) }nl_{& “(Tllm)mlll = 2.
To see this, let 1, denote the indicator function of {n}. Then

H(Tm)™{ly Z [1(Tym) " Aans + Lan)ll/[|Lan—s + Laals
= [7"‘/’” (‘cos%l + lsin%‘)]m (nzl),

as has been pointed out by S. Koshi. Hence (8) implies (9).
By (9) it is now immediate to see that (T,:¢ > 0) can not be
dominated by a semigroup of positive linear operators on L,(X).

Representation theorem. Let (T,:¢ > 0) be a strongly contin-
uous semigroup of linear contractions on L,(X). It is well known
that given an fe L,(X) there exists a scalar funection g(¢, ) on (0,
) X X, measurable with respect to the product of Lebesgue
measure and g, such that for each ¢ > 0, g(¢, x), as a function of
%, belongs to the equivalence class of T,f. In the sequel g(¢, ) will
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be denoted by T.f(x). Using Fubini’s theorem, we see that there
exists a set E(f)e X, with p(F(f)) =0, such that if xz¢ E(f) then
the scalar function ¢— T,f(x) is Lebesgue integrable on every finite

interval (a, b) and the integral S T.f(x)dt, as a function of z, belongs
to the equivalence class of S T.fdt, where S T.fdt denotes the Boch-

ner integral of the vector valued function ta1—> T.f with respect to
Lebesgue measure on (a, b).

If (S,:t > 0) denotes the semigroup modulus of (7,:¢ >0), then
the ratio ergodic theorem holds for (S,:¢ > 0), i.e., for any f and
g in L,(X), with g = 0, the ratio ergodic limit

im ({5t ) (), S

exists and is finite a.e. on the set {x: SwStg(x)dt > 0}(cf. [5]). Thus

Hopf’s decomposition holds, i.e., X decomposes into two measurable
sets C and D, called respectively the conservative and dissipative

parts of X, such that if 0 < g€ L(X) then r g@)dt = o or 0 a.e.
on C and S S.gx)dt<o a.e. on D. A set Aelt is called invariant

(under (S;:¢ > 0)), if S,L,(A)c L,(4) for all ¢t > 0. It is immediate
that A is invariant under (S,:¢ > 0) if and only if it is invariant
under (T,:t>0). It is known (cf. [7]) that C is invariant and the
class 3, of all invariant subsets of C forms a o-field in the class of
all measurable subsets of C.

We are now in a position to state our representation theorem.

THEOREM 3. Let (T,:t > 0) be a strongly continuous semigroup
of linear contractions on L(X) and (S,:t > 0) denote the semigroup
modulus of (T,:t>0). Let C denote the conservative part of X with
respect to (S;:t > 0) and let 3, be the o-field of invariant subsets of
C. Then there exists a (unique) set ['e€ X, and a function we L. (I")
such that

(i) |u|l =1 a.e. on I and T.f = Q/w)S,(uf) for all fe L)
and all t >0,

(ii) 4f 4=C — I, then the closed linear hull of {f — T.f:
feL(4d), t >0} s L(4),

(itl) a function ve L), with |v| >0 a.e. on I, satisfies
T.f = Q/v)S{vf) for all feL() and all t >0 if and only if
there exists a function r € L. (") such that [r|> 0 a.e. on I', SFr=
r a.e. on I' for all t >0, and v = ru.

Proof. Let he L. (C) be such that T*h =h a.e. on C for all
t > 0. Since |h] =|T*h| < t¥lh| £ S*|h| and the conservative part
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of X with respect to each single operator S, is exactly C (ef. [7]),
it follows that |h| = S*|h| a.e. on C for all ¢ > 0, and hence supp
heZ,. By this, we can find a function k¢ L.(C) such that T*h=h
a.e. on C for all £t >0 and also such that if fe¢L.(C) satisfies
Trf = f a.e. on C for all £ >0, then suppfCsupph. Put I'=
supp b and define w € L.(I") by w = h/{h] a.e. on I'. If 0= feL(I)
and ¢ > 0, then, as in [1],

(S 1nidpe = (2 nldge = (i = | rondy:
=\ Tendp = {10 i nidge

Hence S.f = T.(f/u)u, since S.f = |T.(f/u)| = | T(f/w)u|, and (i) is
established.
To prove (ii), let & € L.(4) be such that S(f — T.f)hdpt = 0 for

all feL/(d) and all ¢ > 0. Then T#h =h a.e. on 4 (and hence on
C) for all ¢ > 0. Therefore, by the definition of I', » = 0 a.e. on
4, and (ii) follows from the Hahn-Banach theorem.

To prove (iil), let ve L.(I") and |v| > 0 a.e. on I". Put» = v/u.
Then T,f = (1/v)S,(vf) for all feL,(I") and all £ > 0 if and only if
A/rw)S,(ruf) = Qu)S,(uf) for all feL() and all ¢ > 0, or equiv-
alently, S,(rf) =»S,f for all feL,(I") and all £ >0, since {uf:
feL, (M} = L(I"). And this is equivalent to the fact that S*»r =1
a.e. on I' for all ¢ > 0, by Lemma 2.4 in [1].

The proof is complete.

Decomposition theorem. It is shown that, after eliminating
an uninteresting subset of X, a strongly continuous semigroup (T\:
t > 0) of linear contractions on L,(X) can be made strongly contin-
uous at the origin and the local ergodic theorem holds.

THEOREM 4. Let (T,;:t > 0) be a strongly continuous semigroup
of linear contractions on L, (X). Then X can be written as the
union of two disjoint measurable sets Y and Z with the following
properties:

(i) For every fe L(X) and every t > 0, T,fe L(Y).

(ii) For every fe L(Y), T.f converges in the morm topology
of L(X) as t— +0 and

. 1
lim 38 T, F(@)dt
berd0 0

exists a.e. on X.
(iii) For every fe L(Y) with f> 0 a.e. on Y,
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Y :”Q {w: 7. f(x) > 0} .

Proof. Let (S,:t > 0) be the semigroup modulus of (T,:t > 0).
Fix an he L(X) with A > 0 a.e. on X, and put

Y = [;J (x: S,/ h(x) > 0)

and Z =X — Y. It is easily seen that S,f € L(Y) and hence T.f ¢
L(Y) for all feL(X) and all > 0. If we write ho-—-s S,hdt, then

ho€ L(Y), hy> 0 a.e. on Y, and lim,.,,||Siks — hfl, = 0. Therefore,
by approximation, the set{S.f:0 <t <1} is weakly sequentially
compact in L, (X) for all 0 < fe L,(Y), from which we observe that
the set {T,f: 0 <t < 1} is also weakly sequentially compact in L,(X)
for all fe L(Y), since |T,f| < S.|f]| for all ¢ > 0. Hence Lemma
1 of the author [8] implies that T,f converges in the norm topology
of L(X) as t— +0 for all fe L(Y).

To prove the second part of (ii), we may and do assume with-
out loss of generality that X = Y. Put T, = strong-lim,,,, T,, and
let feL/(X). Then f can be written as f = g + h, where g = T\.f
and Tk =0 for all ¢t =0, because T,T,= T,T, = T, for all t = 0.
It follows that

lim [|(f — b = 2 Tgat, = 0.
a-->+0 a Jo

If we write f, =h + l/aSuTtgdt, then it is easily seen that
.10
lim 3 | Tifw)dt = £.(x) — hi@) a.e.

b—+40 [

on X. On the other hand, by Akcoglu-Chacon’s local ergodic theo-
rem ([2]),

sup
0<b<1

b b
L\ Tt | < sup T SIf (@it < o ae.
b Jo o<b<t b Jo
on X. Thus, the second part of (ii) follows from Banach’s conver-
gence theorem (cf. Theorem IV. 11. 3 in [4]).
For the proof of (iii), let fe L(Y), f >0 a.e. on Y. Put

P =U {:tyuf(@) > 0} .
Clearly, Pc Y, and by the definition of Y and (i),

Y = U Sunf @) > 0 .
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Let 1/n <t. Then 7.f < 7/uTi—wmf, and so suppz,f Csupp 7,/.f-
Thus it follows that

supp S.f C P (t>0).

Therefore Y P, and (iii) is established.
The proof is complete.

In conclusion, the author would like to remark that the ques-
b

tion of whether the almost everywhere convergence of 1/b S T.f (x)dt
0
as b— +0 holds for all fe L,(Z) remains an open problem.

REFERENCES

1. M. A. Akcoglu and A. Brunel, Contractions on Lji-spaces, Trans. Amer. Math. Soc.,
155 (1971), 315-325.

2. M. A. Akecoglu and R. V. Chacon, A local ratio theorem, Canad. J. Math., 22
(1970), 545-552,

3. R. V. Chacon and U. Krengel, Linear modulus of a linear operator, Proc. Amer.
Math. Soe., 15 (1964), 553-559.

4. N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Inter-
science Publishers, Ine., New York, 1958.

5. H. Fong and L. Sucheston, On the ratio ergodic theorem for semigroups, Pacific
J. Math., 39 (1971), 659-667.

6. Y. Kubokawa, Ergodic theorems for contraction semigroups, J. Math. Soc. Japan,
27 (1975), 184-193.

7. M. Lin, Semigroups of Markov operators, Boll. Un. Mat. Ital., (4), 6 (1972), 20-44.
8. R. Sato, A note on a local ergodic theorem, Comment. Math. Univ. Carolinae, 16
(1975), 1-11.

Received July 27, 1977.

JosAl UNIVERSITY
SAKADO, SAITAMA, 350-02 JAPAN






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RICHARD ARENS (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California
C.W. CURTIS Los Angeles, California 90007
University of Oregon R. FINN AND J. MILGRAM
Eugene, OR 97403 Stanford University

tanford, i i

C. C. MOORE Stanford, California 94305

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA“INSTITUTE. OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAIIL

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

UNIVERSITY OF OREGON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 78, No. 1 March, 1978
Simeon M. Berman, A class of isotropic distributions in R" and their

characteristic fUNCHONS . ... ...t 1
Ezra Brown and Charles John Parry, The 2-class group of biquadratic fields.

Ll 11
Thomas E. Cecil and Patrick J. Ryan, Focal sets of submanifolds . ......... 27
Joseph A. Cima and James Warren Roberts, Denting points in B ......... 41
Thomas W. Cusick, Integer multiples of periodic continued fractions. . .. ... 47
Robert D. Davis, The factors of the ramification sequence of a class of

wildly ramified V-rings......... ... i 61
Robert Martin Ephraim, Multiplicative linear functionals of Stein

AlEDTaS. . . .o e 89
Philip Joel Feinsilver, Operator calculus . ............. ... . ... ....... 95
David Andrew Gay and William Yslas Vélez, On the degree of the splitting

field of an irreducible binomial .................. ... i 117
Robert William Gilmer, Jr. and William James Heinzer, On the divisors of

monic polynomials over a commutative ring ..................o.ouu.. 121
Robert E. Hartwig, Schur’s theorem and the Drazin inverse ............... 133
Hugh M. Hilden, Embeddings and branched covering spaces for three and

Sfour dimensional manifolds ........... ... ... . . . . i 139
Carlos Moreno, The Petersson inner product and the resid,

PrOAUCT. ..ot
Christopher Lloyd Morgan, On relations for representatio

GEOUPS « oottt et e e

Ira J. Papick, Finite type extensions and coherence . ... ...
R. Michael Range, The Carathéodory metric and holomo
class of weakly pseudoconvex domains .............
Donald Michael Redmond, Mean value theorems for a cla
SCTTIOS « v vttt ettt
Daniel Reich, Partitioning integers using a finitely genera
Georg Johann Rieger, Remark on a paper of Stux concern
numbers in non-linear sequences ..................
Gerhard Rosenberger, Alternierende Produkte in freien G
Ryotard Sato, Contraction semigroups in Lebesgue space
Tord Sjodin, Capacities of compact sets in linear subspac
Robert Jeffrey Zimmer, Uniform subgroups and ergodic a
exponential Lie groups............ccoeeeeeueannn.


http://dx.doi.org/10.2140/pjm.1978.78.1
http://dx.doi.org/10.2140/pjm.1978.78.1
http://dx.doi.org/10.2140/pjm.1978.78.11
http://dx.doi.org/10.2140/pjm.1978.78.11
http://dx.doi.org/10.2140/pjm.1978.78.27
http://dx.doi.org/10.2140/pjm.1978.78.41
http://dx.doi.org/10.2140/pjm.1978.78.47
http://dx.doi.org/10.2140/pjm.1978.78.61
http://dx.doi.org/10.2140/pjm.1978.78.61
http://dx.doi.org/10.2140/pjm.1978.78.89
http://dx.doi.org/10.2140/pjm.1978.78.89
http://dx.doi.org/10.2140/pjm.1978.78.95
http://dx.doi.org/10.2140/pjm.1978.78.117
http://dx.doi.org/10.2140/pjm.1978.78.117
http://dx.doi.org/10.2140/pjm.1978.78.121
http://dx.doi.org/10.2140/pjm.1978.78.121
http://dx.doi.org/10.2140/pjm.1978.78.133
http://dx.doi.org/10.2140/pjm.1978.78.139
http://dx.doi.org/10.2140/pjm.1978.78.139
http://dx.doi.org/10.2140/pjm.1978.78.149
http://dx.doi.org/10.2140/pjm.1978.78.149
http://dx.doi.org/10.2140/pjm.1978.78.157
http://dx.doi.org/10.2140/pjm.1978.78.157
http://dx.doi.org/10.2140/pjm.1978.78.161
http://dx.doi.org/10.2140/pjm.1978.78.173
http://dx.doi.org/10.2140/pjm.1978.78.173
http://dx.doi.org/10.2140/pjm.1978.78.191
http://dx.doi.org/10.2140/pjm.1978.78.191
http://dx.doi.org/10.2140/pjm.1978.78.233
http://dx.doi.org/10.2140/pjm.1978.78.241
http://dx.doi.org/10.2140/pjm.1978.78.241
http://dx.doi.org/10.2140/pjm.1978.78.243
http://dx.doi.org/10.2140/pjm.1978.78.261
http://dx.doi.org/10.2140/pjm.1978.78.267
http://dx.doi.org/10.2140/pjm.1978.78.267

	
	
	

