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A real or complex Lie group is said to be faithfully
representable if it has a faithful finite-dimensional analytic
representation. Let G be a real or complex analytic group,
and let A denote the group of all analytic automorphisms
of (?, endowed with its natural structure of a real or com-
plex Lie group. The natural semidirect product G X A is a
real or complex Lie group, sometimes called the holomorph
of G. We show that if G is faithfully representable and if
the maximum nilpotent normal analytic subgroup of G is
simply connected then G XI A is faithfully representable.

This result follows quite easily from well-known representation-
theoretical results and techniques. What we use is contained in
[1, Ch. XVIII], and all the references given below are to this.
Nominally, these references cover only the real case. However, as
explained loc. cit., both the results and their proofs are almost
identical in the complex case.

Thanks are due to Martin Moskowitz who drew my attention to
this question and who 'obtained a number of special results that
are consequences of the theorem below and contain suggestions for
its proof.

PROPOSITION. Let G be a faithfully representable real or com-
plex analytic group, and let N be the maximum nilpotent normal
analytic subgroup of G. If N is simply connected there is a faith-
ful finite-dimensional analytic representation of G whose restriction
to N is unipotent.

Proof. By Theorem 4.3 (or 4.7), G is a semidirect product
BxH, where B is solvable and simply connected, and H is reductive.
The construction of B is carried out in the proof of Theorem 4.2,
and this shows that, if N is simply connected, one can arrange to
have NcB (one begins with a semidirect product decomposition of
the radical of G having the form ΛfxiQ, where Q is reductive,
and M is simply connected and contains N).

By Theorem 3.1, there exists a faithful finite-dimensional analy-
tic representation p of B whose restriction to N is unipotent. Now
p satisfies the conditions of Theorem 2.2, so that (enlarging the
representation space of p) one can extend p to a finite-dimensional
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analytic representation of G whose restriction to B is faithful and
whose restriction to N is still unipotent. Any given faithful finite-
dimensional analytic representation of Gf via restriction to H and
the canonical homomorphism G —»H, yields a finite-dimensional
analytic representation of G whose kernel is precisely B. The direct
sum of this and the representation obtained above satisfies the
requirements of the proposition.

THEOREM. Let G be a faithfully representable real or complex
analytic group. Let N be the maximum nilpotent normal analytic
subgroup of G, and let A be the group of all analytic automor-
phisms of G. If N is simply connected then GxiA is faithfully
representable.

Proof. Let B denote the group of all Lie algebra automor-
phisms of the Lie algebra J5f(G) of G. This is an algebraic linear
group, and we denote its algebraic identity component by B^ The
Lie algebra of B1 may be identified with the Lie algebra of all
derivations of Sf{G). If R is the radical of G then Sf(R) is the
radical of J^(G), while £f(N) is the maximum nilpotent ideal of
£/?{G). Therefore, by a well-known result from Lie algebra theory,
every derivation of £f{G) sends £f{R) into £f(N). This implies
that B, acts trivially on j^(R)/£f(N).

Let A° denote the group of all elements of A whose canonical
images in B belong to Bλ. Then A° acts trivially on R/N. Since
B1 is normal and of finite index in B, the group A° is normal and
of finite index in A.

Let I denote the group of inner automorphisms of G. Clearly,
IdA°. Now let S be a maximal semisimple analytic subgroup of
G, and let T be the subgroup of A° consisting of the elements of
A° that keep the elements of S fixed. Since every maximal semi-
simple analytic subgroup of G is a G-conjugate of S, every coset
of I in A contains an element that stabilizes S. It follows from
this that the group TI is normal in A°. Since the group of inner
automorphisms of S is of finite index in the group of all analytic
automorphisms of S, it follows also that TI is of finite index in A°.

Clearly, A° contains the identity component Ax of A. If n is
the index of TI in A° then an belongs to TI for every α in i 1 (

Since Ax is an analytic group, these elements an generate At. Hence
Ax c TI. We conclude that TI is open and of finite index in A.

Now let p be a representation of G with the properties stated
in the proposition. Let V denote the space of representative func-
tions on G that are associated with p. Then V is finite-dimensional
and stable under the right and left translation actions of G. If p'
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is the semisimple representation of G that is associated with p then
N is contained in the kernel of ρ\ Let x be an element of the
radical of G, and let τ be an element of T. Then τ{x)x~ι e N, so
that p'(τ(x)x~ι) is the identity map on the representation space.
Since the elements of T keep the elements of S fixed, it is now
clear that Lemma 2.1 applies to our present situation and gives the
result that the space F° T spanned by the composites of the elements
of V with those of T is still finite-dimensional. From the 2-sided
G-stability of V, it is clear that Vo(TI) = F°T.

Let us write J for TI, and W for V°T. We define an action
of GxiJ on W by setting (a?, a) w = x iwoaΓ1), where, for any
function / on G, the translate x f is defined by (x f)(y) — f(y%).
Thus, our definition means that the value of (x,a) w at y is
w(or\yx)). In order to verify that this is indeed a representation
of GΆJ on W, it suffices to check that, compatibly with ax=a(x)a
(in G x J ) , one has a (x w) = a(x) (a w). Evidently, this repre-
sentation is analytic, and its restriction to G is faithful.

In order to obtain a representation of GY\A whose restriction
to G is faithful, we use the ordinary group algebra F[GXLA]9

where F is the field of real numbers or the field of complex num-
bers. We form the tensor product F[GxA]®FiGxJiW and let
GxA act via multiplication on the left factor. As a vector space,
this module is the direct sum of [A: J] copies of W, and thus is
finite-dimensional. Since A1 c J, it is clear that this representation
is analytic.

Finally, we make J*f(G) into a Gxi A — module via the canoni-
cal homomorphisms G xi A —> A —> B, so that the kernel of this
representation of G^iA on <Sf(G) is precisely (?. The direct sum
of the two representations we have constructed satisfies the require-
ments of our theorem.

The simplest example of a faithfully representable analytic
group G such that GxA is not faithfully representable is the
direct product R x T of the additive group R of real numbers and
the multiplicative group T of complex numbers of absolute value
1. For every real number a, this group has an analytic automor-
phism α*, where a*(r, u) = (r, exp (iar)u). If S is the space of
representative functions associated with a representation of G that
is not trivial on T, it is easy to see that the space spanned by the
functions /<>α* with f in S and a in R is not finite-dimensional.

We may summarize our results as follows.

Summary* Let K be a real or complex Lie group having a
semidireet product decomposition G xs H, where G is connected and
faithfully representable, and the maximum nilpotent normal analy-
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tic subgroup N of G is simply connected. There is a finite-dimen-
sional analytic representation of K whose restriction to G is
faithful and whose restriction to N is unipotent. If H is faith-
fully representable there is a faithful such representation.

Proof. Let A denote the group of all analytic automorphisms
of G. The semidirect product decomposition of K defines an analytic
homomorphism Ύ):H-+A and hence an analytic homomorphism 07*:
K-> GxA. If p is a representation of G x A as obtained in the
theorem, then po-η* clearly satisfies the requirements of the first
statement of the summary. The second statement then follows
immediately.
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