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Let G be a complex domain, X and Y Banach spaces
and A: G->L(X, Y) holomorphic with Ker A(λ), Im AW) com-
plemented, λeG. It is shown that the following conditions
are equivalent: (1) A has a holomorphic relative inverse on
G; (2) the function λ~>Ker AW) is locally holomorphic on G;
(3) the function Λ->Im A(λ) is locally holomorphic on G.
Based on this, it is shown that a semi-Fredholm-valued
holomorphic function A has a holomorphic relative inverse
on G if and only if dim Ker AW) [codim Im A(λ), respec-
tively] is constant on G.

The latter result is a generalization of the well-known
result of Allan on one-side holomorphic inverses.

I* Relative inverses* The notion of a relative inverse is
known from algebra: an element x in a ring is said to be relatively
invertible if there is another element y such that xyx — x. A ring
in which every element is relatively invertible has been called a
"regular ring" by von Neumann [12]; an example of such a ring is
the algebra of all linear operators acting on a given finite dimen-
sional Banach space. Later, Kaplansky [10], showed that, for a
Banach algebra, regularity in this sense is a rather severe restric-
tion; indeed, a regular Banach algebra is necessarily finite dimen-
sional.

Thus, in the algebra of all operators acting on a given infinite
dimensional Banach space, not every element is relatively invertible.
Consequently, a relatively invertible operator might be expected to
have some important special properties and this expectation has
been proven right.

The first major step toward the investigation of relatively
invertible operators on a Banach space was made by Atkinson [2].
Subsequently this proved to be a very useful concept, especially in
applied mathematics [11]. The definition of regular invertibility in
this context is somewhat stricter than the algebraic one, and it is
introduced below. We also employ the useful concepts of "inner"
and "outer" relative inverses as [11].

Throughout this article X and Y will be complex Banach spaces,
and all mappings will be bounded linear operators.

DEFINITION 1.1. Let A:X-+ Y be given. If the operators B^
Y->X, B2:Y->X satisfy the conditions ABXA = A, B2AB2 = B2,
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respectively, then Bλ is called an inner relative inverse of A, and
B2 is called an outer relative inverse of A. If the operator B: Y~+
X is at the same time an inner and an outer relative inverse of A,
then B is called a relative inverse of A.

Let B be a relative inverse of A. The equalities (BA)2 = BA
and (AB)2 = AS follow directly from Definition 1.1, so that BA and
AJ3 are bounded linear projectors in X and Y, respectively. From
the inclusions Im A — Im ABA c Im AB c Im A we conclude that
Im A = Im AB. Furthermore, if ABy = 0 if follows that ,BA#2/ == 0
or By = 0; in other words, Ker AS c Ker B. The opposite inclusion
being obvious, we conclude that Ker B = Ker AB. Therefore, Im A
and Ker B are mutually complementary closed subspaces of Y. It
is now clear that B | Im A—the restriction of B to Im A—is a bijection
from ImA onto Iml?. Interchanging the roles of A and B we
similarly have that Ker A and Im B are mutually complementary
closed subspaces of X and that A | Im B is a bijection from Im B
onto ImA. Since AB and 5A are identities on ImA and Im5,
respectively, it follows that A ] Im B and 5 | Im A are inverses to
each other. Thus, in particular, if A has a relative inverse, then
Ker A and Im A are complemented subspaces in X and Y, respec-
tively.

Conversely, let Ker A and Im A be complemented subspaces and
X = Ker A © Xlf Y = Im A 0 F l f where X^ Y,. are closed subspaces.
Since A | Xx is a continuous bijection between the Banach spaces Xt

and ImA, by the Closed Graph Theorem there exists a continuous
inverse Bλ: Im A —» Xx of A | Xx. By the remarks in the previous
paragraph, a possible relative inverse of A is necessarily an exten-
sion of B1 to Y. Hence, if Q is the bounded projector of Y onto
Im A along Ylf it is easy to see that B = BXQ is a relative inverse
of A. Note also, that the relative inverse B, constructed in this
way, is the unique relative inverse of A with the properties: the
kernel is equal to Y1 and the range is equal to Xγ. Since the kernel
of a relative inverse must be a complement of Im A (by the discus-
sion in the previous paragraph), any relative inverse of A is obtain-
ed by the above construction.

These remarks give the following basic structural theorem.

THEOREM 1.2. An operator A:X—>Y has a relative inverse if
and only if Ker A and Im A are complemented subspace of X and
Y, respectively. For each decomposition of the spaces X and Y
into topological direct sums X — Ker A φ X x , F = I m 4 © 7 1 , there
is precisely one relative inverse B with the properties that Ker B=
Y19 Im B — Xίf and conversely. In this case, P = BA, Q = AB are
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continuous projectors with the properties ImP = Im JS, Ker P —
Ker A, Im Q = Im A, Ker Q = Ker B.

From Theorem 1.2 it follows that finite rank operators, Fred-
holm operators and projections are all relatively invertible. Also
surjective operators with complemented kernels, as well as injective
operators with complemented ranges. In fact, if A\X —> Y is left
(right) invertible, the relative inverses of A are precisely the left
(right) inverses of A. (This easily verifiable fact will be used
several times in the sequel.) Compact operators of infinite rank are
not relatively invertible: the range of such an operator is not even
closed (see [8; III. 1. 12]).

2* Some perturbation results. We now turn to some pertur-
bation results, which will be essential for our treatment of holo-
morphic operator-valued functions in the next section. They also
imply some results of J. Dieudonne (for the case Y == X; see [6;
Propositions 2 and 3 and their corollaries]).

First we need the following two technical lemmas, which are
essentially due to Atkinson [2] in the case Y = X. Here and later,
L(X, Y) denotes the space of all bounded linear operators from X
to Y", and L{X) = L(X, X).

LEMMA 2.1. Let BeL(Y,X), UeL(X,Y) and \\U\\ <1/\\B\\.
Then

( 1 ) (Ix - BUYιB - B{IY - UB)-1

( 2 ) (Iγ - UB)-ιU = U(IX - BUY1.

Proof. Note that all indicated inverses exist. Factor B-BUB
in two ways and transfer terms to obtain (1); (2) is equivalent to
(i).

For further use, we define R(U) by

( * ) R(U) = (IX- BUΓB = B{IY - UBY1 .

LEMMA 2.2. Let A, U belong to L(X, Y), and let BeL(Y, X)
be an outer relative inverse of A. Then, if || Z7|| < l/||i?||, the
operator R(U) is an outer relative inverse of A — U.

Proof. Since BAB = B, then B(A - U)B = B(Ir - UB). There-
fore,

R(U)(A - U)R(U) = (Ix - BUY'BiA - U)B(Ir - UB)-1

= (Ix - BUΓB = R(U) .
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Before we proceed further, we consider some examples, which
help to motivate the conditions we impose in the theorems below.

If FeL(X, Y) is Fredholm (and so relatively invertible) and
KeL(X, Y) is compact, then A = F + K is also Fredholm (see [14;
p. 114]) and thus relatively invertible. Now, unless K has finite
rank, then A — F = K is not relatively invertible. Since A — (1/2)F
is relatively invertible, we shall say that the perturbation F of A
does not have small enough norm.

If AeL(X, Y) is of finite rank (and so relatively invertible)
and KeL(X, Y) is compact of infintie rank, note that Ker (aK) ~ϊ>
Ker A and Im (aK) ς£ Im A. Hence A — aK is compact of infinite
rank and is not relatively invertible for any a Φ 0, although the
perturbation aK of A may have arbitrarily small norm.

In the next two theorems we will show that, under certain condi-
tions—one of which is B to be a relative inverse of A—the operator
R(U), defined in (*), is also an inner inverse of A — U. In other
words, we will show that the operator G(U) = A — U — (A —
U)R(U)(A — U) is equal to zero. The following computation is a
modification of that in [13; p. 371]; we obtain two representations
of the operator G(U) which will be used in the proofs of the an-
nounced theorems.

G(U) = (A - U)[IX - R(U)(A - U)]

= (A- U)(IZ - BUΓ[(IX -BU)~B(A- U)]

= (A- ABU + ABU - U)(IZ - BU)~\IX - BA)

= [A(IZ - BU) + (AB - IT)U](IZ - BU)-\IZ - BA) .

Since A(IZ - BU)(IZ - BU)"\IZ - BA) = A - ABA - 0,
we have

(a) G(U) = (AB - IY)U(IΣ - BU)~\IZ - BA),

and from this, using Lemma 2.1(2), also

(β) G(U) - (AB - IY)(IY - UB)~lU(Ix - BA) .

THEOREM 2.3. Let A, U belong to L(X, Y) and let BeL(Y, X)
be a relative inverse of A. If \\U\\ <lj\\B\\ and Ker A c Ker U,
then A — U has a relative inverse in L(Y, X). Moreover, Ker (A—
U) = Ker A and Im (A - U) ~ Im A.

Proof. Since Ix — BA is a projector onto Ker A (Theorem 1.2)
and Ker A c Ker U, by (β) G( U) = 0; this and Lemma 2.2 imply that
jβ( U) is a relative inverse of A — U.

Further, note that
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Ker R(U) = Ker [(Ix - BU)~ιB] - Ker B,
Im R(U) = Im [B(IY - UB)~1} = Im B.
Therefore, the decomposition X = Ker(A- U)φlmR(U) (Theo-

rem 1.2) can be rewritten as 1 = Ker (A — £7) 0 Im B. Thus, all
subspaces Ker (A — U) have the same topological complement. Note
that Ker A is one of these subspaces: £7 — 0 clearly satisfies the
conditions of the theorem. Moreover, Ker A c Ker U implies that
Ker A c Ker (A - U). We conclude that Ker (A - U) = Ker A.

Similarly, Γ=Im(A— !7)0Ker B and all the subspaces Im(A—
U)—one of them being Im A—have a common topological complement.
In particular Im (A — Z7) ~ Im A.

COROLLARY 2.4. Let AeL(X, Y) have a left inverse BeL(Y, X).
Then, for all UeL(X,Y) such that \\U\\ <l/\\B\\, the operator
A — U has a left inverse and Im (A — U) ~ Im A.

Proof. Since {0} ~ Ker A c Ker U (and relative inverse == left
inverse in this case), Theorem 2.3 applies.

THEOREM 2.5. Let A, U belong to L(Xt Y) and let BeL(Y, X)
be a relative inverse of A. If || E7]| < 1/||J?|| and I m i D l m ί / ,
then A—U has a relative inverse in L(Y, X) and Ker (A— £7)~
Ker A, Im (A - U) - Im A.

Proof. Consider the relation (α). Since, clearly, U(IX —
BUY\IZ - BA){X) (zlmU and Ker (AB - Iγ) - Im A, the hypothesis
ImZ/cImA implies G(U) — 0. Hence, R{U) is indeed a relative
inverse of A — ί7.

The decompositions X = Ker (A - U) 0 Im B and Y = Im (A -
U) 0 Ker B are obtained in the same manner as in the proof of
Theorem 2.3. Thus, in particular, the kernels Ker (A—U) — Ker A
is among them — are all isomorphic.

Furthermore, Im A and Im (A — 17) have a common topological
complement. Since Im A ID Im U clearly implies Im A 3 Im (A — U),
the conclusion Im A = Im (A — U) follows.

COROLLARY 2.6. Let AeL(X, Y) have a right inverse BeL(Y,
X). Then, for all UeL(X,Y) such \\ U\\ < 1/\\B\\, the operator
A—U has right inverse and Ker (A — U) is isomorphic to Ker A.

Proof. Since Y — Im A 3 Im U (and relative inverse = right
inverse in this case), Theorem 3.5 applies.

COROLLARY 2.7. Let A, U belong to L(X, Y), let A be relatively
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invertible, and let either Ker A c Ker U or Im A Z) Im U. Then,
if \\U\\ is small enough, dim Ker (A — U), Codim Ker (A — U),
dimIm(A — U), and Codim Im (A — U) are all constant.

REMARKS. Prom the proofs of the above propositions it is clear
that we only need the existence of R(U) for the conclusion. Thus
these results hold whenever R(U) is well defined—in particular, when
|| U\\ < 1/11 .B11 (in addition to the inclusions stated).

While preparing the final draft of [9], the article [4] was
brought to our attention by Professor R. G. Bartle. Part of our
results in this section are contained there, for the case Y = X.

3* Holomorphic relative inverses* In this section we shall
consider holomorphic operator-valued functions defined on a domain
G in the complex plane. Our main concern will be existence of
holomorphic relative inverses of such functions. From the previ-
ous sections we know the close relationship between relative inverses
and kernels and ranges. This motivates the following definition.

Let Σ{X) be the set of all linear (closed or not) subspaces of
X and let S:G —• Σ(X) be a subspace-valued function.

DEFINITION 3.1. A subspace-valued function S:G —> Σ(X) is said
to be holomorphic at λ0, λ0 6 G, if there exists a projection-valued
function P:G^ L(X) and a neighborhood V of λ0 such that:

(1) The function P is holomorphic on V, and
(2) Im P(λ) = S(λ), λ e G.

Let {S(λ): λ e G} be a family of subspaces of X holomorphic at
a point λ0 e G in the sense of Definition 3.1. Several remarks are
in order. (The neighborhood V of λ0 will be assumed connected.)

If λe V then S(λ) ~ S(λ0). In fact, for |λ — λo| small enough
||P(λ) — P(λo)|| < 1, so that P(λ) maps S(X0) isomorphically onto
S(λ)([16, p. 132]). In general, connect λ and λ0 by a curve in V
and to each λx on that curve associate V(\) = {μeV:\\P(μ) —
PCλJH < 1}. The usual compactness argument gives the result. In
particular, dimS(λ), λ e 7 , is constant. Apply the same argument
to I — P(λ) to conclude that codim S(λ) is also constant on V.

Note that together with (S(λ): λ G G}, the family of subspaces
{Ker P(λ): XeG} is holomorphic at λ«. Indeed, / — P(λ), λ e G, are
the corresponding projectors. Moreover, X — S(λ) 0 Ker P(λ), λ e G.

THEOREM 3.2. Let {S(λ):λeG} and {Γ(λ):λeG} be two families
of subspaces of X, with S(λ0) φ T(X0) = X. Then the following
statements are equivalent.
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( 1 ) The families {S(X): XeG} and {T(λ): X e G} are holomorphic
at λ0.

( 2 ) There exists a neighborhood Vx of Xo and a holomorphic
operator-valued function AΊ: Vx-+ L(X), such that for each Xe Vu

the operator A^X) is invertible, Ax(λ)[S(λ0)] = S(X) and A1(X)[T(X0)] =
T(X).

( 3 ) There is a neighborhood Vι of λ0 such that I = S ( λ ) φ Γ ( λ )
and the projector Π(X) with the properties Im Π(X) — S(X)f Ker/7(λ) =
T(X) is holomorphic on Vx.

Proof, (i): (1) =* (2). Let P, Q be the projectors corresponding
to {S(X):XeG}, {T(X):XeG}, respectively, and holomorphic on a
neighborhood V of λ0. Let, further, ΠQ be the projector with the
properties Im ΠQ = S(λ0), Ker ΠQ = Γ(λ0). Define At on V to L(X)

by

Λ(λ) - P(X)Π0 + Q(λ)(I - 770), λ e 7 .

Note that P(λo)/7O = Z?o and Q(λo)(/ - 770) = / - /70, so that
= /. Therefore A^λ) is invertible in a neighborhood V0(zV

of λ0.
Further, there is a neighborhood F x c F o of λ0 such that both

||P(λ) - P(λo)|i < 1 and ||Q(λ) - Q(λo)|| < 1 for λ e 7 ,
Thus, on VΊ AX(X) is invertible, holomorphic and

(a) Λ(λ)[S(λ0)] - P(λ)770[S(λ0)] - P(λ)[S(λ0)] - S(X)

(β) Λ(λ)[Γ(λ0)] - Q(λ)(/ - ΠQ)[T(XQ)] = Q(λ)[Γ(λ0)] = T(X) .

( i i ) : (2) =-(3). Define Π:Vι-^L(X) by fl[(λ) =
where i70 is as in (i). Clearly, Π is a projector, holomorphic on
Vj. Moreover, from (α) and (/3) we have

Im 77(λ) = A1(λ)i70Ar1(λ)(X) - A1(λ)[S(λ0)] - S{X) ,

Ker 77(λ) - Ker (A1(λ)770Ar1(λ)) - Ker [Π0Aτ\X)] - Γ(λ) .

Thus, for XeVlf X = S(X) 0 Γ(λ) .

(iii): (3) ==> (1). This statement is obvious.

COROLLARY 3.3. The family of subspaces {S(X):XeG} is holo-
morphic at λ0 if and only if there exists a neighborhood Vt of XQ

and a holomorphic function Ax\ Vx —> L(X) such that, for X e Vl9 A^X)
is invertible and A1(λ)[S(λ0)] = S(X). A possible representation of
A : Λ W = P(X)P(XQ) + (/ - P(XW - POo)), where P(λ) is a holo-
morphic projector onto S(λ).
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Proof. The statements, the equivalence of which is to be
proven, become equivalent to (3) and (2) of Theorem 3.2, respec-
tively, if we choose T(X) = Ker P(λ). Note also that the projector
Πo from part (i) of the proof of Theorem 3.2 coincides with P(λ0).

DEFINITION 3.4. Let A:G->L(X, Y) be holomorphic and let
λ o e(j . We say that A has a holomorphic relative inverse at λ0 if
there is a neighborhood V of λ0 and a holomorphic operator-valued
function B: V-> L{Y, X), such that B(X) is a relative inverse of
A(λ), for λ e V.

THEOREM 3.5. Let A:G —> L(X9 Y) be holomorphic at λ0 and
let A(λ0) 6β relatively invertible. Then the following statements
are equivalent:

(1) A(X) has a holomorphic relative inverse at λ0.
( 2 ) The subspace-valued function X —> Ker A(λ) is holomorphic

at Xo.
( 3 ) The subspace-valued function X —> Im A(λ) is holomorphic

at XQ.

Proof, ( i ) : (2) => (1). In the notation of Corollary 3.3, with
S(X) = Ker A(λ), the holomorphic operator A^X) has the property
A!(λ)[Ker A(X0)] = Ker A(λ), for λ e Fx. This and the invertibility
of A1 imply that

( * ) Ker [A(X)A1(X)] = Ker A(λ0) for λ e 7 l t

Note also that A^XQ) = I x . Consider the operator E7Ί(λ) = i
From (*) it follows immediately that Ker Uλ(X)i)Ker A(XQ).

Furthermore, ϊΛ(λ0) = 0, so that if BQeL(Y, X) is a relative inverse
of A(λ0), then IIΪΛOOH will be less than 1/||BO|| i n a neighborhood
V, c V1 of λ0.

Thus ϋΊO), for X e Vlf satisfies the conditions of Theorem 2.3
and so 22(E7i(λ)) = BO(IY - ^(λ)^)" 1 = (Ix - Bo ̂ ( λ ) ) " 1 ^ is a relative
inverse of A(λ0) — £7Ί(λ) — A(λ)A1(λ). In other words,

= A(λ)Λ(λ) ,

R(Uί(X))[A(X)A1(X)]R(U1(X)) -

Cancel Ax(λ) in the first of these relations and multiply from
the left by At(X) in the second to conclude that AX(X)R( U^X)) is a
relative inverse of A(λ) for X e Ϋγ. This relative inverse is obviously
holomorphic.

(ii): (3)=>(1). Let Q(X) be a holomorphic projector onto
ImA(λ) in a neighborhood of λ0. As in the previous case, by
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Corollary 3.3 the operator A2(X) = Q(X)Q(X0) + (Iγ - Q(X))(IY - Q(λ0))
is holomorphic, invertible and A2(X)[lm A(XQ)] = Im A(λ), for λ in a
neighborhood V2 of \ 0 The last two properties imply that

(**) Im [A2\X)A(X)] = Im A(λ0) for XβV2.

Consider the operator Z72(λ) = A(λ0) - A"1(λ)A(λ). Prom (**) it
follows immediately that Im I72(λ) c Im A(X0). Furthermore, since
A2(λ0) = IY, U2(X0) = 0. Similarly as in the previous case, if Bo is a
relative inverse of A(X0), we conclude that there is a neighborhood
V2 of λ0 such that || ί72(λ)|| < 1/||SO|| and Im Ϊ72(λ) c Im A(λ0) for
XeV2.

By Theorem 2.5, R(U2(X)) =BO(IY~ *72(λ)£0Γ = ( I x - B0Uz(\))-ιB0

is a relative inverse of A(λ0) — U2(X) = A2"
1(λ)A(λ). In a similar

way as in part (i), we derive that then R( ZJ^λ^A^O) is a holomor-
phic relative inverse of A(X), for X e V2.

(iii): (1) => (2) and (1) =*> (3). If JB(λ) is a holomorphic relative
inverse of 4(λ) at λ0, then P(λ) = IX-B(X)A(X) and Q(X)=A(X)B(X)
are holomorphic projectors onto Ker A(X) and Im A(λ), respectively.

In order to facilitate further expression we introduce the fol-
lowing two definitions.

DEFINITION 3.6. Let S: G -> Σ(X) be given. We say that S is
locally holomorphic on G if it is holomorphic at each point λ o eG
in the sense of Definition 3.1. We say that S is globally holomor-
phic on G, or simply holomorphic on G, if there is a projector-valued
holomorphic function P: G -> L(X), such that Im P(λ) = S(X) for all
XeG.

DEFINITION 3.7. Let A: G -»L(X, Y) be holomorphic. We say
that A has a local holomorphic relative inverse on G if A has a
holomorphic relative [inverse at each point XQeG in the sense of
Definition |3.4. We say that A has a global holomorphic relative
inverse on G, or simply a holomorphic relative inverse on G, if
there is a holomorphic function B: G—>L(Y, X), such that B{X) is a
relative inverse of A(X) for all λ e G .

To prove a global version of Theorem 3.5, we will use in an
essential way the following result from [15; p. 161].

THEOREM 3.8. (Subin) If the subspace-valued function S:G->
Σ(X) is locally holomorphic on G it is holomorphic on G.
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THEOREM 3.9. Let A: G -> L(X, Y) be holomorphic. Then the
following statements are equivalent:

( 1 ) The function A has a holomorphic relative inverse on G.
( 2 ) The function A has a local holomorphic relative inverse

on G.
( 3 ) The function X —> Ker A(λ) is locally holomorphic on G

and A(X) has a relative inverse for each XeG.
( 4 ) The function X —> Im A(λ) is locally holomorphic on G and

A(X) has a relative inverse for each XeG.
( 5 ) The function X —> Ker A(X) and X —> Im A(λ) are holomor-

phic on G.

Proof. By Theorem 3.5, (2) <=* (3) <=> (4). That (1) <=> (5) is shown
as in part (iii) of the proof of Theorem 3.5. The implication (5) =>
(3) is clear. It remains to show that (3) => (1).

If (3) holds, then (4) does too. By Subin's result the functions
X -» Ker A(λ) and X —> Im A(λ) are globally holomorphic on G.

Let P:G-+ L(X) be a holomorphic projector with Im P(λ) =
KerA(λ), and let Q : G - » L ( F ) be a holomorphic projector with
ImQ(λ) = ImA(λ). Recall that (Theorem 1.2) there is precisely one
relative inverse of A(λ), for a given XeG, corresponding to the
direct decompositions X = Ker A(λ) 0 Ker P(λ) and Y = Ker Q(X) 0
ImA(λ). Hence, let Bλ be the relative inverse of A(λ) satisfying
the conditions Ker Bλ = Ker Q(X) and Im JS^Ker P(λ) for each XeG.

We now show that the function X -+ Bx is holomorphic on G.
Let λ0 e G. In the proof of Theorem 3.5 (we use below the

same notation as there) we showed that, in a neighborhood of λ0,
the operator jB2(λ) = R( C72(λ))A^1(λ) is a holomorphic relative inverse
of A(λ). To finish the proof, it is enough to prove the following

Claim. Bλ = A1(λ)^2(λ) = A1(λ)i2(C72(λ))A2~
1(λ), in a neighborhood

of λ0.

Note that

A2(λ)[Ker Bλo] = A2(λ)[Ker Q(λ0)] = Ker Q(X) = Ker Bλ ,

so that Az\X)[Keτ Bλ]=:Keγ Bh. This and the obvious Ker R(U2(X)) =
KerJ3;{0 and Im J?( I72(λ)) = ImjB^0 imply the following equalities:

(a) Ker R2(X) = Ker [R(U2(X))Aς\X)] = Ker Bλ ,

(b) Im R2(X) = Im [R( U2(X))Aj\X)] = Im Bh .

From (a) and (b) it follows

(c) Ker [A1(λ)β2(λ)] = Ker R2(X) - Ker Bλ ,
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(d) Im [A1(λ)β2(λ)] - Λ(λ)[Im J?,o] - A,(λ)[Ker P(λ0)]
- Ker P(λ) = ImBλ.

Hence Bλ and AX{X)R2{X) have the same kernel and range. If
we show that the latter is a relative inverse of A(X), the claim
will follow from the uniqueness part of Theorem 1.2. The follow-
ing simple identities are based on the above observations: P(X0)R2(X) —
0 (by (b)); A(λ)P(λ) = 0 (by the definition of P). Therefore,

(f) A{X)Aί(X)R2{X) = A(λ)[P(λ)P(λ0)

- A(X)R2(X).

Multiply (f) by A(X) on the right to get

(g) A(λ)[A(λ)£2(λ)]A(λ) = A(X)R2(X)A(X) = A(X) ,

since jR2(λ) is relative inverse of A(X).
Similarly, again using (f),

(h)

and the claim follows.
This concludes the proof of Theorem 3.9.

COROLLARY 3.10. Let A: G —> L(X, Y) be holomorphic, and let
A(X) be right invertible for each XeG. Then there is a holomor-
phic function B: G —> L(Y, X) such that A(X)B(X) — Iγ for all XeG.

Proof. Since Im A(X) — Y, the function X —> Im A(λ)—being con-
stant—is holomorphic.

COROLLARY 3.11. Let A: G —> L(X, Y) be holomorphic and let
A(X) be left invertible for each XeG. Then there is a holomorphic
function B:G->L( Y, X) such that B(X)A(X) = Ix.

Proof. Here Ker A(X) = {0}, so that the function X —> Ker A(X)
is holomorphic.

REMARKS. In [3] the equivalence of the statements (1) and (5)
of Theorem 3.9 is proven. In [15] the equivalence of (1) and (2) is
proven.

The Corollaries 3.10 and 3.11 are also seen in [3] and [15] with
different proofs. For the case Y = X they were first proved in
[1]. In the next section we will present far reaching generalization
of these corollaries.
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In view of Theorem 3.5 it seems natural that the operator
Bλ from the proof of Theorem 3.9 is also locally equal to

(λ). It can be shown that this is not so.

4* Semi-Fredholm operators. We first recall some basic defi-
nitions. All operators which we consider in this section will be
assumed to have closed ranges.

If AeL(X, Y), one defines

a{A) = dim Ker A

β(A) = codim ImA = dim (Γ/Im A) .

Here (A) and /S(A) may be finite natural numbers or + oo. In
terms of a{A) and β(A) one defines three classes of operators,
namely, semi-Fredholm of the first kind, semi-Fredholm of the
second kind, and Fredholm, as follows:

Φ+(X, Y) = {A 6 L(X, Y): a{A) < oo} ,

Φ_(X, Y) = {AeL{X, Y): β(A) < -} ,

Φ(x, Y) = Φ+(X, Y) n Φ-(x, Y).

If A 6 Φ(X, Y), then Ker A and Im A are complemented, so that
(Theorem 1.2) every Fredholm operation is relatively invertible.
However, this is not so for semi-Fredholm operators, in general.
Since we are concerned with the existence of relative inverses,
when considering semi-Fredholm operators, we shall restrict our
attention to the following two subclasses of operators:

Φr+(X, 7) = {Ae Φ+(X, Y): Im A is complemented} ,

ΦL(X, Y) - {AeΦ_(X, Y): Ker A is complemented} ,

the members of which are relatively invertible. Some authors call
such operators projective semi-Fredholm operators of the first or
second kind, respectively. Note that Fredholm operators are pro-
jective semi-Fredholm of both kinds.

Let A:G—> Φr+(X, Y) be holomorphic. Assume further, that
A(λ) has a holomorphic relative inverse JB(λ). Then we know that
dim Ker A(λ) is constant on G. Similarly, if A: G -• Φϋ(X, Y) is
holomorphic and possesses a holomorphic relative inverse, then codim
ImA(λ) is constant on G. (Compare the comments after Definition
3.1.) These remarks give the "only if" part of the following two
theorems.

THEOREM 4.1. Let A:G^ Φr+(X, Y) be holomorphic. Then A
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has a holomorphίc relative inverse on G if and only if a(A(X)) is
constant of G.

Proof. Let α(A(λ)) be constant on G, and let XoeG. Further,
let X = Ker A(λ0) 0 Xlf Y = Yι 0 Im A(λ0), and let Bo be the relative
inverse of A(λ0) corresponding to these decompositions; i.e., Ker Bo =
Ylf Im Bo = Xx.

Consider the operator

J(λ) = I x - 50(A(λ0) - A(λ)) .

Note that J(λ0) = Ix, so that J(λ), which is obviously holomor-
phic on G, is also invertible in a neighborhood of λ0. Since Ix —
J30A(λ0) is a projector onto Ker A(λ0) along Xlf the following inclu-
sions are clear:

(1)

(2) J(λ)(Ker A(λ)) = (I x - 50A(λ0))(Ker A(λ)) c Ker A(XQ)

When J(λ) is invertible, the equality a(A(X)) = α(A(λ0)) < oo
implies equality in (2). Defining AL(λ) = [/(λ)]"1, we have

Λ(λ)[Ker A(λ0)] - Ker A(λ) ,

for X in a neighborhood of λ0. By Corollary 3.3 the function λ —>
Ker A(X) is holomorphic at λ0.

Since λ0 is an arbitrary point of G, the function X —> Ker A(λ)
is locally holomorphic on G. Thus the statement (3) in Theorem 3.9
holds, and hence A has a holomorphic relative inverse on G.

THEOREM 4.2. Let A:G-> Φϋ(X, Γ) be holomorphic. Then A
has a holomorphic relative inverse on G if and only if β(A(X)) is
constant on G.

Proof. Since β(A) = a(A*)9 where A* is the conjugate of A
(see, for example, [5; p. 7]), A*(λ) is holomorphic and belongs to
Φ+(Y*, X*). By Theorem 4.1 A* has a holomorphic relative inverse
J3* on G. This in turn implies that A** has a holomorphic relative
inverse J3** on G. In particular (or better: equivalently), the func-
tion λ—>KerA**(λ) is holomorphic. Applying the canonical imbedd-
ing of X into X**, we can view A(λ) as the restriction of A**(λ)
on X.

If P: G-* L(X**, Γ**) is a holomorphic projector with ImP(λ) =
KerA**(λ), then P(λ)|X is also a holomorphic projector and
Im (P(λ) IX) = Ker (A**(λ) | X) = Ker A(λ).

Thus, the function X -> Ker A(λ) is holomorphic on G and the
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stated conclusion follows from Theorem 3.9.
Partial results for the semi-Fredholm case were obtained in

[2; pp. 52-54]. A special case of our Theorem 4.1, with A(\) e
Φ(X, Y), was obtained in [3; p. 192], [15; p. 164], and [7, p. 54].

Added in proof. Theorems 4.1 and 4.2 are contained (as the
author subsequently learned) in the meromorphic result of H. Bart,
M. A. Kaashoek, D. C. Lay ["Relative inverses of meromorphic operator
functions and associated holomorphic projection function", Math. Ann.
218 (1975), 199-210], proved by different and more involved methods.
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