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Let Q = [0, S] X [0, T] be a rectangle and {X(sf t): s,t^Q}
be the two-parameter Yeh-Wiener process. This paper finds
probabilities of X(s, t) crossing barriers of the type ast + bs +
ct + d on the boundary dQ. These probabilities give lower
bounds for the yet unknown probabilities of X(s, t) crossing
ast + bs + ct -+- d on Q. The paper also discusses sharper
bounds for the latter probabilities.

I* Introduction. Let {X(s, t): s, t ^ 0} be the standard Yeh-
Wiener process of two parameters such that it is a separable real
Gaussian stochastic process satisfying:

(1.1) X(s, ί) = 0 a.s. if s or t is 0 ,

(1.2) the expected value E{X(s, t)} = 0 at every β, t ^ 0 ,

(1.8) E{X(s, t)X(s', ί')} - min (β, s') min (ί, t') .

Further properties of the process are found in Yeh's [8] and [9].
For the square D = [0,1] x [0,1] and its boundary 3D, Paranjape

and Park [6] showed that the probability

(1.4) PjsupX(8, ί) ^ λ l = 32V(-λ) - e4'2JV(-3λ) , λ ^ 0 ,
( 3D )

where JV( ) stands for the standard normal distribution function.
This probability is a lower bound of the yet unknown probability,
P{supu X(8, t) ^ λ}. It is known (see [4] or [7]) that

(1.5) P jsupX(β, t) S λ} ^ 4P{X(1, 1) ^ λ} = 42V(-λ) .

Recently Chan [1] showed that, for every ε > 0,

(1.6) P ( S ^ P χ(s> *) = λ } ^ MeΓ'PJsup X(s, t) ^ λ - ε

By the same technique as he used in his paper, the upper bound can
easily be improved to iS/r(ε)~1P{sup X(l, t) ^ λ — ε: 0 ^ t ^ 1} =
2N(—X + e)/N(e). However it turns out to be that even this improved
upper bound is not as good as 4iV(—λ) for any ε > 0. In fact

ΛΓ(ε)-1PJ s u p X ( l , t ) ^ X - ε \ , ε > 0 ,
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456 C. PARK AND D. L. SKOUG

and

limNiεyψi sup X(l, t) ^ X -• εI = 4iV(-λ) .

More recently Goodman [3] showed that for λ ^ 0,

(1.7) 2JjV(-λ) + X JJSΓ( —β)dβi ^ pjsup X(s, t) ^ λ 1 .

Obviously the left-hand side of (1.7) is a much better lower bound
of Pfsup^ X(s, t) ^ λ} than (1.4). He subsequently proves that

2{N(-X)
(1 8)

AN( — X)

thus showing that both 2jN( — X) + X I N( — s)dsi and 4N( — X) are very

good approximations of P{supz) X(s, t) ^ λ} for all sufficiently large λ.
The main purpose of this paper is to generalize the above results

for more general barriers, namely, to find a formula for

Pjsup X(s, t) - (ast + δs + ct + d) ^ Ok a, δ, c, d ^ 0 ,

and then find a lower bound for Pfsup^ X(s, t) — (ast + 6s + ct + d) ̂  0}
for which (1.7) is a special case. It is apparent that for all α, δ, c, d ^ 0

(1.9) PJsup X(8, t) - (ast + 6s + ct + d) ^ oi ^ 4iSΓ(-d) .

In addition we obtain a formula for

P{sup3jD I X(s, t) I - (ast + δs + ct + d) ^ 0} , α, 6, c, d ^ 0 .

Some results on two-parameter Brownian bridge are also included.

2 Some lemmas. To avoid unnecessary repetitions in the
proofs of the theorems, the following lemmas are given. Throughout
this paper W(t) and X(s, t) will denote the standard Wiener process
and the Yeh-Wiener process, respectively.

LEMMA 1. (Doob [2: p. 398]). If a ^ 0, 6 > 0, a ^ 0, β > 0, then

PJo |up [W(t) - (at + 6)] ^ 0 or mi [W(t) + at + β] ^ oj

= Σ e χ P {-2[m2αδ + (m - Yfaβ + m(m - l)(aβ + ab)]}
m = l

exp {-2[(m - l)2α6 + m2α/S + m(m - l)(α^ + ab)]}
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— exp { —2[m2(αδ + aβ) + m(m — l)aβ + m{m
- exp {-2[m\ab + aβ) + m(m - l)aβ + m{m - ΐ)ab]} .

LEMMA 2. Let f(t) be a Borel measurable function. Then for
each Borel set E of real numbers,

P{W(t) -
(2.1) ( / 1 \ 1

- P\W(t) + u-(t + l ) / ( ^ j ) ejE> 0 < t

Proof. The basic technique used here is the same as the one
used by Malmquist in [5]. Observe that W(t) and tW(l/t) are equi-
valent processes for t > 0. Thus, the left-hand side of (2.1) reduces
to

/ / i \ i i

W(l) = u

6 — E, 0 < t ^

Upon using the fact that W(l/t - 1) and W(l/t) - W(l) are equivalent
processes for t > 0, and W(l/t) — W(l) and W(l) are independent for
1 ^ t > 0, we have the result by the transformation 1/ί — 1 —> ί.

LEMMA 2.a. // f(t) is a Borel measurable function on [0, 1],
then

-PJsup \X(1, t)\ - /(t) ^ 0|X(l, 1) = %

= PJ sup 1 X(l, t) + u\ - (t +
- f -

same Λ,oicίs /or X(ί, 1).

LEMMA 3. Let f(s, t) be a Borel measurable function on D. Then
for each Borel set E of real numbers,

P{X(s, t) - /(8, t) e E, (β, ί) 6 (0, I]21 X(l, 1) = u)

( β
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Proof. This lemma is a two-parameter analogue of Lemma 2,
and it can be proved similarly by observing that X(s, t) and
stX{l/s, 1/t) are equivalent processes for s, t > 0.

LEMMA 4. Let f(t) and git) be any Borel measurable functions
on [0, 1]. Then for any Borel sets Eγ and E2 of real numbers,

s, 1) - /(*) 6E u X(l, t) - g(t) eE2J («, t)eD\X(l, 1) = u}

(2.2) = P{X(s, 1) - f(s) eElf0^s^l\ X(l, 1) = u)

1, t) - g(t)eE2, Q^t

Proof. Observe first that X{s, 1) and sX(l/s, 1) are equivalent
standard Wiener processes for s > 0, and so are X(l, t) and tX(l, 1/t)
for t > 0. Now s[X(l/s9 1) - X(l, 1) + u] and t[X(l, 1/t) - X(l, l) + w]
are independent processes for 1 ̂  s, t > 0, and they are also inde-
pendent of {X(s, t): (s, t)eD}. Hence (2.2) gives:

P{X(st 1) - /(β) 6 S w X(l, t) - flr(ί) e Et, (β, ί) e

(2.3) = P{8[X(l/s, 1) - X(l, 1) + u] - f(s) eEly0<s^l}

P{ί[JSΓ(l, 1/t) - X(l, 1) + u] - flr(ί) e JS?2, 0 < t £ 1} .

But the two probabilities on the right-hand side of (2.3) are equal to
P{X(s, 1) - f(s) eElf0^s^l\ X(l, 1) - u) and P{X(lf t) - g(t) e E2,
0 ^ t ^ 11 X(l, 1) — u) respectively, and hence the proof is complete.

3* Main results and proofs* In what follows {X{sf t): s, t ^ 0}
will be used exclusively for the Yeh-Wiener process.

THEOREM 1. If a, b, c, d^ 0, then with a — a + b + c + d,

PJsup X(8, t) - (ast + bs + et + d) ̂  θ\
K 3D )

= N(-a) + e-
2{a+hnc+d)N(a + b - c - d)

(a -b + c ~d)

Proof. First observe that

Px = PJsup X(s, t) - (ast + bs + et + d) ^

= P\ sup X(s, 1) - [(α + b)s + (c + d)] ^ θ

(3.1) + P\ supX(l, ί) - [(o + e)t + (6 + d)] ^
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- P j sup X(s, 1) - [(α + b)s + (e + d)] ^ 0, sup X(l, t)

- [(α + c)t + (b + d)] ̂  oj .

Since X(s, 1) and X(l, t) are equivalent to the standard Wiener process
W(t), the first two probabilities on the right of (3.1) can be evaluated
explicitly.

Now,

P2 Ξ P | sup X(s, 1) - [(a + b)s + (c + d)] ^ 0, sup X(l, t)

- [(a + c)t + (6 + d)] ̂  Oj

= P{X(1, 1) ^ α}

S a+b+c+d (

P\ sup X(8, 1) - [(a + 6)s + (c

supX(l, ί) - [(a + c)t + (b + d)] ^ 0|X(l, 1) - u[diV(w) •

Due to the fact that

p\ sup X(8, 1) - [(α + 6)8 + (c + d)] ^ 0, sup X(l, t)

-[(α + c)t + φ + d)] ^ 0|X(l, 1) = v\
(3.2)

= P sup Z(s, 1) - [(a + δ)β + (c + d)] ^ 0|2Γ(l, 1) = u

•PJsupX(l, t) - [(a + e)t + (b + d)] ^ 0|Z(l, 1) - u J ,

we may use Lemma 2 to get

P 2 = JV(—ά)

S α+δ+c+d C 1

P sup X(s, 1) - [(c + d)β + (δ - «)] ^ Of

•P j sup 2Γ(1, ί) - [(6 + d)t + (α - «)] ^

= W(-o)

S α+6+c+d

The result now readily follows.

COROLLARY. If d^O, then
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, t)^d\ = 3N(-d) -
)

This corollary agrees with the result in [6: p. 877].

THEOREM 2. If {Y(s, t): (s, t) e D] is the two-parameter Brownian
bridge, i.e., {Y(s, t): (s, t)eD} = {X(s, t):(s, t)eD\X(l, 1) = 0} and
a, δ, c, d ^ 0, then

P{supΓ(s, t) - (ast + δs + ct + d) ̂  0}

Proof. This follows from (3.2) by setting u = 0.

THEOREM 3. / / α, 6, c ^ 0 αwd d > 0,

c = c + cϋ,

sup
3

\X(s,t)\
αsί + os + ct + a

where

f(a, b, c, d) = N(-a) + j Σ(-l )* + 1 |V I ( +»)β*i j 'J"^

dN(μ)~\\ _
J-a-

x\ _
J-α-2[ci

Proof. Observe that

= P ί s u p -

f α-2[c

\X(8,t)\

+ δs + ct + d
> 1 , 1) -

sup

(c + d) "

> 1

or

(α + c)t + (δ + d)

Upon applying Lemma 4, we obtain

^ 1 X(X, l) =

+ P] sup \xq,t)\
(α + c)ί + (δ + d) = u
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- P\ sup \X(s,ϊ)\
(α + b)s + (c + d)

> 1

•p\ sup
Ustsi (α + c)t + (b + d)

Due to Lemma 2.a., it follows

> 1

X(l, 1) = u

X(l, !) = «.

Pjsup
(α + b)s + {c + d)

-Pίsupl

, 1) = u

= P sup X(s, 1) - [(β + d)s + (a - u)]

or inf X(s, 1) + [(c + d)s + (a + u)] <Z

Lemma 1 applied to the last expression gives:

sup X{s, 1) - [(c + d)β(α -u)]^0
θgs<oo

or inf X(s, 1) + [(c + ώ)s + (a + u)] <>
0 ^ <

^ 0

)

)κ ι β-2(

Therefore

sup
(α + b)s + (c + d)

> 1 X(l, 1) -

e-2(c+d)jul

and

(δ
, 1) =

— y c—]
— Z-i \ J

Since X(l, 1) is the standard normal random variable, the result now
follows by:

Pjsup SM)L__
^ θi> αsί + bs + ct + d

> 1
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_P,(u)dN(u)

THEOREM 4. // a,b,c,d^0 and a = a
c = c + d, then for u < a,

P4 == pjsup X(s,t) - (ast = u

(ei.(.-.)[l + 2c(α - u)] , 6 = 0 .

Proof. Upon applying Lemma 3, we obtain

P4 = Pjsup X(s + 1, t + 1) - X(l, ί + 1) + X(l, ί + 1) - X(l, 1)

- [d(s + l)(ί + 1) + c(β + 1) + b(t + 1) + a - u] ^ ol .
(3.3)

Consider the fact that X(s + 1, ί + 1) - X(l, t + 1) and X(l, ί+1) -
X(l91) are independent processes equivalent to X(s, t + 1) and X(l91),
respectively. The latter X(lf t) will be denoted by X*(l, t) to signify
that it is independent of X(s, t + 1). Due to the fact that c(s + 1) ^
e(s + l)(ί + 1) for all c, s, t ^ 0, it follows from (3.3)

P4 ^ PJ sup X(8, ί + 1) + X*(l, ί) - [β(ί + l)β + bt + a - w] ^

supX*(l, t)(3.4) ^ Γ _PJsup X(s, t + 1) - [c(ί + 1)8 - r] ^ 0

— (bt + a — u) = r\p(r, u)dr ,

where p(r9 u) is the probability density of

P ίsup X*(l91) - (bt + α - u) ^ r i

, otherwise .

Thus

(3.5) p(r9 u) =
—26(α+r—u)

0
u — a ^ r

otherwise .

Observe that the probability in the integrand of (3.4) becomes
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(3.6)

PJsupX(s, ί + 1) - [cit + l)β - r] ^ oi

r ^ 0

r > 0 .

Therefore, (3.5) and (3,6) together with (3.4) give

S o _
_eUr\

u-a

2be-2Ha+r~u) dr 2be~2Ha+r~u)dr ,

from which the result readily follows.
The following is a special case (u = 0) of Theorem 4, which has

broad application in Kolmogorov-Smirnov statistics.

THEOREM 4.a. If{ Y(s, t): (s, t) 6 D) is the two-parameter Brownian
bridge and if α, b, c, d ^ 0, then

A( β - 2 *< - e~
2ab) + e~2ab

b

s, t) - (ast + bs + ct + d) ^ 0}

6 > 0

(1 + 2άc)e-Γαy , 6 = 0 .

THEOREM 5. / / a, b,c,d^ 0, then

P{mpD X(s, t) - (ast + bs + ct + d) ^ 0}

- N(a - 2b)e~2aτ]

N(a - 2b)e~2aΊ ,

N(-a)

In particular,

Pfsup,, X(8, t) - X ^ 0} ^

(δ - 2c)(l + 2αc -

δ > 0

6 = 0 .

_L.e-

0 .

Proof. The theorem now can be established by integrating lower
estimates of the conditional probability P4 in Theorem 4 with respect
to dP{X(l, 1) ^ u) = diSΓ(w) = (27r)-1/2exp(-^2/2)d^. The special case
when α = 6 = c = 0 and d = λ agrees with Goodman's result (Theorem
3 in [3]).

In order to find sharper upper bounds for the barrier-crossing
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probabilities we introduce the following: Let f(s, t) be a continuous
function on D. If sup^ X(s, t) — f(s, t) ^ 0, then define τf = (s0, tQ)
where

s0 = inf {s e [0, 1] \X(s, t) = f(s, ί) for some t e [0, 1]} ,

ί0 = inf {ί 6 [0, 1] I X(s0, t) = f(s0, t)} ,

while if sup^ X(β, t) — f(s, t) < 0, then set τf = (oo, oo). Thus with
the convention that (s19 Q S (s2, ί2) if and only if st ^ s2 and t^ t29

we have that

P{sup X(s, t) - /(8, t) ̂  θ[ = PJr7 ^ (1, 1)} .

T H E O R E M 6. If c,d^ 0, then

Pjsup X(s, t) - (ct + d) ̂  0

^ 2P| sup X(l, ί) - (ct +
Usίfii

= 2[1 - N(c + d) + exp (-2cd)N(a - b)] .

Proof. Let τ stand for τf when /(s, ί) = ct + d. Define

F(s, t) = P{τ ̂  (s, t)} .

Then

f 1) = P sup X(β, ί) - (ct + d) ̂  0

= P sup X(l, t) - (ct + d) ̂  0

sup X(l, t) - (ct + d) < 0, sup X(s, ί) - (ct + d) ̂  θi

r = (s, t)\dF(s,t)

(3.7) = p\ sup X(l, t) - (fit + d) ̂  θ
OSίίl

+ [p\ sup X(l, t') - (cf + d ) < 0
Jo Usesi

^ p{ sup X(l, t) - (ct + d) ̂  θ

, ί) - (ct + d ) < 0τ = (β, t)Jd-F(8, ί ) .

On account of the fact that τ = (s, ί) implies X(s, t) = cί + d and
X(l, ί) — X(s, t) is independent of the conditioning τ — (s, t), it follows
that
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X(l, t) - (ct + d)< 0 τ = (s, t)\dF(st)

(3.8) J υ v j

= Γ P { X ( 1 , t) - JSΓ(«, ί) < θ\dF(s, t) = — F(l, 1) .
Jo I ) 2

The theorem now follows readily from (3.7) and (3.8).

COROLLARY 6.1. // b, c,d^ 0, then

PJsupX(s, t) - (bs + ct + d)^0

(3.9) {D

^ 2P| sup X(l, t) - (δ*ί + d) ^ Ok 6* = max {6, c) .

Proof. The result follows immediately by observing that

PJsupX(s, t) - (bs + ct •
( D

<, min 1 P Γ sup X(s, t) - (6s + d) S θΊ ,
1 L z> J

p Γ s u p X(s, t) - (ct + d ) ^

The right-hand side of (3.9) can also serve as an upper bound of
Pfsup^ X(s, t) — (ast + bs + ct + d) 2̂  0}, and it is certainly a substantial
improvement over (1.9). We state this fact formally as a corollary.

COROLLARY 6.2. // a, b, c, d ^ 0, then

PJsup X(s, t) - (ast + bs + ct + d)^θ\

(3.10) ^ 2PJ sup X(l, t) - (6*ί + d ) ^

^ 2PJ sup X(l, ί) - d ^ ol = iN(-d) ,

%ϋhere 6* = max {6, c}.

4. Supremum over rectangular regions* Some adjustments are
needed to apply the results for the more general rectangular region
Q — [0, S] x [0, Γ]. The conversion formulas are given by:

P supX(s, t) - (ast + bs + ct + d) ^ 0[
(4.1) U '

= PJsup X(s, ί) - (ct'sί + b's + c't + d') ^ 0\ ,

where α' = aVST, V = bVS/T, c' = cVTjS, and d' = d/VST.
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PJsupX(8, t) ~ (ast + bs + ct + d) ̂  0\X(S, T) = u
(4.2) { Q

= P\ sup X(8, t) - (a'st + b's + c't + dr) ̂  0

where α', 6', c', ά! are as in (4.1) and u' - u/l/ST. In (4.1), if 3Q is
replaced by Q, then D replaces 3D.
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