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We study the hyperspace (denoted 2f) of ANR's of a
(polyhedral) closed surface M. The topology of 2f is induced
by Borsuk's homotopy metric. We show the subpolyhedra
of M are dense in 2f. We obtain a necessary and sufficient
condition for an arc in 2f joining two points. We show that
2f is an ANR (~^). We prove that the subspace of 2? whose
members are AR's has the homotopy type of M.

O* Introduction* For a finite-dimensional compactum X with

metric p, let 2f denote the space of nonempty compact ANR subsets
of X. The topology of 2ξ is induced by the metric ph defined by
Borsuk [3]. In [1] and [2], Ball and Ford studied several properties
of 2f, particularly for the case X = S2. In this paper we generalize
several of their results.

Throughout this paper, M will denote a (polyhedral) closed surface.
We show the nonempty polyhedral subcompacta of M are dense in
2f. We give a necessary and sufficient condition for the existence
of an arc in 2f joining two given members of 2M

h. We show 2f is
an absolute neighborhood retract for metrizable spaces (ANR (^/€))
and that the subspace of 2f whose members are the compact AR
subsets of M has the homotopy type of M.

Most of the results of this paper appeared in the author's doctoral
thesis at the University of Illinois, Urbana-Champaign. The author
wishes to thank his advisor, Mary-Elizabeth Hamstrom, for her
guidance and encouragement. The author also wishes to thank B. J.
Ball and the referee for several useful suggestions.

!• Preliminaries* Let p be a metric for M. We use the following
notation: If x e M and Aa M, then

B(x,r) - {yeM\p(x,y) < r)

A, Int A, and Bd A are the closure, interior, and boundary of A
(in M) respectively.

Euclidean %-space is denoted Rn. The interval [0, 1] is denoted
/. If x, y e Rn and teR1, then x + y will indicate the vector sum,
and t-x will indicate scalar multiplication of x by t.

If A is a polyhedron, we will assume A is compact unless otherwise
stated.

A map is a continuous function.
We use the following notation and terminology of [1] and [2]:
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48 LAURENCE BOXER

A δ-set or a δ-arc is a set or arc of diameter less than δ. A δ-map
or a 5-embedding is a map or embedding that moves no point by as
much as δ. The words "every 3-subset of A contracts to a point in
an ε-subset of A" are denoted s(A, δ, ε).

Where more than one topology is considered on a set, the topology
in which a sequence converges will be indicated by an obvious
notation. For example, an —> a0 indicates that the sequence {αw}~=1

9

converges to α0 in the topology of the metric p.
Let X be a finite-dimensional compactum. Let p be a metric

for X. Let A and B be nonempty compact ANR subsets of X. The
Hausdorff metric ps is given by

ps(A, B) = max {sup {p(a, B)\ae A], sup {p(b, A)\b e B}} .

The homotopy metric ph is characterized in [3] by the following:
Let A and {A%}~=1 be nonempty compact ANR subsets of a finite-
dimensional compactum X. Then An -»A if and only if

Ph

(a) An-> A, and
(b) given ε > 0, there is a 5 > 0 such that for all n, s(An, δ, ε).
We denote by 2f the topological space whose members are the

nonempty compact ANR subsets of X and whose topology is induced
by the metric ph. It is shown in [3] that 2f is complete and separable,
and that 2f is a topological invariant of X. We mention here other
useful results of Borsuk: If ph(A, B) < ε, then there are ε-maps
/ : A -> B and g: JB -> A. For Ge 2f, let [C]x denote the collection of
all members of 2f that have the same homotopy type as C. Then
[C]x is open in 2f. Since these sets partition 2f, [G]x is also closed.

The terms homotopy, deformation retraction, isotopy, etc. will
be used in standard fashion, except that it will be convenient not
to insist that the interval be /. For example, if c < d, a deformation
retraction of A onto B is a map H: A x [c, d] -> A such that iϊc = Id4

and Hd is a retraction of A onto j?. (We use the notation Ht(a) —
H(a, t) for all (α, ί ) e i x [c, eZ].) It will occasionally be convenient
to refer to the map Hd as a deformation retraction. A map H: A x
[c, ώ] —> A is strongly contracting iίc<^u^v<Ld implies HuoHv(A) c
Hv(A)czHu(A) ([1], p. 37).

The term surface will be used to refer to a (second countable)
connected 2-manifold, with or without boundary. A closed surface
is a compact surface without boundary. A bounded surface is a
compact surface with boundary. We differ from [1] and [2] in that
we will call an annulus any space homeomorphic to {(x, y) e R211 ^
α2 + y2 ^ 2}.

The following gives a useful criterion for convergence in 2f:
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LEMMA 1.1 ([1], 3.4, p. 38). Let A and B be members of 2ξ (X
an arbitrary finite-dimensional compactum). Let h:AxI-^A be
a strong deformation retraction of A onto B. Let {£Λ}£=i be an
increasing sequence in I converging to 1. Suppose that for each
n, An — htn(A) is an ANR. If

(a) h is strongly contracting, or
(b) for all n,h\An x [tn, tn+1] is a strong deformation retraction

of An onto An+ir then An -> B.
Ph

REMARKS. Case (b) above is not proved in [1], but the proof is
identical to that of (a). We will use both cases.

The next two lemmas will be used in questions of arcs.

LEMMA 1.2 ([1], 4.1, p. 43). // An -> A in 2,f and if for each n
Ph

there is an εn-embedding gn\ An-> X of An into X, where εn -» 0, then
gn(An) -> A.

Ph

LEMMA 1.3 ([1], 4.2 and 4.3, p. 43). If Ae2f and f:AxI->X
is an isotopy, then {ft(A) \ t e /} contains an arc in 2f from A to

The next two results will be used several times:

THEOREM 1.4 ([11], 3.4, pp. 382-383). Let Nbe a compact surface
with m boundary curves. Let L be a closed surface containing
disjoint open disks Dιy , Dm such that N — L\U?=i A Let r: N-^N
be a deformation retraction of N, and let R = r(N). Then L\R is
a union of m simply-connected components Glf

 # ,Gm, with D3c:Gj
for j = 1, , m.

An immediate consequence of the above is:

COROLLARY 1.5. Let N be a bounded surface. Let R c Int N be
a bounded surface that is a deformation retract of N. Then each
component of N\R is an annulus.

In the following theorems of Epstein, N will denote a surface,
with or without boundary, compact or not.

THEOREM 1.6 ([8], 1.7, p. 85). If a simple closed curve ScN
contracts to a point in N then S bounds a disk in N.

THEOREM 1.7 ([8], A2, p. 106) (stated in a different form). Sup-
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pose N is a polyhedral surface and f: I -> N is an embedding with
f-\BάN) = {0,1}. Let U be a neighborhood of /(/) in N. Then
there is an ambient isotopy of N that is fixed on Bd N and outside
U and that changes f to a piecewise linear embedding.

The following lemmas will be used in the next section.

LEMMA 1.8. Let Y be a topological space, LaY, and let β be
an arc with endpoints u and v such that β c L. Suppose there is
an open set D in Y\{u, v} and an arc yaL with endpoints a and
b such that {a, 6} c Bd D and 7 — j\{a, b} is a component of L Γ) D.
Then either 7 Π β = Φ or γ c / 3 .

Proof. Let p: (/, 0, 1) —> (β, u, v) be a homeomorphism. (The
notation means that p is a map from I to β such that p(0) = u and
p(ϊ) = v.) Suppose 7 Π β Φ φ. There is an xey and atQe(0,1) such
that p(ί0) = x. Then A = p~\β Π D) is a nonempty open set in /
contained in (0,1). Thus t0 lies in a component (α0, 60) of A. We
have xep((α0, δ 0 ) ) a β Γ) DaL Γ) D, so p((α0, 60))

 i s a connected subset
of L Π D containing x. Thus p((α0, 60))

 c V a n d {p(a0), p(b0)} Γι D = φ,
so {p(α0), p(bQ)} c Bd D. The arc B = p([α0, &0]) has its interior in 7,
but the endpoints of B are not in 7. Therefore 7 = B c p(I) = /3.

The following is an immediate consequence of ([7], 4.2, p. 360):

LEMMA 1.9. // A is an annulus with boundary curves Tγ and
T2, let H: T2x I->A be a map such that Ho — IdΓ2 and flΊ(Γa) = Γlβ

Then H(T2 x I) = A.

We say Y dominates X if there are maps / : X-+Yand g:Y->X
such that gof is homotopic to Id x. We write z/X = min {dimY\Y is
a finite simplicial complex that dominates X}.

2. The role of the polyhedra* In [3], Borsuk asked the following
questions: If X is a polyhedron, is the collection of all nonempty
subpolyhedra of X dense in 2f ? What is the category (in the sense
of Baire) of the collection of all nonempty subpolyhedra of X in 2f ?
In [1], the first question was answered affirmatively for the case
X = S2, and the second question was given the following answer:
If X is a connected polyhedron with no 1-dimensional open subset,
the collection of all nonempty polyhedra properly contained in X is
a first category subset of 2f. It was also shown in [1] that the
collection of nonempty topological polyhedra (i.e., homeomorphic
images of polyhedra) properly contained in S2 is a dense Gδ, hence
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second category, subset of 2£2. We will extend the above to closed
surfaces.

LEMMA 2.1. If X is a finite-dimensional compactum and U is
open in X, then <%f — {Ce2ξ\CdU} is open in 2\.

Proof. Let {An}™=1 c 2κ\ZS. Assume An -* Ao. For each n there
Ph

exists xneAn\U. Since X is compact we may assume (by taking a
subsequence if necessary) that xn-+xoeX\U. Since An-+A0, we
have x0 e Ao. Therefore Ao & ^, so ^ is open.

We prove a theorem about the Baire category of the collection
of topological polyhedra in I as a subset of 2f. (Recall M is a
(polyhedral) closed surface.)

THEOREM 2.2. Let J7~ be the collection of nonempty topological
polyhedra properly contained in M. Then j?~ is a second category
subset of 2f.

Proof. Let D be a disk contained in M. By 2.1, <%S —
{]Γe2f I F e i n t D) is open in 2f, and thus is topologically complete.
Let / : Int D -» S2 be an embedding. Then the map /*: ̂  -> 2f2 given
by f*(Y)=f(Y) is an open embedding ([3], p. 198). Since the
collection of nonempty topological polyhedra contained in S2 is a dense
Gδ subset of 2f2 ([1], 3.12, p. 42), it follows that <?S\^~ is a first
category subset of ^ . The classical Baire category theorem implies
^ Π ŵ "" is a second category subset of g^, and thus of 2f. Hence
^ ~ is a second category subset of 2f.

The rest of this section is devoted to proving the following:

THEOREM 2.3. The collection of nonempty subpolyhedra of M is
dense in 2f.

To prove 2.3, we show in 2.4 that for a given Ce2f we can
split M into two pieces that join along simple closed curves such
that the intersection of C with each piece is an ANR. Each of the
pieces of M embeds in S2. In 2.5, we use the fact that the result
is known for S2 to construct a sequence of polyhedra whose intersec-
tion is C satisfying the hypotheses of 1.1.

LEMMA 2.4. Let q be a positive integer. Assume M is orientable
with genus q or nonorientable with genus 2q. Let Ce2f. Then
there are compact subsurfaces Xλ and X2 of M and simple closed
curves cc19 , aq+1 in M such that:
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(a) M=XxUXt.
(b) The an are pairwise disjoint.
(c) BdX1 = BdX2 = X1Γ\X2 = \JV=\o:n.
(d) Xx and X2 both are homeomorphic to a sphere with q + 1

disjoint open disks removed.
(e) U S &«\C has finitely many components.

Proof. It is an easy consequence of the standard way to repre-
sent a surface that there are subsurfaces X[ and X[ of M and simple
closed curves a[, , a'q+1 in M satisfying (a) through (d). It follows
that for each n there is a two-sided collar Nn of a'n in M such that
the Nn are pair wise disjoint. For any n such that a'n\C has finitely
many components, set an = a'n. Thus we suppose ar is any of the
a'n such that a'n\C has infinitely many components. We write N = Nn.
Clearly we may write a'\C = Uϊ=i %*> where the 7m are distinct
components of a'\C and each τ m is an arc whose endpoints αm and
6m lie in C.

Let ^ — lim sup {τm}m=i, i.e., Z is the set of all xea' such that
every neighborhood of x meets infinitely many ϊm. Then Z is closed
(see [13], p. 10). Thus Z is a compact subset of a!. It is easily
seen that ZaC.

Let w0, i^, and w2 be distinct points of yx such that w0 lies in

the arc wtw2 of τx from wx to w2. Let /0: (/, 0, 1)
^u w2) be a homeomorphism. Since N is an annulus,

(1) there is a disk BczN such that iV\J3 is homeomorphic to
I x (0,1), w0 e (N\B) Π t f c W\B f)a'(Z yl9 and Z U /0(I) c Int B. Since
ANR's are locally arc wise connected, (1) implies that for each z e Z
there is a neighborhood U of z contained in Int B such that U f] C
is arcwise connected. Since Z is compact,

(2 ) there are open sets Ulf , Up such that ^ c ULi Uka Int I?
and each Uk Γ) C is arcwise connected.

It is easily seen that for almost all m there is a & such that
7 m c I/*. We assume ylf , γmo are those ym that fail to lie in any
Uk. Define Γo = φ, and for fc e {0, 1, , p - 1} define

3=0

Define Γp+1 = {ϊlf , τmo}. For each j let Γ'ό = {τw | ϊm e Γά}. Clearly
Γo, Γί9 , r p + 1 partition {τm}ϊ=i- Let the endpoints am and bm of
7m satisfy /jrι(αJ < fό\bm). For m > 1, ϊm = fo([fό\am), fό\bm)]).

We begin an induction argument by observing that for fc^Owe
have a map fk: (/, 0, 1) —> (Int 5, wί9 w2) such that:

( 3 ) If t e I and fk(t) g C then fk(t) = fo(t).
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( 4 ) fk(I)\C is a union of members of Ujίϊ+i Γ].
Suppose for some k < p, fk: (I, 0,1) —> (Int 2?, w1? w2) is a map satis-

fying (3) and (4). If fk(I)\C meets no member of Γ'k+ι we define
fk+ι = fk; then (3) and (4) are satisfied when k is replaced by k + 1.
Otherwise we define ck — inf {t e I\fk(t) belongs to a member of Γ'k+1},
and dk = sup {ί e I\fk(t) belongs to a member of Γ'k+1}. By (4) and
our choice of {w19 w2}, 0 < ck < dk < 1. By (3) and (4), each of /*(<?*) =
fo(ck) and fk{dk) — fo(dk) must be an endpoint of some τ m 6 /YK or a
member of Z. It follows that {fk(ck)9 fk{dk)} c Uk+1 Π C.

If {/fc(cjb), Λ(dfc)} c C/fc+1 then (2) implies there is an arc 7f

k in
C7*+i Π C from /4(c4) to Λ(d,).

If, say, fk(ck) ί Uk+1 then there must be infinitely many members
of Γk+1 that meet /*(/), for otherwise (4) implies fk(ck) is an endpoint
am of some 7m 6 Γk+1 and thus /*.(<?*) e Uk+19 contrary to assumption.
Thus fk(fik) 6 Z{\ Ukι for some ht. There is a sequence {amr} of endpoints
of members 7 ^ of Γfc+1 such that fkof^(χ^) <£C and amr-^fk(ck). Hence
there is an r such that αm r e Ukι. By (2) there are arcs 7' in ί7 t l Π C
from /Λ(cΛ) to αW r and 7" in £ 7 ^ Π C from αm r to fk{dk). There is an
arc j k c 7' U 7" c C Π Int J5 from /*(<?*) to Λ(ώfc).

The other cases are treated as above. So in any case, C Π Int B
contains an arc Yk from fk{ck) to fk(dk). Let / fc+1: (7, 0,1)-*(Int B, w19 w2)
be determined by: fk+ι\[ck9 dk] is a homeomorphism of ([cA, cίj, ck9 dk)
onto (7i, Λ(cfc), fk(dk)); and / fc+ι(ί) - Λ(ί) for t e I\[ck, dk]. Clearly Λ+ 1

is continuous. The construction shows (3) and (4) are satisfied when
k is replaced by k + 1.

With the induction completed, we have by (4) a map fp: (I, 0, 1) ~>
(Int B, w19 w2) such that fp(I)\C is a union of members of the finite
set Γ'p+1. Now fp(I) contains an arc β from wx to w2. Let 7m be a
component of fp(I)\C. Apply 1.8, with Γ - ikf, L = / P ( I ) , i? =
M\(C U {̂ 1, w2}), 7 = 7m: We have 7m c /S or 7W Π /8 = φ. Therefore
β\C has finitely many components, and a = /9 U ̂ ^ is a simple closed
curve such that a\C has finitely many components.

Let h: Int J5—>i?2 be a homeomorphism. Let Λ/: (I, 0, l )-^(^, wx, w2)
be a homeomorphism. Let g: ([ —1, 1], 0, { — 1,1}) —• (α', wlf {̂ 2}) be a
relative homeomorphism such that g(I) c Int β. Define H: a' x I —>
Int JV by

( λ - ^ l ^ λ ^ + ί Λ A ^ ) ] if O ^

Clearly ί ί is well-defined and continuous, Ho — Idα.,, and Hx is a
homeomorphism of α' onto a. It follows from ([7], 2.1, p. 87) that
there is a homeomorphism T: N^ N such that T(α') = α: and T(x) = x
for all xeBάN.
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By applying this construction to each of the curves a'n, we
easily obtain a homeomorphism P: M-* M taking X[, X'2, a[, , a'q+ι

onto sets satisfying (a) through (e).

Theorem 2.3 follows from 1.1 and the following:

THEOREM 2.5. Let Ce2f be a proper subset of M. Then there
is a sequence {An}^t in 2f such that for all n:

(a) Each component of An is a polyhedral bounded surface.
(b) C c An+ι c Int An.
Also there is a sequence 0 = tx < t2 < t5 < with lim tn = 1

and a map h: Aλ x I—^A1 such that:
(c) h is a strong deformation retraction of Ax onto C.
(d) For each n, h\Anx [tn, tn+1] is a strong deformation retraction

of An onto A•n+l

Proof. We remark that the proof is long, so some of the
technical details have been omitted. A more complete proof is in
[5].

It is easy to see that there is no loss of generality in assuming
C is connected. By sewing a Moebius band onto the boundary of a
disk cut out of M\C if necessary, we can also assume that M is
nonorientable of even genus, or orientable. In view of ([1], 3.2, 3.3,
and 3.5, pp. 36-39) we assume M Φ S\

For a given connected C e 2f with C Φ M, let aly , aq+ί9

N19 , Nq+U Xlf X2 be as in 2.4 and its proof. It follows from 2.4(e)
and ([4], 2.12, p. 102) that X, = X, f] C and X2 = X2f]C are ANR's.
We may assume X^ Φ φ. For k — 1, 2, Xk U \J)t\ N5 is homeomorphic
to Xk, which is embeddable in S2. If X 2 c l n t ((JJίί Ns) then C c
Int {Xx U UJίί Ns), in which case we are done, by [1]. Thus we assume

(1) £ £ l n t ( U J S t f y ) .
Let Γ be the set of components 7 of U?ίί aA^ s u c ^ t^at 7 c aά

implies 7 Φ aά. From 2.4(e), Γ is a finite set. We argue by induction
on the number of members of Γ.

If Γ = φ then for each j e {1, 2, , g + 1} either â  c C or ay c
M\C. Since C is connected and Xγ Φ φ, if no as lies in C we have
C — Xίf contrary to (1). We assume

( 2 ) Ui=i aό c C f° r some ί? with 1 ^ p ^ q + 1, and if p < g + 1
then UjiJ+i α^c Af\a

Neither Xx nor X2 need be connected; nevertheless, the theorems
of [1] cited above (and their proofs) imply there are sequences
{BkX=ι (k = 1, 2) such that for all n:

(3) Each component of Bt is a polyhedral surface.
( 4 ) Xk c JB*+1 c Int Bid Bk

nd Int (X& U Uyϋ -Ny) A l s o there are
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maps hk: Bk x I-+BΪ and a sequence 0 = t 1 < ί ί < t 8 < * such that
lim tn — 1,

(5) hk is a strong deformation retraction of Bk onto Xh9 and
for each n:

(6) hkIBt x [tn, tn+1] is a strong deformation retraction of B\
onto S£+1.

(7) A*|(BdS*) x [ίΛ, ίΛ+1] is an isotopy of BdJ5* onto BdS*+1.
(8) If y e Bd Bt and x e h\{y) x [ίΛ, ί.+J), then /**({*;} x [ί., tn+1]) c

A*({»} x [«., * +J) and Λ*(a, ί) - h\y, t) for ί 6 [tn+1,1].
( 9) For all α 6 Bd £*, fefe({x} x I) is an arc and h\{x} x [0,1)) is

a (noncompact) polyhedron.
(10) If D is a component of Bk\Xk and £ is a component of

Bd-D such that EcXk, then there is a boundary curve β of I?£ such
that β c D and hi(β) = E.

From (2) and (4) we may assume for all n and for k = 1,2,
(11) \JU <*i c Int Bt and ^ n USϋ+i «y = ί
For all w, let An = (Bi n XJ U (BJ Π X,). We define a map h on

Λx x / by

fΛ̂ α?, *) if xeBlΓίXr,
[X' } \h\x,t) if xeB!f]X2.

lΐxe (Bl n X,) ΓΊ (5? n X2) = U?=i «i = -XΊ Π X then (5) implies #(&, t) =
x = fe2(α;, £) for all ί e J. Therefore h is well-defined and continuous.
It is easily seen that

(12) if xeBίnXu then h(x, t) e Bk Π Xk. It follows that
h(Aλ x I) = Aλ.

By (11), if β is a boundary curve of Bk then β c l n t ί or βd
Int X2. The union of those boundary curves of Bk that lie in Int Xk

is (Bd An) fΊ Xh It follows that An is a polyhedral bounded surface.
For all n,Ca An+1 = (5i+ ι n 2ΓJ U (J5i+ι n X.) c [(Int Si) n XJ U

[(Int Si) Π X2] = Int (Bl Π XJ U U?=i «y U Int (Si Π -X.) - Int Aw.
It is clear that hQ = Id4 l and Λt|C = Idc for all t e I. Also WA) =

ftϊ(Bi Π -XΌ U hl(Bf n X2) = (by (5) and (12))XX U I 2 = C. Thus h is a
strong deformation retraction of Aγ onto C

For all w, we see by (6) and (12) that h\A% x [£„, ίu+1] is a strong
deformation retraction of An onto -AΛ+1.

By (12), analogues of (7) through (9) hold when we replace
(Xh, {B*}ϊ=ί9 hk) w i th (C, {An}~=i, h).

If D is a component of AΛ\C then by (11) D is a component of
SiVXib for some k. Then (10) and the construction imply (C, {An}n=1, h)
satisfies the analogue of (10). This concludes our discussion of the
case Γ = φ.

Suppose the theorem is true whenever Γ has less than r members
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(r > 0). Now let Γ have r distinct members, yίf , τ r . Topologically
7 r is an open interval in some ad, say 7 r c α l β Let {zlt z2) be the
endpoints of 7r(zt = 22 if 7 r = α j . Let C = C U 7 r. Clearly C" is a
connected ANR, and Γ' = {7X, •••, 7r_J is the set of all components
y of Uliί^ΛC" s u c ^ that 7 c α ^ implies 7 =£ α,. The inductive hypo-
thesis gives a sequence {i?%}~=1c2f such that for all n:

(13) J5% is a polyhedral bounded surface.
(14) CdB%+ldIntBn.

Also there is a map ψ: B1 x J —> ^ and a sequence 0 = ̂  < ί2 < £s < •
such that lim ίΛ = 1,

(15) <f is a strong deformation retraction of S x onto C, and for
all n:

(16) ^/5 W x [tn, tn+ί] is a strong deformation retraction of Bn onto
Bn+1.

(17) α /̂(Bd JSW) x [tn, tn+1] is an isotopy of Bd Bn onto Bd Bn+1.
(18) If »6BdJB.anda?6ψ<{i/}x[ί l l,t.+ 1]) then t ( W x [« , * + J) c

f (ίl/} x [ί , <»+J) and ψ(x, t) = φ(y, t) for t e [tn+ι, 1].
(19) For all x e Bd £„, φ({x} x /) is an arc and ψ({x} x [0, 1)) is

a (noncompact) polyhedron.
(20) If D is a component of Bn\C and J? is a component of

BάD such that EcC, then there is a boundary curve β of i?u such
that β a D and f^β) = E.

For all n we define εΛ = sup {diam ir({x} x I)/x e Bn}. By compact-
ness, εn is finite, and we easily see

(21) lim εn = 0.
Let D be a component of BAC such that % lies in a boundary

component £7 of D. From (20) there is a boundary curve /S of Bt

such that βdD and 7rC'f1(/3) It can be shown that:
(22) /S contains a continuum β' such that ^(/S') = yr. If /S' is

an arc whose endpoints are e1 and e2 then ^({e^ e2}) = {̂ , 2;2} and

ti(/3'\fe, β2}) = 7 r .
Further, we show:

(23) If U is an open set contained in D such that E Π Bdί7 Φ φ,

then U Π <>K/3 x /) Φ Φ-
For U meets a component Un of Bn\Bn+1 for some w. By (14), (16),
and 1.5, Un is an annulus. From (16), (17), (18), and 1.9, Un =
ψ(β x [tnf ίΛ+1]), and (23) follows.

Let y0 6 7 r . By (23) there are continua Pk(k = 1, 2) such that
/3' = Pk satisfies (22) and Pk Π (Int Xk) Π B(l/o, εx) ̂  ^. It can be shown
that P, n P 2 = ̂ . By (17), for all w,

(24) ψ(P, x {tn}) ΓΊ f (P2 x {U) = ί*.
It can be shown that not both of P1 and P2 are simple closed

curves. Hence we assume P1 is an arc. Then P2 is an arc or a
simple closed curve.
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By (22) we may assume the endpoints a\ and b\ of P x satisfy
ψx(α0 = zl9 ψίφl) — z2. If P 2 is an arc then we may assume its
endpoints a\ and δ2 satisfy ψ^al) — z19 Ψi(bf) = z2. If P 2 is a simple
closed curve then zx = 22, and by analogy with the above we choose

α1

2 = δf6P2ΠfΓ1(ί8i).
By (19), )?& = f ({αf} x /) and ξk = ψ({bΐ} x I) are arcs. By (17)

and (18) we have
(25) y]l\{zy}9 ?f\{zj, ξι\{z2) (and £2\{z2} if f2 ^ y2) are pairwise disjoint.
Let pk e Pfc Π ψϊ\yo), k = 1,2. Let Pi be the arc of PL from α[

to px. Let P,1 be the arc of P x from px to δj. If α2 Φ δ2, let Pα

2 and
PI be the arcs of P 2 from at to p2 and from p2 to δ2, respectively.
If at = δ2 then sx = 22. Then let PI be the arc of p2 from α2 to p2

contained in P 2 Π Ψϊ\ψι{PD) and let P6

2 be the other arc of P 2 from
α2 to p2.

Clearly 2\ - U L , [)?fcU P^ U f({pk} x /)] and Γ2 - U L i [ίfc U Pf U
ΨίίPt} x -ί)] a r e simple closed curves that are deformed by ψ into
proper subsets of α1# By 1.6, 2\ and Γ2 bound disks Jkζ and Λf2
respectively in jBlβ Clearly Mfc = ψ(Tk x I ) .

There is an arc X[ in Λζ Π B(zίf ε j from α} to α2 such that {α}, at} =
λj Π Bd Λζ. Then λj c ^ Π J5(^, εx) and X[ n Bd ^ = {αϊ, α?}. By (19),
M\{zl9 yQ} is a (noncompact) polyhedron, so by 1.7 there is an ambient
isotopy of Mγ that is fixed on (Mt\B(z19 εj) U Bd M1 and that carries
\[ onto a polyhedral arc λx. Similarly, there is a polyhedral arc /^
in M2 Π 5(^2, ε j from b\ to δί such that {δj, δx

2} = ftΠBd Bt.
For all n, let α^ = ψ(aϊ, tj e Bd S,, and let bt = ^(6f, *J 6 Bd 5 % .

Let ηl - )7fe, ίo

fe = ξ\ ηl - t({«^} x [ί +i, 1]) (the arc of ?̂fc from α*+1 to

«i), fi = τK(Wί x [ί«+i» 1]) ( t h e a r c o f ί" f r o m &ί+i t o ^ ) . Note that
we have begun an induction argument by showing that for n = 1,
the following statements (26) through (29) are valid:

(26) There are polyhedral arcs Xn c Mx Π Bn Π J5(^, eΛ) from α^
to α2,, ̂  c M2 Π B% (Ί B(zi9 en) from δ^ to bl such that:

(27) {αi, α2} - λ% n Bd Bn = λ# Π Bd Λflβ

{δ̂ , 6i} = j« Π Bd JBΛ = j«% n Bd M2 .

(28) λw n (yi uyl) = Φ = μnr\ (ξi u f2,).
(For n = 1, (27) and (28) follow from observing which points are left
fixed by the ambient isotopies.)

(29) Xn Π λy = ^ = jM» Π ̂  for i < n.
Suppose m > 0 and (26) through (29) are valid for n = 1, , m.

The inductive step is done as above, with obvious modifications.
For example, to obtain λw+1 satisfying (26) through (29), we work
in the disk bounded not by T19 but by the simple closed curve
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where umvm is the arc of λm whose endpoints um and vm satisfy

um 6 f{P1 x {tJi)f vm eψ(P2 x {tm}), umvm\{um, vm) c Int Bm+1; umaι

m+ι is

the arc of ψ{Pι x {tm+1}) from um to αi,+ι; and vmαϊ,+i is the arc of

Λζ. Π ψ(P2 x {ίm+i}) from vm to αi + 1 . Thus (26) through (29) hold for

all n.
Since \n c Mu μn c AT,, and (BdΛfJ Π (BdM 2)\f ({plf p2} x /) =

)f n ξ\ (25) and (27) imply

(φ it n Φ j , or if w = i and rf Φ f2

( 3 0 ) ^ H w - t H if . . y and , _ P !

For k = 1, 2, let Qfc be the boundary curve of JBX containing P fc.
Let Ql - ^(Qfc x {«.}), PI = f (Pfe x {«.}). Let JS. = [(Q? U Qΐ)\{Pΐ U P?)] U
λ U t*n. Clearly En is a polyhedron, and J5/Λ d Ej = φ for w ̂  i . If
Q1Φ Q2, then (17), (24), (27), and (30) imply En is a simple closed curve.
(Note (30) implies if XnΠμn = {a2

n} then Qί=P?, so En = {Qΐ\Pΐ) U λ# U ^ . )
Similarly, if Qj = Q2 then either .#„ is a simple closed curve for all
n or En is a disjoint union of two simple closed curves for all n.

For all n, let Jn(Z.Mί be the disk bounded by yί-iU#UiUλ n and
let J i c M2 be the disk bounded by &_! U ίi-i U ̂ ». Define A% =
[B.VΛfi U M2)] U Λ U J i . To complete the proof, we must show (13)
through (20) are satisfied when ({An}n=1, C) replaces ({Bn}^=l9 C) and
an appropriate map h replaces ψ.

We have

Bd An - En U [(Bd Bn)\(Q: U Q?)] and J&W n [(Bd BJ\(QΓ U QJ)] = ^ .

Therefore A% is a polyhedral bounded surface. The analogue of (13)
is satisfied.

Since En Γ) Ej = φ for n Φ j , (Bd An) Π (Bd Aά) = ^. Clearly ^ 6
Jn+1a.Jn and z 2e J i + 1 c J^. It follows that Cc An+1a Int An. The
analogue of (14) is satisfied.

It is easily seen that there are maps h'ι J^ x J—> Jx and /^": JJ x
I-> j ; such that for all a; 6 571 U )72, y e ί1 U ί2, t e /,

(31) jt'(α;, i) = ^(a?, ί); Λ"(y, ί) = t(2/> *); and such that h' and ft"
satisfy analogues of (15) through (19):

(15') ft' is a strong deformation retraction of Jλ onto {2J, and
for all n:

(16') ft'|Λ x [ί», tn+i] is a strong deformation retraction of Jn onto

(17') ft'|λw x [ίw, ίw+i] is an isotopy of Xn onto λΛ+1.
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(18') If x e h\{y) x [tn, tn+1]) for y e Xn, then h\{x) x [tuf ίn + j) c h\{y) x
[t»f <»+J) and h'(x, t) = Λ'(y, ί) for ί 6 [tn+ί9 1].

(19') For all xeXn, h'({x) x J) is an arc and h'({x) x [0,1)) is a
(noncompact) polyhedron.

Similar versions of (15') through (19') hold upon replacing
(h'f {Jn}n=it %ι, {λ»»}?=i) b y (h"t {J'n}n=i, zZ9 {μn}n=1).

Define a map h on Aλ x I by

&'(&, ί) if sc 6 JΊ

&"(&, t) if cc e Jί

\r(x, t) otherwise .

By (31), h is well-defined and continuous. From (17) and (18),
(32) if x 6 Bn\{M1 U M2) then ψ({x} x /) c Bn\{Mι U Af2\ί«i, «2})
By (15), (15'), and (32), h{Aι x I) = A,. Clearly h(x, t) = x for

all (x9 t)eC x I, and h^Aj) = C Thus Λ satisfies the analogue of (15).
For all n:
By (16), (16'), and (32), h satisfies the analogue of (16).
By (17), (17'), and (32), h satisfies the analogue of (17).
By (18) and (18'), h satisfies the analogue of (18).
By (19) and (19'), h satisfies the analogue of (19).
By (20) and our construction of En, h satisfies the analogue of

(20). The proof of Theorem 2.5 is completed.

3* Arcs* Let X be a finite-dimensional compactum and let
{Co, CJ c 2f. Under what circumstances is there an arc in 2f from
Co to Cx? In [1], it was found that a necessary but insufficient
condition is that Co and Cλ have the same homotopy type; and a
sufficient but unnecessary condition is that Co and Cx be isotopic in
X. For X = M9 we obtain a condition that is both necessary and
sufficient:

THEOREM 3.1. Let {Co, C1}c2?\{Λf}. By 2.5, there exist Ajβ
2f(j = 0, 1) such that each component of A3 is a bounded surface,
Cj c Int A3 > and C3 is a strong deformation retract of A3 . Then
there is an arc in 2f from Co to Cx if and only if there is an ambient
isotopy of M taking Ao onto Aγ.

First we prove:

LEMMA 3.2. Suppose Ce2f\{M}, and let {An}n=1, {t»}ΪU, and h be
as in 2.5, Then there is an arc ό>/ in 2f from A1 to C containing
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each An such that if Ae *S^f\{C}f each component of A is a bounded
surface.

Proof. Recall the notation in the statement of Theorem 2.5.
In the proof of 2.5, we saw:

( 1 ) h\(BdAn) x [tn, tn+ί] is an isotopy of BdAn onto BdA^+1.
It follows from (16) and (18) of the proof of 2.5 that
(2 ) if x e Bd An then h({x} x [tn, tn+1]) = yx is an arc such that

7x\{x, h(x, tn+1)} c (Int An)\An+1.
If εn = sup {diam h({x} x I)\xe An), then limε^ = 0, and by 1.1,

An —> C, so it follows that there is a sequence of positive numbers
Ph

δn such that
( 3 ) lim δn = 0, and for all n, s(An, 6εn, δn).

Let P be a component of An\An+1. By 2.5(a), 2.5(b), 2.5(d), and
1.5, P is an annulus. Let the boundary curves of P be α w c Bd An

and an+1 c Bd An+ί. There is a set E = {#0, a?lf , α^-J c αΛ of k
distinct points numbered according to an orientation of an (let xk = cc0)
such that if β3 is the arc of an from αjy.̂  to x3 containing no other
member of E, then diam β3 < sn. For each j , let y i = fe(%, tn+1).
By (2), 7, — h({Xj} x [ί%, ίw+1]) is an arc from xd to yά such that
7i\{cc/,!/,-} c Int P By (1), the ys are pairwise disjoint for je
{0, 1, , k - 1}(7* = 70) and (also by (l))ζ, = h(β3- x {̂ +1}) is an arc
of an+1 from yά-ι to τ/, not containing ym if j / w ί {ys _l9 yά). Clearly
diam yj ^ en.

Let {?/, ̂ /;} c ζ y. There exist a;, x' e βs such that y = h(x, tn+ι)
and y' = h(x'9 tn+1). Then p(y, y') <, p(y, x) + p(x, x') + /o(o?', y') ^ ε. +
diam βy + en < 3sn. Therefore diam ζy < 3εw.

Let Sy be the simple closed curve in P defined by S3- — 7y_i U
βj U 7y U ζy. Then diam S3 ̂  diam 7y_x + diam /3y + diam 7y + diam ζy <
ε» + sΛ + en 4- 3ε% = 6εw. By (3) and 1.6, Sy bounds a disk iΓ, c An

such that
( 4) diam Kά < δΛ.

Indeed Kά c P, for if K'3- is the disk in P bounded by Sy and K3 Φ K3,
then K3 n i^ί = Sy and K3 U i^ί is a 2-sphere in An, which is impossible.

It is easily seen that there is a map F: P x I -> P that is a
strongly contracting strong deformation retraction and a pseudoisotopy
of P to an+1 such that jP(Zy x I) c 2£y for all j . From (4) we have

( 5 ) Ft is a <Vembedding f ° r 0 ^ ί < 1.
Apply the above construction to each component of An\An+1. In

the above, Ft\an+ι = Id«n+1 for all tel, so we may extend each Ft

via the identity to obtain a map Fn: An x / —> An that is a strongly
contracting strong deformation retraction and a pseudoisotopy of
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An onto An+1 moving no point by as much as δn. Let an: I-^2iΓ be
defined by an(t) = Fn(An x {£}). By 1.3, an is continuous for 0 <; t < 1.
By 1.1, an is continuous for t = 1.

Let L:/-^2f be defined by

]
 if ' S 1 S' « ;

(c if ί = 1 .

Since αΛ(l) = A%+1 = αw+1(0), L is well-defined; and L is continuous for
0 ^ ί < 1. From (3), (5), and 1.2, L is continuous for t = 1. Since
L(0) = Ax and L(l) = C, L(I) contains an arc in 2f from Ax to C
The second conclusion of the lemma follows from the fact that for
all n, Fn is a pseudoisotopy of A% onto An+1.

We show the existence of a basis with useful properties.

LEMMA 3.3. Let Ce2ϊ\{M} and let ε > 0. By 1.1 and 2.5, there
exists A such that ph(A, C) < ε, each component of A is a bounded
surface, CalntA, and C is a strong deformation retract of A.
There is a neighborhood ̂  of C in 2f such that J e ^ implies
ph(X, C) < ε, X c l n t A, and X is a strong deformation retract of
A. Further, if each component of I e ^ is a bounded surface, then
there is an ambient isotopy of M that carries A onto X.

Proof. We may assume A is a polyhedron, and that ε is so small
that two maps fo,f:C->A such that p(fo,fι) < e are homotopic in
A. Recall [C]M = {Xe2*\X and C have the same homotopy type}
is open. From 2.1 it follows that

^ - [C]M n {Xe2ϊ|XcInt A} n {Xe2ϊ\pk(X, C) < ε}

is an open set in 2f containing C.
We may assume C and A are connected (otherwise we apply the

following by components). Let J e ^ . There is an ε-map g: C —>X.
Let i: C —> A, j: X —• A be inclusion maps. By choice of ε, i* = j*°g*:
Πfi —> ΠιA. By choice of A, i* is an isomorphism. Therefore
j^'.Π^X-^ IIXA is a surjective homomorphism. But {X, A} c[C]M, so
/Z X and U^A are isomorphic. Since A is a bounded surface, ΊJ^A
is a finitely generated free group. Therefore j\ is an isomorphism
(see [10], p. 59).

Recall the definition of AX given in §1. Since X and A have
the same homotopy type, ΔX — AA. But ΔA ^ 1, since if A is a
disk it has the homotopy of a point, while otherwise A has the
homotopy type of a wedge of finitely many simple closed curves.
With N = AA ^ 1, we apply Whitehead's theorem ([12], 1, p. 1133)
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and conclude j:X-+A is a homotopy equivalence.
By 1.1 and 2.5 there is a polyhedral bounded surface ΰ e ^ such

that X c Int B and X is a strong deformation retract of B. Applying
the above to B, we conclude the inclusion of B into A is a homotopy
equivalence. Hence B is a strong deformation retract of A (see [6],
3.2, p. 6). Thus X is a strong deformation retract of A.

If I e ^ is a bounded surface, then by 1.5 each component of
A\X is an annulus. Let S be a component of Bd A. Let A' be the
component of A\X containing S. Let S' be the component of Bd A'
that lies in X. There are annuli Aί and A2 that collar S in M\A
and S' in X respectively. Then A" = AL U A' U A2 is an annulus.
There is an isotopy h: A" x I -» A" of A" onto itself such that
h^A' U A2) = A2, h^Aj) = A! U Ax, and Λ,(z, £) = 2 for all (z, t) e (BdA") x /.

Apply this construction to each component of A\X and extend via
the identity on M\(A\X) to get an ambient isotopy of M that carries
A onto X.

Proof of Theorem 3.1. Suppose there is an ambient isotopy of
M taking Ao onto Alβ By 1.3, there is an arc in 2* from Ao to At.
By 3.2, there are arcs in 2f from Ao to Co and from Ax to Cx. Hence
there is an arc in 2f from Co to Cx.

Conversely, suppose there is an embedding p:I—>2f such that
p(0) = Co and p(l) = Ct. Since p(J) is compact, 3.3 implies that there
exist 0 <L t0 < tγ < < tm <; 1; Aί% e 2f such that each component of
At% is a bounded surface; and neighborhoods <%fn of p(tn) in 2f such
that if X e ^ Λ and each component of X is a bounded surface then
there is an ambient isotopy of M taking Atn onto X9 and such that
^ Π ̂ n+i =£ ̂  and #(/) c UΓ=o ̂ n Further, 3.3 enables us to assume
that Ao = AtQ and At = A<m.

By 1.1 and 2.5, for each n <m there exists Bn e ^» Π ̂ »+ 1 such
that each component of Bn is a bounded surface. There are ambient
isotopies of M taking Atn and Atn+ί onto Bn. Therefore there is an
ambient isotopy of M taking Atn onto Atn+ί. Hence there is an
ambient isotopy of M taking Ao = Aίo onto Atm = At.

4. Global properties* The spaces D(N) and L(N) of deformation
retracts (respectively, compact AR subsets) of a compact 2-manifold
JV were studied by Wagner in [11]. The topologies of these spaces
may be described thus: An —-> C(An —-* C) if and only if there

D(N) L(N)
are maps ro:N->N, rn:N->N that are deformation retractions
(that are retractions) of N onto C and An respectively such that
rn -> r0 uniformly on N. We show these spaces are closely related
to 2f.
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We will need the following lemma. In both its statement and
its proof, it is similar to ([2], 3.1, pp. 212-213).

LEMMA 4.1. // Ce2f\{M}, C is connected, and ε > 0, there is
a δ > 0 and a neighborhood ̂  of C in 2f such that if {A, B) c ^ ,
ΰ c i , and A is a bounded surface, then every pair of points in
Bd A that can be joined by a δ-arc in M\B can be joined by an ε-
arc in Bd A.

Proof. By 3.3, there is a neighborhood ^ i of C in 2f and a
bounded surface NaM such that for all I e ^ we have XcInt N
and X is a strong deformation retract of N.

Since M is an ANR, there exists η > 0 such that s(M, rj> ε/4).
Also there is a d > 0 such that:

(1) If N has more than one boundary curve then

3 < min {p(S, T) \ S and T are distinct boundary curves of N] .

(2) δ < 1/2 min {η, ε}.
( 3 ) There is a neighborhood ^ 2 of C in 2f such that if X e ^

then s{Xf δf τj/2).
Let^3 = {Xe2ΐ\ph(X,C)<δ/2}. Let <& = ^ n ^ 2 Π ̂ 8 . Clearly

^ is a neighborhood of C in 2f.
Suppose {A, B} c ^ such that S c i and A is a bounded surface.

From 1.4 (with R = B) it follows that B separates each pair of
boundary curves of JV in N. Since each component of N\A is an
annulus, it follows that

( 4 ) B separates each pair of distinct boundary curves of A in A.
Let p and q be distinct points of BdA such that there is a

δ-arc β from p to q in M\B.
Suppose β meets distinct boundary curves Tx and T2 of A. It

follows from (4) that β must contain a δ-arc β' from p' e 2\ to q' e T2

such that /3'nA = {j/, «'}. For w = 1, 2, let !?„ be the annular
component of N\A containing Tn and let T'n be the component of
Bd JV that is contained in Bn. By 1.4, T[ Φ T[. By (4) and 1.4, there
are distinct components B'n of N\B such that Int BncB'n. Then
TndBn(ZWny so we must have β' Π BdB'n Φ φ. Since B d K c Γ l U
Bd J5 and /3' n Bd B a β' Π B = ^, we have / 3 ' n Γ ^ ί for w = 1, 2.
The latter contradicts (1). We conclude that β Π Bd A is contained
in a single component J of Bd A.

By Ns(β) we will mean the set of all points in M whose
distance from β is less than s. Since diam β < δ, there is an s > 0
such that diam N8(β) < δ. By the proof of 2.4, we may assume
β D J has finitely many components. If 7 is a component of /3 (Ί J
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that is not a single point, then 7 is an arc with endpoints 6, c. There
is an arc YdNs(β)\B from 6 to c such that 7' Π J = {δ, c}. If
%> # >̂ m are the components of β Π J that are arcs, then βλ =
(β\\Jn=x 7») U U™=i 7» meets J in but finitely many points and (by
choice of s) contains a δ-arc β2 from p to q. Thus (by replacing β
by /32 if necessary) we may assume β (Ί J is a finite set.

Suppose /S Π «/ = {p, q} We consider two cases:
( I ) Suppose β\{p, q} c Λf \ii. Since diam β <δ, (3) implies there

is an )?/2-arc f in A from p to g. We assume ξ\{p, q) c Int A. Then
if = β u j is a simple closed curve and diam K <δ + η/2 <η (by (2)).
By 1.6 and our choice of rj, K bounds a disk LdM with diam L < ε/4.

Let x 6 /5\{p, <?}, y e ξ\{p, q}. For any fixed r > 0, JB(α, r) Π (M\A) ^
φΦB{y, r)Πlnt A. Suppose L fails to contain an arc of J from p to
q. Our choices of /3 and ξ imply J Π K = J n Bd L = {p, g}, so the as-
sumption implies JπL = {̂>, Q'}. Thus ^ = Jf]IntL — (Bd A)ΠIntL.
Since ^ Φ B(y, r) Π Int A meets Int L Π Int A and ς5 ̂  B(x, r) Π (-M\A)
meets Int L Π (M\A), it follows that Int L = (Int L n Int A) U
(Int L Π (M\A)) is disconnected. This is impossible, so L contains
an arc of J from p to q that lies in Nε/4(β) (since β c L and
diamL < ε/4).

(II) Suppose β\{p, q) c Int A. Then A = Ax U A2, where Ax is
a bounded surface containing B, A2 is (by (4) and the fact that
β c M\B) a bounded surface whose boundary is the union of β and
an arc of / from p to q, and A1 Π A2 = /S. By choice of ^ 3 , there
is a δ-map / : A-+B. If « 6 A2 then f(z) eB(zA19 so by (3) there is
an )?/2-are ζ c A from 2 to f(z). Clearly ζ meets /9. Hence A 2 c
Nvj2(β). In particular, the arc of J from p to g that lies in Bd A2

must lie in Nηj2(β).
Our choice of η implies ηβ < ε/4. In both (I) and (II), J contains

an arc from p to q that lies in Nε}4(β).
More generally, if β Π J = {p — pγ, - , Pk = Q} where the pn are

numbered in order from p to q along β, then each subarc pnpn+1 of
β satisfies the condition of (I) or (II). For each n<.k there is an arc
ζn of J from pn to pn+ί in Nφ(β). There is an arc ζ o c U£=ί ζ w c JV6/4(/9)
of J from ί? to q. Observe diam ζ0 <; diam Nε/4(β) ^ ε/2 + diam /S <
ε/2 + 8 < ε (by (2)).

We now strengthen 3.3.

LEMMA 4.2. Let Ce2f\[M}, ε > 0. Then there exist Ne2% and
a neighborhood ̂  of C in 2f such that each component of N is a
bounded surface and such that for all Xe *%S, ph(X, C ) < s , I c Int N,
and there is a strong deformation retraction h: N x I—> N of N onto
X such that for each tel, ht is an ε-map.
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Proof. It follows from ([2], 2.1, p. 210) that there is no loss
of generality in assuming C is connected.

There is a neighborhood ^ of C in 2f and a δ > 0 such that
(1) if X e ̂ i then s(X, δ, ε/2).
There are positive numbers δt and δ2 such that
(2) 17 δί + δ2 < δ

and (by 4.1) such that
(3) there is a neighborhood ^ 2 of C in 2f such that if

{X, Y) c ^ 2 , I c Γ , and 7 is a bounded surface, then each pair of
points in BdY joined by a 7δΓarc in M\X can be joined by a £2-arc
in Bd Γ.

Clearly
(4) there is a neighborhood ^ 3 of C in 2f and a <53 > 0 such

that if I e ^ 3 then s(X, δ3, δx).
Let ^ = {X e 2f | ft(X, C) < (l/2)<53}. By 3.3 there exist a bounded

surface Nef\4

n=1^n and a neighborhood ^ of C in 2f such that
I e ^ 5 implies X c I n t AT and X is a strong deformation retract of N.

Let ^ = Π^=i ̂ » . Clearly ^ is a neighborhood of C in 2f.
Fix I e ^ . By 1.1 and 2.5 there is a bounded surface ΰ e ^ such that
X c l n t i ? and there is a strong deformation retraction g:B x I->B
of I? onto X such that gt is an ε/2-map for all t e I. Thus it suffices to
show the existence of a strong deformation retraction H:NxI-+N
of N onto B such that i ^ is an ε/2-map for all t e I.

By choice of ^ 4 we have ph(N, B) < δ3. It follows from (4) and
our choice of ^ 5 that for all x e Bd N there is a Varc in JV from x
to some 7/ e Bd B. By 1.5, each component P of JV\B is an annulus.
Let Bd P = S U S', where S and S' are boundary curves of N and
B respectively. It follows from 1.4 that B separates distinct boundary
curves of N in N. Thus

(5) for all xeS, there is a <5rarc β from x to some y eS', and
we may assume β\{x, y} c Int P.

Suppose diam S < δ. By (1) and 1.6, S bounds a disk of diameter
less that δ/2 in N. Since JV is connected, the disk must be N itself.
In this case it is clear that we have a strong deformation H: N x
I —> N of ΛΓ onto B such that Ift is an ε/2-map for all tel. Thus
we assume

( 6) diam S^δ.
There is a set G = {a?!, , α?fc} c S of & distinct points numbered

according to an orientation of S (let x0 — xk) such that if ap is the
arc of S from a^-i to tfp containing no other member of G, then

(7) 2δ1 < jOφp-i, α?,) and diam αp < 5δt.
By (2) and (6), k > 1.

By (5), for each p there exists 2/p e £ % 0 = yk) and a <Varc ΛG80 = βk)
in P from xp to j / p such that βp\{xp, yp} c Int P. By (7), /Sί)_1 f] /δj, = φ.
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Since P is an annulus, it follows that the β9 are pairwise disjoint.
By choice of B, β9^ U ap U βp is an arc in M\X from yp_t e S' to
ypeS', and (7) implies

(8) diam (βp_x ΌapΌ βp) < δ, + 5δ, + δλ = 7δ1#

By (3), there is a <52-arc ΊP of Sf from yp_x to yp.
We claim yp does not contain yq if #g £ {yP-i, yP}- For it follows

from the disjointness of the β9 that the points ylf , yk are numbered
according to an orientation of S'. If some 7P contains yq for yq $
{Vp-i, VP}> then {ylf , yk}(Z7p. Let α? e ^ Φ a9. Then ^(x, γP) ^
/o(«, »,) ^ /o(a>, xn) + |θ(^, i θ ^ diam an + diam £» < 5δx + ^ = 6^. It
follows that diam S ^ diam ap + diam ( S ^ ) < 5^ + diam N^X{ΊP) ^
5^ + 12δx + diam ΊP < Πδ, + δ2 < δ (by (3)), contrary to (6). The
claim is established.

Then Lp — βp-t U ap{J βpϋ Ύp(p = 1, , k) is a simple closed curve
in JV. By (8) and our choice of y9, diamL^ < 75X + δ2. By (1), (2),
and 1.6, Lp bounds a disk Dp in N with diam Dp < ε/2. As in the
proof of 3.2, Dp is the disk of P bounded by Lp.

As in 3.2, there is a strong deformation retraction K: P x I-+P
of P onto S' such that #(2^ x I) = Dp for all p. Thus Iξ is an
ε/2-map for all t e I. As in 3.2, K can be extended to a strong
deformation retraction H: N x I -+ N ot N onto B such that iϊ t is
an ε/2-map for all t e I.

THEOREM 4.3. Let {An}n=,i and C be points of 2*\{M}. Then
An-+C if and only if there exists Ne 2f such that each component

of N is a bounded surface and An —•-> C.
D{N)

Proof. By 3.3, there is a compact 2-manifold with boundary
ΛΓe2f and a neighborhood ^ of C in 2f such that if I e ^ then
X c Int N and X is a strong deformation retract of N.

Suppose An —> C. Let ε > 0. By 4.2 there is a compact 2-

manifold with boundary J 5 e f and a neighborhood T of C in 2f
with Tc^ such that if l e Γ then X c l n t β and there is an
ε/2-map r\B-*B that is a strong deformation retraction of B onto
X. Choose an m such that n > m implies An e ψ\

Let f:N-*Nbe a deformation retraction of N onto 2?. Let
fn: B-* B be an ε/2-map that is a deformation retraction of B onto
-4» for n > m. Let fQ: B-> B be an ε/2-map that is a deformation
retraction of J5 onto C. Define rn: ΛΓ—• N for u = 0, n > m by rn($) —
/»(/(»)). For all a? 6 iNΓ and w > m, p(rn(x), ro(x)) < ε. Hence AΛ •—^ C.

D(N)

Conversely, suppose An •—-> C There exist deformation retrac-
D(N)

tions rw: N->N of iV onto AΛ., r0: N->N of i\Γ onto C such that r»-»? 0

uniformly on JV.
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If xeC, ρ(x, rn(x)) —> p(x, ro(x)) = 0. Hence p(x, An) —> 0.
If xn e An, ρ(xn, ro(xn)) = p(rn(xn), rQ(xn)) -+ 0. Hence p(xn, C) -> 0.

We conclude An —> C.

Let ε > 0. Let δ > 0 be such that if {a?, y}aN and ̂ (α, 2/) < δ
then /o(r0(a?), n(l/)) < e/6. Let <5' > 0 be such that s(N, δ', δ). Let
m > 0 be such that w > m implies that for all x e N, p{rn(x), rQ(x)) <
e/6.

If {x, y) c N, ρ(x, y) < δ, and n > m, then ρ(rn(x), rn(y)) ^ p(rn(x),
ro(x)) + P(ro(x), rQ(y)) + P(ro(y), rn(y)) < e/6 + ε/6•+ ε/6 - e/2.

Let J5LC AW C iV, diam ίΓ < δ'. There is a contraction h: Kx I—> N
of i ί to a point such that diam Λ,(UL x I) < 5. Therefore, for n > m,
rnoh:KxI—>N is a contraction of iΓ to a point such that
rnoh(K x I)czAn and diam (rΛoh(K x I)) < e/2 + e/2 = ε. Hence
s(Aw, δ', ε) for n > m, so ilΛ —> C.

Ph

THEOREM 4.4. 2f is cm ANR ( . ^ ) .

Proof. If iSΓ and ^ are as above, the previous theorem implies
the inclusion of the set ^/ into D(N) is an open embedding. Since
JD(JV) is an ANR (ΛT) ([11], 5.5, p. 389), it follows ([9], 3.1, p. 391)
that ^ is an ANR(^^). Since M is an isolated point of 2f (because
[M]M — {M}) the assertion follows from the fact that a local ANR (^f)
is an A N R ( ^ ) ([9], 3.3, p. 392).

THEOREM 4.5. Let ARl = {Xe2% \X is an AR}. Then AR% is
a component of 2f.

Proof. Since AR* is the set of all members of 2f with the
homotopy type of a point, AR* is open and closed in 2f, and thus
is a union of components of 2f. We must show AJR* is connected.

Let CneARξ(n = 0,1). By 3.2 there is an arc in ARf from Cn

to Nn, where iV̂  is a disk. Let pneN and let hn: Nnx I—>Nn be a
pseudoisotopy of Nn onto pΛ. Then (using 1.3) {hn(Nn x {ί})|ίe/}
contains an arc in AR* from Nn to {pΛ}. Let h:I-+M be a map
such that fe(0) = p0 and Λ(l) = p1# By 1.3, {{h(t)}\tel} contains an
arc in ARξ from {̂ 0} to {p^. Thus there is an arc in AR* from Co

to σ ι β

THEOREM 4.6. Ai2f — L(M) as topological spaces.

Proof. Clearly they are equal as sets. Let C e AR*. As above,
there is a disk NdM such that CaIntN and C is a strong defor-
mation retract of N. We know Aπ —> C if and only if JL% > C.

Ph D(N)
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But AnΈ^C if and only if An^C ([11], 5.4, p. 388).

Clearly the map j : M-> ARξ defined by j(x) = {x} is an embedding.
We have the following:

COROLLARY 4.7. j(M) is a deformation retract of ARί Thus
ARh has the same homotopy type as M.

Proof. This follows from Theorem 4.6 and ([11], 5.5, p. 389).
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