
Pacific Journal of
Mathematics

HOMOTOPY PROPERTIES OF LOCALLY COMPACT SPACES
AT INFINITY-CALMNESS AND SMOOTHNESS

ZVONKO CERIN

Vol. 79, No. 1 May 1978



PACIFIC JOURNAL OF MATHEMATICS
Vol. 79, No. 1, 1978
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AND SMOOTHNESS

ZVONKO CERIN (ZAGREB)

We define two properties of noncompact locally compact
spaces called ^-calmness at oo and (^, ^-smoothness at
oo for arbitrary classes of topological spaces ^ and &. A
number of theorems and examples concerning these proper-
ties are given. By considering complements of ϋΓ-sets in
the Hubert cube from them we get three new shape invari-
ant conditions for compact metric spaces named calmness,
%-calmness, and %-smoothness. Calmness is a movability
type condition while ^-smoothness implies that (and under
some additional assumptions is also implied by) the kth
shape pro-group of a compactum in question is trivial, for
all k>n.

1* Introduction* This paper continues the study of homotopy

properties of noncompact locally compact spaces at oo from [6],

[7], and [8]. In [8] we introduced concepts of calm at oo, w-calm

at oo, and ^-smooth at oo locally compact spaces. In the present

paper these notions are investigated in much the same way as

movability at oo and tameness at oo were investigated in [6] and
[7], respectively. We prove analogous theorems and give a number
of examples illustrating those concepts. By a standard .ZΓ-set com-
plement device [10] (see also [6]) we get three new shape invariant
properties of compact metric spaces called calmness, w-calmness,
and ^-smoothness. The usefulness of these properties in the future
development of shape theory remains to be seen. Our results
show that they are rather natural and that one can prove theorems
about them resembling some statements about movability and
fundamental dimension of compact metric spaces.

We assume the reader is familiar with shape theory of compact
metric spaces [2] and with the most elementary concepts and results
of infinite dimensional topology [11].

The paper is organized as follows. In § 2 we collect definitions
(mostly from [6]) to be used in later sections. The § 3 investigates
^-calm at oo noncompact locally compact spaces, for an arbitrary
class of topological spaces ^ . ^-calmness at oo is a "movability
at oo type" condition for homotopies weaker than the condition
SANR(oo) (or strong movability at oo) introduced in the author's
thesis [9]. The short § 4 lists properties of calm compact metric
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spaces that follow from results and examples presented in the
previous section applying Chapman's Z-set complement trick [10].
In § 5 (<£*, ϋ^-smooth at oo spaces, where r<^ and 2f are any
classes of topological spaces, are considered in a way analoguous to
the treatment of ^-calm at oo spaces in § 3. The final § 6 trans-
lates these results into shape theory. The class of %-smooth
compacta obtained in this way is related to the class of those X
for which the shape pro-groups πk(X) are trivial for all k > n.

We completed this work during compulsory military service at
Military High School in Belgrade. We thank superior officers for
providing conditions stimulating research.

2* Notation and definitions* We shall mostly consider non-
compact locally compact spaces; two favorite notations for such
will be M and N. Compact subsets of M and N are denoted with
the first few capital Roman letters.

A proper map f:M->Nis a continuous function such that the
preimage under / of every compact subset of N is compact. Proper
maps /, g:M-^N are homotopic at oo if for every compact B a N
there is a compact set AdM with restrictions f\M-A and g\M-A

homotopic in JV — B (notation, f\M-A ~ O\M-A *n N — B). We shall
say that M homotopy dominates αί oo a space N provided there are
proper maps f:M-* N and g:N-*M with fog homotopic at oo to
idN, the identity on N.

In several situations we shall need to consider inclusions of
complements of compact subsets of a space M. We denote the
inclusion of M — B into M — A by iBtA9 where A and B are compact
subsets of M and BZD A.

Throughout the paper n ^ 0 will be a fixed integer and <& and
ϋ?, if not stated otherwise, arbitrary nonempty classes of topo-
logical spaces. ^"W denotes the class of all CTF-complexes, &
the class of all finite CW-complexes and &n the subclass of &
consisting of all complexes of dimension <^n.

Let M be a space and U, V, W, with V, Wa U, its subsets.
We let i f (C7, V, W) and <έ?h (U, V, W) denote the following state-
ments.

Every map/: X-^ V of Xe^ is in U homo-
topic to a map of X into W.

r τxτ\ If maps/, g: X—> W of l e ' g 7 are homotopic in
U, then they are already homotopic in V.

f,g:X—>Y be two maps and ϋ^ a class of spaces. We
call / and g &-homotopic if for every Z e & and a map h: Z —> X,



HOMOTOPY PROPERTIES OF LOCALLY COMPACT SPACES 71

the compositions foh and goh are homotopic.
A noncompact locally compact space M is (1) ^-trivial at oo,

(2) ^-movable at ^, (3) ^-calm at °°, and (ί^7, 2&)-smooth at oo
provided

(2.1) for every compact set AczM there is a larger compact set
B such that every map f: X—> M — B of Xe^ into a component
of M — I? is null-homotopic in M — A,

(2.2) for every compact set AaM there is a compact Bz^A
such that for any compact C ~D A the statement rέ? (M — A, M — B,
M - C) holds,

(2.3) for every compact set A c M there is a larger compact set
B with the property that for any compact CZD B there is Dz)C
making the statement <^h (M — B, M — C, M — D) true, and

(2.4) for every compact set A c l there is a compact BZDA
with the property that every two ϋ^-homotopic maps /, g: X-+
M — B of Xe <& into M — B are homotopic in M — A,
is satisfied, respectively.

Spaces ^-calm at co are called calm at co 9 those .^w-calm at co
are called n-calm at oo, and spaces ( ^ , ^%)-smooth at °o will be
called n-smooth at oo.

The simplest way of constructing (non compact) locally compact
spaces is to look into a complement M — N — A of a closed subset
A in a compact space N. In handling problems of deciding when
M will have a certain homotopy property at oo it turned out in
[6] and [7] that it is useful to assume A satisfies conditions resem-
bling (and implied by) key properties A would have if A were
hazy in N. This last concept is due to Kozlowski [14] and in case
N is an ANR it is equivalent with Anderson's notion of Z-sets
(see [11]). Our next definition states these conditions.

A closed subset A of a space X is said to be globally right
(left) unstable in X if for every open neighborhood U of A in X
the inclusion U — A^ U has a right (a left) homotopy inverse.

Finally, in (3.7), (4.8), (5.4), (5.5), and (6.5) we shall use the
shape theory of arbitrary topological spaces in the form described
by Kozlowski [13].

A class of topological spaces ^ shape dominates a class 2$
provided for every I e ^ there is Γ e ^ 7 such that Y shape
dominates X. In Kozlowski's description this means that there are
natural transformations &~\ [X, -]-+[Yf - ] and &:[Y, - ] -> [X, - ]
between functors [X, —], [Y, — ]: Sίf -> Sets, where Sίf is a homo-
topy category of spaces having the homotopy type of CW-complexes,
such that 5f o

3* ^-calmness at oo. In this section we shall prove several
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theorems about ^-calm at oo spaces, defined in § 2, and present
examples illustrating this concept. Together with examples in § 4
they show that ^-calmness at oo neither implies nor is implied
by movability at oo but that for this rather strong homotopy con-
dition at co for a noncompact locally compact space one can prove
results similar to those proved for movability at oo in [6].

(3.1) EXAMPLE. Let σ = {Xi7 /J ί > 0 be a direct sequence of
compact spaces and let Map(σ) be the infinite mapping cylinder of
it obtained by glueing mapping cylinders of maps fi together. One
easily sees that Map (σ) is ^-calm at oo , for every class &.

(3.2) EXAMPLE. The product X x [0,1) of a compact space X
with the half-open unit interval can be clearly considered as the
infinite mapping cylinder of a direct sequence σ — {Xif /J i > 0 , where
Xt = X and ft = id for every i > 0. Hence, every such product is

at oo, for any class ^ .

(3.3) PROPOSITION. If a noncompact locally compact, connected,
and locally \arcwise-connected space M is 5^-calm at oo, then M
has finitely many ends.

Proof. We shall prove that a space M with infinitely many
ends can not be {X}-calm at oo, for any space X. Let BaM be
an arbitrary compact set. If M — B has n components, select a
compact C D B so that M — C has (n + 1) components, and let D D C
be any compact set. Let Kt and K2 be two different components
of M — C contained in the same component of M — B. If /: X —>
Kx (Ί (M — D) and g: X—> K2 Π (M — D) are constant maps, then they
are homotopic in M — B (since each component of M — B is arcwise-
connected) but are not homotopic in M — C. Hence, {X}h(M — B,
M - C, M - D) does not hold.

The above proposition shows that there are many spaces that
are not ^-calm at oo, regardless of how simple spaces in cέ? might
be. For example, every tree (i.e., a connected, simply connected
1-complex) with infinitely many ends is such a space.

(3.4) EXAMPLE. A noncompact, locally compact, connected, and
locally arcwise-connected ^-trivial at co space with finitely many
ends is ^-calm at oo.

(3.5) EXAMPLE. Let X be a closed subset of a locally compact
Hausdorίf space Y such that the pair (Y, X) satisfies Siebenmann's
isotopy compression axiom /-Comp (Xf Y) [16]. Then Y — X is <&-
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calm at °°, for any class cέ?.

(3.6) THEOREM. Suppose M homotopy dominates at oo a space
N. If M is ^-calm at co f then N is also ^-calm at oo.

Proof. Take proper maps f:M-+N and g:N-+M such that
fog is homotopic at co to idN. Let A c N be any compact set. Its
preimage A! = f~\A) is a compact subset of M. As M is ^-calm
at oo, there is a compact B'IDA' satisfying (2.3). Put B — All
g~\Bf). Suppose C Z) B is any compact set in N. Let C* ID C have
the property that /oflrU^* ^ £<,«.,<, in N - C. Let C" = B' U /"'(C*)
and let U be as in (2.3) with respect to B' and C". Put D = CU
g~\Df). Assume φ,ψ:X-+N—D are maps of l e ^ into N-~ D
homotopic in N — B. Maps#o<p, goψ: X-^ M — D' are homotopic in
Λf — B\ The choice of 5 ' and Ώ' implies they are homotopic in
M — C". Hence f°g°φ and fogoψ are homotopic in JV — C*. But
fogoφ ~ φ in N — C and f°g°ψ ~ ψ in N — C. So <£> and ^ are
homotopic in N — C.

Our next theorem shows that the question of deciding when a
locally compact ANR is ^-calm at °o depends only on the shape
properties of spaces in ^ .

(3.7) THEOREM. Let an ANR M be c(^-calm at oo and assume
a class 3? is shape dominated by a class ^ . Then M is Sf-calm
at oo.

Proof. If AaM is any compact subset let B be chosen using
the fact that M is ^-calm at oo. Now, for any compact Cz)B
take D 3 C such that the statement rέ?h(M - B, M - C, M - D) is
true.

Consider an J e ^ and maps <p, ψ: X ~+ M — D homotopic in
M — B. As & is shape dominated by ^ , there is Γ G ^ 7 and
natural transformations J^\ [X, — ] -> [Y, — ] and &:[Y, — ]—>[-X, — ]
such that 5foj??~~ = ̂ "d. Observe that representatives 9?' and ̂ ' of
^Ίf-ndφ]) and ^M-D(M), respectively, are maps of Y into M — D
that are homotopic in i l ί - ΰ because the equality [iD,BO(p]— fe,5°+]
implies [iD,B°φ'] = (^B)*o^^-2>(b])=^^-5([ίi),5o^])=^^-B([ίi),5of]) =
(iD,B\°^~M-D(M) — [iD.B°ψ'] By assumption, they are homotopic in
ikf-C. But, then ( ^ Λ 0 ^ - ^ 0 ^ ^ - ^ ^ ] ) - fe.cV^^Λ-.ίW).
Hence, (^^^([^j) = (w)#(hH)> which is another way of saying that
φ and ψ are homotopic in Λί — C.

(3.8) PROPOSITION. // M is (<£*, 3r)-smooth at oo
at oo, then M is ^-calrn at oo.
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Proof. Let A c l b e a compact subset. Select a compact
A using ^-calmness at co of M. If C is any compact set contain-
ing B, let Cx be taken with respect to C applying (^ , ̂ O-smooth-
ness at oo of M. Then pick a compact DZDC^C SO that every
two maps φ', ψ':Y->M—D of an Ye Sf into M — D homotopic in
M — B are already homotopic in M — Cx.

Let φ, ψ: X—• ikf — D be maps of an I e ^ into M — D and
assume φ ~ ψ in M — B. Clearly, for every space Ye& and a
mapα: Γ - > I w e have <poα ~ ψoa m M — Cι so that, by the choice
of Clf it follows φ ~ ψ in M — C.

(3.9) COROLLARY. // Λf is cm n-smooth at oo α?ιd n-calm at co
space, then M is calm at oo.

The class of ^-calm at co spaces behaves well only under the
formation of finite "complemented products" as the following theo-
rem and the example (3.12) below show. We first state a technical
definition.

(3.10) DEFINITION. A closed subset A of a space X is strongly
globally right (left) unstable in X if for each triple (U, V, W),
W aV aU, of neighborhoods of A in X there is a map/: (17, V,
W)->(U-A,V-A,W-A) such that iof\v~idv and iof ~
idu(foi\v_A 2̂  idv-A and /©i ~ idσ_A)f where i: U — A<=^ U is the
inclusion.

Note that a Z-set A in the Hubert cube Q is both right and
left strongly globally unstable in Q.

(3.11) THEOREM. Let N19 •••, Nn be compact spaces and
• , Xn c Nn strongly globally right unstable subsets. If X =
Π?=i^i ^ globally left unstable in N = Π*=i ^ ί o/nd each Mi—'Ni —
χt(i = 1, . . . , n) is ^-calm at oo 9 then M = N — X is also ^-calm
at oo.

Proof. Let AcJIί be a compact subset of M. Pick an open
neighborhood [/* of Xt in JV< (i — 1, , %) such that A c JV —
Π?=i ΪTi As Λf€ is ^-calm at co, there is a compact set BiZ)Aί =
N, - Ui in Mt satisfying (2.3). Put B = N- UUiN, - Bt). As-
sume Cz)B is an arbitrary compact subset of M. Let VidNi — Bt
be an open neighborhood of Xt in JVt such that CczN — Π?=i ^t
For each C< = JW< — V* select a compact A in M̂  with respect to
Bi using ^-calmness at co of Mt. The compact set D = N —
Π?=i (JV, - A) makes the statement ίfΛ(Λf - B, M - C, M - D) true.

Indeed, assume φ, ψ:K—>M — D are maps of ί e ^ into M—



HOMOTOPY PROPERTIES OF LOCALLY COMPACT SPACES 75

D homotopic in M — B. Projections π^φ, 7Γi°ψ: K —> Nt — A are
homotopic in Nt — Bt(i = 1, •••, n). The assumption that Xt is
strongly globally right unstable in Nt implies there is a map /<:
(N{ - Bu Nt - Cif Nt - A) -> (AT* - A, AT, - C,, ΛΓ, - A) such that
:?>/. ~ idNi-Bi and &,<>/, U._σ. ~ idN.-Ci, where i<: Λf, - B.^N,- B,
and &*: ilf* — Ci

cl^ Nt — Ct are inclusions. Thus, f^π^φ, f^π^ψ:
K—>Mi — A are homotopic in Jkf< — J?€. The choice of J3* and A
gives that they are homotopic in Mt — Ci9 But, we know that
k^fiUi-ci ~ idKi-Ci so we get πtoφ ~ π^ψ in JVt — Ct. Hence, <p
and α/r are homotopic in Π?=i (JV* — £*)• Now, use left global unsta-
bility of X in N to conclude φ 2̂  ψ in M - C = (N - C) - X.

(3.12) EXAMPLE. The following example shows that (3.11) need
not be true for a product of infinitely many spaces.

Consider the Hubert cube Q as the product JS2 x J53 x JB4 x
of finite-dimensional cells and regard Bn as a coneδ^xjΌ, 1]/Sn~ιx
{1} over the (n — l)-dimensional sphere Sn~\ Observe that S9*"1 =
S^"1 x {0} is a Z-set in Bn. Hence, X = IL^S*" 1 is a Z-set in Q.
We claim that M = Q - X is not {S1, S2, S3, -. }-calm at co even
though each Bk — Sk~λ is ^-calm at co, for any class <£*.

Indeed, given an arbitrary compact subset B of M we see that
there is an integer b and real numbers tl9 , tb e (0, 1) such that J3
is contained in the complement (with respect to Q) of the set U =
S1 x [0, ίt) x x Sh x [0, ίft) x 5 b + 2 x 5 δ + 3 x . . . . Let C be the
complement of V = S1 x [0, ίx) x x Sδ x [0, ίδ) x Sδ+1 x [0, 1/2) x
βδ + 3 x Bb+i x «... Assume D D C is a compact set in M. Again,
we can find an index d > b and numbers t[<tlf -, t[ < th, t'b+ί < 1/2,
ίί+2, , t'd in (0, 1) such that D is contained in the complement of
the set W - S1 x [0, ίl) x x Sd x [0, t'd) x Bd + 2 x E ^ 3 x .

Let φ, f: Sh+1 -*W be maps of Sb+1 onto the (26 + l)th coordi-
nate factor of W that are not homotopic. These two maps are
homotopic in U since in the (26 + 1) th direction U has Bb+2 as a
factor. Clearly, <p and ψ are not homotopic in V.

(3.13) EXAMPLE. It follows from Example (4.3) and Theorem
(4.19) in [6] that the space M from the previous example is im-
movable at 00, for all < \̂ Hence, a ^-movable at 00 noncompact
locally compact space is not necessarilly ί^-calm at 00. Now we
shall present an example of an {S^-calm at 00 space that is not
{S^-movable at °o, where S1 is the 1-sphere.

Let σ — {Siy fi}ί>0 be the inverse sequence with each bonding
space St a copy of S1 and with each bonding map /< a map of
degree kt > 1. Let M = Map (σ) be the infinite mapping cylinder of
σ (see [12]). As limσ is a J?-set in the ANR Map(σ)Ulimσ [12]
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and is homeomorphic to some nontrivial solenoid, and the later is
not movable [2], it follows from Theorem (4.2) in [6] that M is
not {S ̂ -movable at °o.

We shall prove that M is {S'J-calm at ©o. In order to do this,
let us first introduce notation for certain subsets of M. For any
real number r ^ 2, let Mr denote the compact subset of M composed
of the mapping cylinders (glued together) of the first j = [r] (the
greatest integer less than r) spaces plus the portion of the mapping
cylinder of /,-: Sj+ί —• Sό between the {0}th level and the {r — [r]}th
level (in this notation the base S$ c Map (/,•) is the {0}th level).

Assume A c M is an arbitrary compact subset of M. Select an
integer a ̂  2 so that Aci¥α + ( 1 / 2 ), and let B = Λfβ+1 If CZDB is
any compact set, pick an integer c ̂  a + 1 with the property that
Me+{1/2) contains C. Put D = Λfβ+1.

Consider any two maps φ, <f: Sι —> M — D homotopic in ilί — £.
Since S1 is compact, there is an integer k ̂  c + 1 such that

1) aMk — Me+ί. By collapsing this last space in a natural way
onto Sβ+1, we see that φ and ψ are in ikf& — Mc+1 homotopic to some
maps φf and φ' of S1 into Sβ+1, respectively. As φ' and ̂ ' are
homotopic in M — B, this time by collapsing onto Sa+1, we see that

kc ka+1 deg<p' = ke ka+1 degψ'.

Hence, deg φf = deg ψ' and, therefore, φ' ~ φ' in Sc+1. This clearly
implies >̂ ~ ψ in Λί — C.

The proof of the following proposition is left to the reader.

(3.14) PROPOSITION. If M is ^-calm at c°, then each noncom-
pact component of M is cέ?-calm at °o. Conversely, if M has
finitely many noncompact components and each of them is rέ?-calm
at co, then M is ^-calm at co.

(3.15) DEFINITION ([6]). Let M be a noncompact locally compact
space and let Moc:M be an open subset. We shall say that M is
isotopable into MQ if for every compact BczM0 and every compact
Dz)B in M, there is an invertible isotopy ht:M-+M (O^t^l)
such that hx{D) c Mo and ht\B = id, for all t.

(3.16) THEOREM. Let ^ be a class of compact spaces. If a
locally compact space M is the union of an increasing sequence of
its ^-calm at oo open subsets Mi9 i Ξ> 0, such that Mi+1 is isotopa-
ble into Mt, for every i ^ 0, then M is ^-calm at °o.

Proof. Let A c M be any compact subset. We can assume
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AaM0. Since Mo is ^-calm at oo, there is a compact subset BID A
of Mo with the property that for every compact C'ZDB in Mo there
is JD'ZDC in Λf0 so that every two maps φ'f ψ': X-+Mo — Df of
l e ^ 7 , homotopic in Λf0 — J5, are (already) homotopic in Λf0 — C .

Consider an arbitrary compact subset C of M containing B.
Take τ& *> 0 with CcMn. Let ht:Mn—>Mn be an invertible isotopy
that throws C into Λf0 and keeps £ pointwise fixed. Pick D' in
Mo with respect to B and ^(C). Put D = hl\Dr).

Assume maps φ, ψ: X -^ M — D of Xe^ into M — D are homo-
topic in J l ί ~ £ (via a homotopy gt: X-* M — B). Select m such
that U i ^ ^ ί ( ^ ) c Mm. If m > n, then by applying an invertible
isotopy of Mm onto itself that is fixed on D and its final stage
moves D U (\Jozt*ifft(X)) ίnt° ΛfΛ, we see that φ and α/r can be
assumed homotopic in Mn — D. Hence, without loss of generality
we can take m = n. Now, h^φ, h^ψ: X-* Mo — D' are homotopic
in Mo — B (by the same argument) so that h^φ and h^ψ are homo-
topic in Mo — KiC). But then φ and ψ are homotopic in K\MQ —
^ ( C ) ) c i k ί - C.

The final result in this section shows that ends (see [1] for an
enjoyable introduction into FreudenthaΓs theory of ends) of a ίf-
calm at oo space satisfy a condition defined in (3.17). The Example
(3.19) rules out its converse in general.

(3.17) DEFINITION. An end e of a locally compact space M is <&-
calm if for every open neighborhood U of e in FM, the Freudenthal
compactification of M, there is another V c U such that for every
U' a V there is V c U' making ^ ( 7 ί l M, CΓ n Λf, F ' n l ) a true
statement.

(3.18) THEOREM. // a locally compact space M is c(^-calm at
oo, then every end e of M is

Proof. Let e e EM, where EM denotes the end set of M.
Suppose U is a neighborhood of e in FM. Select a neighborhood
U* of e inside U so that U* f] EM is both an open and closed (in
the relative topology of EM) subset of EM. Cover EM with fini-
tely many open sets U19 •••, Un such that Uι= U* and E7i Π Us — 0
whenever i > 1. Put A = F M — U?=i ^ Pick a compact B~3 Am
M using if-calmness at co of M. Put V = Z7* D (FAT - B). Then
7 is a neighborhood of e in Fikf.

Consider any open neighborhood Uf of e in FM contained in V.
Take a neighborhood (Z7')* analogously to the way U was chosen,
and take similarly open sets [//, ••-, U'k and put C = FM— U*U ̂ /
Select a compact subset D of Λf such that ^ Λ (Λf-B, Λf-C, M - J 5 )
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is true. Put V = (FM - D) n (U')*.
Assume φ,ψ:X->VrΓ\M are maps of l e g 7 into F ' ί l l

homotopic in F Π M. Since F ' Π MczM - D and F Π MczM - B,
we see that φ and ψ* are homotopic in M — C. But, clearly, this
homotopy must be in (17')* so that φ and ψ are homotopic in (M—
C) Π (Z7')* aU' f)M. In other words, the end e is ίf-calm.

(3.19) EXAMPLE. Let Γ be a tree whose end set ET is homeo-
morphic to the subset {0} U {l/n\n = 1, 2, 3, •} of the real line.
We already observed that T is not ^-calm at °o, for any class
^ . On the other hand, one can easily check that every end e of
T is ί^-calm, for each class ^ .

4* ^-calm compacta. Results of the previous section are
here transfered into statements about compacta ( = compact metric
spaces). This is accomplished using the natural equivalence of the
shape theory of compacta considered as Z-sets in the Hubert cube
Q with the homotopy theory at oo of complements of ϋΓ-sets in
Q [6] (see also [10]). Applying that equivalence, from ^-calmness
at co we get a shape invariant property of compacta called ίf-
calmness. The class of calm compacta (i.e., ^-calm compacta,
where ^ — &*, the class of all finite polyhedra) includes the class
of all FANR's and many of their properties are the same as the
corresponding properties of FANR's. There are some differences
though since calm compacta need not be movable (Example (4. 11)).

(4.1) DEFINITION. A compact metric space X is r^-calm provided
there is a Z-set X' in Q homeomorphic with X such that M — Q —
Xf is ί^-calm at ^. Compacta ^-calm will be called calm and
those if/^-calm will be called n-calm.

In order to make the statement of our first theorem shorter
we introduce the following notation. For a closed subset X of a
space N we write X e ^h(N) if for every open neighborhood U of
X there is V c U such that for every open neighborhood Uf c V
we can find smaller V making ^h(V, U', V) true.

(4.2) THEOREM. The following assertions about a compactum
X are equivalent.

( i ) X is ^-calm.
(ii) If X' is a Z-set copy of X in an ANR N, then N — Xr

is rέ?-calm at oo.
(iii) // Xf is a Zset copy of X in an ANR N, then X' e
(iv) If X is a closed subset of an ANR N, then Xe^h

(v) //X = limcr, where o — {Xi9 f\f}ίf^i>0 is an inverse sequence
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of ANR's, then the infinite mapping cylinder Map (σ) of σ is &-
calm at ©o.

(vi) Assume X = lim σ, where σ = {Xif fl>}i'^i>0 is an inverse
sequence of ANR's. Then for every index i > 0 there is j"^>i such
that for every i'^j we can find j'^i' with the following property.
If φ9ψ:K—>Xjr are maps of Ke^ into Xs, such that fi>°φ and
fi>°ψ are homotopic, then f%°φ and f%°ψ are homotopic.

Proof. ( i ) => ( i i ) . In [6] we observed that N — Xf is homo-
topy equivalent at w to a complement of a ^-set copy of X in Q.
Hence, (ii) follows from (i) by Theorem (3,6).

( i i ) ==> (iii). This implication is immediate once we note that
if AdM = N — X' is a compact subset, then U = N — A is an
open neighborhood of Xr in N and the inclusion M — A ^ U is a
homotopy equivalence.

(iii) ==> (iv). Consider N x Q as a ^-set in Q, and let Y be a
^-set copy of X in Q. Since X' — X x Q and Y have the same
shape, complements Q — Y and Q — X' are homeomorphic [10].
Hence, (iii) holds for Xf. But, N x Q is collared in Q, i.e., N x Q
has a neighborhood of the form N x Q x [0, 1) with the O-level
corresponding to N x Q [11]. It is easily proved that this implies
X x Qe^h(Nx Q), and hence also Xe^h(N) because the projec-
tion of N x Q onto N is a homotopy equivalence over every subset
of N.

(iv) => (v). An easy proof is based on the observation that
Map (σ) can be compactified to an ANR N = Map (σ) U lim σ by
adding limσ such that limσ is a Z-set in iV[12].

(v)»(vi). A simple proof of that equivalence uses the facts
that N = Map (σ) U lim σ is homotopy equivalent to Xx and that
lim σ has arbitrarily small neighborhoods in N obtained by consider-
ing infinite mapping cylinders of cofinite subsequences of σ.

(v) => (i). Suppose X = lim σ, where σ = {Xi9 fi}i^i>0 is an
inverse sequence of finite polyhedra, and suppose Map (σ) is ^-calm
at oo. Let Xo be the one-point space and let /?: Xγ —> Xo be the
obvious map. The infinite mapping cylinder Map (σf) of σf = {Xif

/i 'h '^o is homotopy equivalent at oo with Map (σ) and lim σ' = lim a.
Hence, Map (<τ') x Q is <§f-calm at oo (by Theorem^δ.β)). But,
(Map (σ') U lim σr) x Q is a contractible compact Q-manif old and



80 ZVONKO CERIN (ZAGREB)

(limσ') x Q is a Z-set in it. By [11] that manifold is in fact a

Hubert cube so that X x Q is ^-calm. Applying Theorem (4.7)

below, it follows X is

(4.3) COROLLARY. Let σ = {X*, /*}*><) 6e cm inverse sequence of

ANR's (of dimension tS-ri)* A compactum X = lim0 is calm in-

calm) if and only if X is {Xu X2, }-calm.

As there are only countably many homotopy types among
compact ANR's (of dimension <^n) [3] in view of (4.3) and (3.7) we
immediately get.

(4.4) COROLLARY, (a) There is a sequence Plf P2, of finite
polyhedra {of dimension <Lri) such that a compactum X is calm
in-calm) if and only if X is {Plf P2, }-calm.

(b) There is a compactum C (of dimension <^n) such that a
compactum X is calm (n-calm) if and only if X is {C}-calm.

Proof, (b) The one-point compactification of the disjoint union
of PiS from (a) is one such compactum.

We now list theorems and examples concerning the classes of
and calm compacta that are consequences of results and

examples in § 3. The proofs are mostly omitted. The numbers in
square brackets denote the result(s) from § 3 implying the statement
in question.

(4.5) EXAMPLE ([3.2] and [3.6]). Every FANR compactum X is
, for every class <&.

Proof. Let Y be an ANR that shape dominates X and assume
both X and Y are Z-sets in Q. By the Collaring Theorem [11],
(Q — Y) x Q has at infinity the form Y x Q x [0, 1). Since (Q -
Y) x Q is homotopy equivalent at oo to Q — Y and Q — Y homo-
topy dominates at oo Q — X9 (3.6) and (3.2) apply.

For pointed FANR's this also follows from (3.5) because a Z-
set XdQ satisfies the isotopy compression axiom I-Comp (X, Q) if
and only if X is a pointed FANR [17].

(4.6) THEOREM ([3.18] and [3.3]). A compactum X is ^-calm
if and only if X has finitely many ^-calm components.

(4.7) THEOREM ([3.6]). If a compactum X is ^-calm and
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Sh(X) ^ Sh(Y), then a compaction Y is also ^-calm.

(4.8) THEOREM ([3.7]). If a compactum X is ^-calm and a
class £& is shape dominated by a class ^ , then X is also 3ί-calm.

(4.9) THEOREM ([3.11]). Let Xlf ,Xn be ^-calrn compacta.
Then their cartesian product X = Π?=i X% is

(4.10) EXAMPLE ([3.12]). The countable infinite product S°° =
Πΐ>oSi of all finite-dimensional spheres is not calm. Note that S°°
is movable [2].

(4.11) EXAMPLE ([3.13] and [4.3]). Every solenoid is calm.
Problem (8.2) on the page 266 of Borsuk's book [2] can be

phrased in the following form: "If X = f\t>QXt where Xlf X2, •••
are ANR's and Xi+1 is a retract of Xίf for every i = 1, 2, 3, •••,
then what shape properties has XT'. The last theorem in this
section shows that calmness is one of them.

(4.12) THEOREM. If Xιt X2, are ANR-sets and if Xk+1 is a
retract of Xk for every k = 1, 2, , then the set X = Π£=i -X* is

for every class <&.

Proof. We may assume Xx c Q, By using the equivalence of
(i) and (iv) of Theorem 4.2 we shall prove that X is calm. This
will clearly suffice. Let U be an open neighborhood of X in Q.
Select k so that Xk c U. Since Xk is an ANR, there is an open
neighborhood V of Xk in U and a retraction r: V'—> Xk. Let C/'c
V be an arbitrary open neighborhood of X in Q. Pick i ^ & so
that Xjc: U'. Let F * be a small open neighborhood of Xό in U'
for which there is a retraction r*: F*-^Xy. On a closed subset
Γ - F * x {0,1} U Xi x [0,1] of F * x [0,1] define a map into F * as
r* on F * x {0} and as the identity on F * x {1} U Xj x [0, 1]. Since
F * is an ANR, there is a neighborhood N of T in F * x [0,1] and
an extension of the above map to all of N. Hence, there is an
open neighborhood V of X, z> X such that V x [0, 1] c N. Thus
we can assume that idv> is in V* cUf homotopic to a retraction
r': F ' ->X, . We claim that the statement &h{V, U', V) is true.

Indeed, assume φ, ψ:P—> V are maps of a finite complex P
into V and let gt:P—>V be a homotopy in F between them.
Observe that rr°φ — 9 in Z7' and rΌψ en ψ» in U'. Hence maps
r'°φ and rΌψ are homotopic in F (compose the last two homotopies
and gt). Let R: Xk -> JSΓ,- be a retraction. As r(r'°φ) = r'°φ and
r(r'°ψ) — rΌψ are homotopic in r(V) = Xfe we see that Roro(rΌφ) —
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rΌφ and Roro(rf°ψ) = rF°ψ are homotopic in X9 . Therefore, φ and
ψ are homotopic in U' and the proof is complete.

5* (^, i^)-smoothness at oot In § 2 we defined, for arbitrary
classes ^ and 3f of topological spaces, the notion of a (<g% £&y
smooth at oo noncompact locally compact space, that by Example
(5.1) below can be considered as a generalization of a notion of a
trivial at oo space. Here we shall prove a number of theorems
and present some examples aimed at giving better understanding
of the real meaning of that concept. The most interesting in this
direction are results (5.14) and (5.17) where we get a partial chara-
cterization of ^-smooth at oo spaces.

(5.1) EXAMPLE. A noncompact locally compact locally arcwise-
connected space M is ( ^ , ^°)-smooth at oo if and only if M is
^-trivial at oo.

(5.2) THEOREM. // a space M is (<%", £&)-smooth at oo and M
homotopy dominates at oo a space N, then N is also (^ , &)-smooth
at oo.

^ Proof. Let f:M—>N and g:N->M be proper maps such that
fog is homotopic at oo to idN and let A c N be a compact set.
Take a compact A'ID A with f°g\N-A> ~ iA>>A in N — A. Let A* be
a compact subset of M with the property that f(M — A*) aN — A'.
Select JS* 3 A* using the fact that M is ( ^ , <£ )̂-smooth at oo. Let
B = g~\B*) U A!.

Consider I e ^ and any two ^-homotopic maps φ and f o i l
into N — B. Then goφ, goψ: X-+M — J3* are ^-homotopic maps.
Hence, they are homotopic in M — A*. Composing that homotopy
with / we see that f°g°φ and f°g°ψ are homotopic in N — A'. The
choice of A! implies φ and ψ are homotopic in JV — A.

(5.3) REMARK. In the above theorem the assumption that M
homotopy dominates at co jV" can be weakened by assuming that M
only quasi-dominates at oo N [6].

All of the properties at oo defined in § 2 depend only on shapes
of spaces in the class ^ when the space under consideration is an
ANR. The following two propositions establish this for (^ , 3ty
smoothness at oo under the additional assumption that spaces in ^
have homotopy types of ANR's. Note that for these spaces a shape
domination is the same as a homotopy domination.

(5.4) PROPOSITION. Let ^ he a class of spaces with homotopy
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types of ANR's. Let a class 2$ shape dominate a class £&'. If
an ANR M is (<g% £&')-smooth at co, then M is (^, £&)-smooth
at co.

Proof. Let A be a compact set in M. Pick a compact BZD A
applying the assumption that M is (^, ^')-smooth at oo. Let φ,
ψ: X—> M — B be maps of l e ^ 7 into M — B with the property
that for every space Y in & and a map/: Y—> X compositions φof
and ψof are homotopic. We claim that φ and ψ are ϋ^'-homotopic,
and therefore homotopic in M — A.

Indeed, if Yf e £&' take Γ e ^ that shape dominates Y' and
natural transformations jT': \Y\ - ] -> [Γ, - ] and gf: [Γ, - ] -> [Γ',
- ] such that gfo^r = ^ a (see §2). A homotopy class ^x([Γ])e
[Y,X] by assumption satisfies 9>#(J^i([/'])) = f#(J^r([/;])), where
/ ' : F ' —> X is an arbitrary map. Hence, since , i^ is natural,
jrM_B([φof']) = J ^ ^ f ^ o / ' ] ) . But then ^ - ^ o ^ i ^ ί t φ o / ' ] ) - g f ^ o
-^-^(['f°/Ί) a n ( i , finally, [φ°Γ] = [ψ°Γ] which is another way of
saying that φof and ψoff are homotopic, i.e., that φ and ψ are
^'-homotopic.

(5.5) PROPOSITION. Let rέ? and rέ?f be classes of spaces with
homotopy types of polyhedra and assume W shape dominates c<f.
If an ANR space M is ($f\ &)-smooth at oof then M is also (if,
2$)-smooth at oo.

Proof. Let A be a compact set in M. Pick a compact Bz) A
using the fact that M is (<£", £^)-smooth at oo. Let <p, ψ: X —>
M - B be ^-homotopic maps of Xe c^ into M - B. Take X' e <£f'
such that X' homotopy dominates X. Let a\X—> Xr and β: Xf —>
X be maps with βoa ~ idx.

Consider an arbitrary map/: Y—> Xr of 7 e S into X'. By
assumption, φ°β°f and ψoβof are homotopic. The choice of B
implies φoβ ~ ψoβ in M — A. Hence, φoβoa ~ ψoβoa in M — A,
and finally φ a ψ in M — A.

The product of two spaces (fg ,̂ ^)-smooth at oo need not be
( ^ , ^)-smooth at oo (for example, the real line R is ( ^ , .^)-
smooth at oo, by (5.1), while the plane R2 = R x R is not, again
by (5.1) since R2 is not ^-trivial at oo), but a "complemented pro-
duct theorem" holds.

(5.6) THEOREM. Let Xt be a closed subset of a compact contract-
ible space Nif for each i in a set of indices I. Put N = ILez Nif

X=nieIXi9 M^N-X, and M^N.-X,. If each Mt is {%?,&)-
smooth at oo, each Xt is globally right unstable in Ni9 and X is
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globally left unstable in N, then M is ( ^ , &)-smooth at

Proof. Let A be an arbitrary compact subset of M. Its com-
plement N — A in N is an open neighborhood of X. Hence, there
is an integer n ^ 1, indices i19 •••, in in I, and compact sets Ax c
Λf€l, --,An<z.Mίn such that ( iV^-AJx x {Ni%-A%)x>Tliφiv...,inNi c
N — A. Select compact sets B19 ,Bn using ( ^ , £^0-smoothness
at co of the Mt/s. Put 5 = U?=i (B< x Πi^.-.i.-Ny)-

Consider any space I G ^ and ^-homotopic maps φ, ψ: X —>
M—B. Compositions ψi. — πifφ and ψ ̂ . = 7r<yoψ» map X into Nίό — Bj9

j = 1, , w, and are ^-homotopic there. Let r<y: iV .̂ — β y —> Λf<y —
JB5 be a right homotopy inverse to the inclusion Λf̂ . — B^ ^^ Ntj —
JBJ. Maps Ti.oφi. and ri^ψi. are ^-homotopic in ilί^. — 5y and,
therefore, they are homotopic in Miη. — A3 by the choice of sets Bό.
It follows that φt. and ψt. are homotopic in JV<. — Ay. Since spaces
iVi are contractible, φi en ψi9 for all indices i Φ i19

 # , i Λ . Hence,
9? and α̂  are homotopic in N — A. As X is globally left unstable
in N it is easy to see that φ and ψ are actually homotopic in M—A.

(5.7) THEOREM. Lei N be a compact space and let Xλ D X2 Z)
6e α decreasing sequence of its closed subsets. Suppose each Xt is
globally right unstable in N and X — Πi>o -Xi is globally left
unstable in N. If complements Mt = N — X% are (fέ?, &)-smooth
at co y then M = N — X is ( ^ , £2?)-smooth at co.

Proof. Let A c M be a compact subset. The set N — A is an
open neighborhood of X in iV. Since X is the intersection of X/s,
we can find an integer n ^ 1 such that iV — A is an open neighbor-
hood of Xn. But Mn = N- Xn is (<if, .SO-smooth at oo, so there
is a compact 2? c Mn with the property that every two ^-homo-
topic maps φ, ψ: K —> Mn — B of Ker^ into Mn — B are homotopic
in ilί"Λ — A.

In the commutative diagram of inclusions

(N- B)- Xn cJ_> (JSΓ — -A) — X .

N-B < \k ]m

^ ^ (N - A) - X

by assumption ix has a right homotopy inverse if and j \ has a left
homotopy inverse if. Then & ̂  jl°iι has a right homotopy inverse
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Assume φ9 ψ: K —> M — B are i^-homotopic maps of K e ΐ ^ into
M — B. Compositions kRoφ and kRoψ are ^-homotopic in Mn — B.
Hence, iokR°φ and iofcBo^ are homotopic. Consequently, moiokRoφ~
moiokRo<χjr. But, m°i°kn ~ j so that joφ ~ joψf proving M is ( ^ ,
i^O-smooth at oo.

(5.8) THEOREM. Let & and & be classes of compact spaces.
If a locally compact space M is the union of an increasing sequence
of its (^ , Stysmooih at <χ> open subsets Mί9 i ^ 0, such that Mί+1

is isotopable into Mi9 for every i ^ 0, then M is (^ , £3?)-smooth
at oo.

Proof. Let A be a compact subset of M. Without loss of
generality, we can assume A c MQ. As Mo is (^ , ^)-smooth at co,
there is a compact Bz) A in Mo such that any two maps φ', ψ': X->
Mo — B of l e ' g 7 that are ^-homotopic in MQ — B are homotopic
in MQ — A.

Now, assume φ, ψ: X —>M — B are maps of J e ^ into M — B
and suppose they are ^-homotopic in M — B. Let n ^ 0 be an
integer such that φ(X) \J ψ(X) a Mn and let ht:Mn-^Mn be an
invertible isotopy keeping B fixed with h1{φ{X) U Ψ(X)) c Λf0 — J5.
If Γ e S and ct: F->X is an arbitrary map, there is a homotopy
G: 7 x I—>M — B joining 90a and ψo^. Since Y is compact, there
is an integer m^n such that G(YxI)cMm. Let hf: Mm-+ Mm

be an invertible isotopy of Λfm which keeps φoa(Y) \J ψ<>a{Y) \J B
fixed and whose final stage throws G(Y x /) into AfH. It follows
that h^φ and ^ o ^ are ^-homotopic maps into Mo — B. By the
way B was chosen, they are homotopic in Mo — A. Composing that
homotopy with the isotopy hjι we see that φ and ψ are homotopic
in M — A.

(5.9) PROPOSITION. Let N be the union of compacta Nt and N2

intersecting in a compact ANR space JV0. Let X c N be a closed
connected subset and put I ^ I ί l Nt and Mi = Nt — Xt9 for i = 0,
1, 2. Suppose MQ is contractible and cέ?^"-trivial at 00 and Mo,
Mγ and M2 are one ended. If M — N — X is (^ , &)-smooth at co,
then both Mx and M2 are (^ , £&)-8mooth at 00.

Proof. Consider an arbitrary compact subset Aι of Mx. One
easily constructs a proper retraction of M2 onto Mo (see [15, Theo-
rem (4.5)] and, therefore, also a proper retraction r: M—>Mt. Hence,
there is a compact subset A of M such that r(M — A)dMί — At.
Since M is (^, ^)-smooth at 00 9 there is a compact BczM with
the property that every two ^-homotopic maps φ, ψ: X -> M — B
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of I e ^ into M — B are homotopic in M — A. Put B1—Mιΐ\ B.
Let φ,'ψ:X—>M1 — B1 be ^-homotopic maps of l e ^ 7 into

M1 — Bx. As Mx — jB tcilί — B, the maps £> and ψ are ^-homotopic
in J l ί - S and, therefore, homotopic in M — A. Let a homotopy
fct: X—>M — A join <p and ψ. Clearly, roht: X-+ Mt — At is a homo-
topy in M1 — Aι between φ and ψ.

(5.10) DEFINITION. An end e of a locally compact space ikf is
(<̂ % &)-smooth if for every open neighborhood U of e in .FTkf, the
Freudenthal compactification of M, there is smaller V such that
every two ^-homotopic maps φ, ψ: X -* M Π V of X e ^ are ho-
motopic in U Π M.

(5.11) THEOREM. Leέ ^ be a component hereditary class of
compact spaces. If each end e of a space M is (<&*, ^ysmooth,
then M is (^ , 3f)-smooth at ^. The converse is also true without
any assumptions about rtf.

Proof. Let AcJ l ί be any compact subset. Its complement
U — FM — A is an open neighborhood of each end e e EM. Let Vβ

be an open neighborhood of e selected with respect to U using
(^, ^0-smoothness of e. Let <W~ be a cover of EM with disjoint
open sets inscribed into {Ve}e5EM. Put B = M - U {TFj TFe 3^"}.

Suppose φ, ψ: X —> M — B are ^-homotopic maps of l e ^ 7 into
M — B. Observe that, for each component C of X, restrictions φ\c

and Ί/HC are ^-homotopic maps of C into some Ve. Since Ce^,
these restrictions are homotopic in M — A. This clearly implies
that <p and ψ are homotopic in ikί — A.

Conversely, let U be an open neighborhood of an end e e EM.
Let Ur c U be a smaller neighborhood with i£M Γ) £/' both closed
and open in EM. Cover EM — TJf with disjoint open sets U19 , U%

in FM. Put A = ilf-(EΓUt7"1U U Z7J. Pick a compact β =)A
applying (^, ^)-smoothness at w of I . A required open neigh-
borhood of β is the set V = (JPAΓ - B) f] U'.

We now turn our attention to ^-smooth at oo spaces, i.e., (.^,
^%)-smooth at c>o spaces, and their ends. At first one is tempted
to claim that an end [a] (as defined in [4]) of an ANR space M is
w-smooth if and only if Brown's group [4] πfc(ikf; a) is trivial for
all k > n. This statement is not true in general as the following
examples show.

(5.12) EXAMPLE. Let X be a celebrated compactum constructed
by J. Taylor in [18]. Embed X as a Z-set in the Hubert cube Q
and let M = Q — X. By [8, (3.9)(b)] M can not be ^-smooth at oo
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for any n ^ 0. It is well known (see [5]) that Brown's groups
πk(M; a) of a unique end [a] of M are all trivial.

(5.13) EXAMPLE. The same properties as the previous example
are also hold by the space M obtained by glueing finite-dimensional
spheres S1, S2, in such a way that two adjacent spheres meet
in a single point.

The notation used in the statement and in the proof of (5.14)
is taken from [4].

(5.14) PROPOSITION. Let M be an ANR and let a be a germ of
a representative of an end [a] of M. If M is n-smooth at °° and
the group K^M) a) is trivial, then the groups Ek(M; a) are trivial,
for all k > n.

Proof. Let 0 = Aι aA2 c A 3 c be an increasing sequence of
compact subsets of M such that M = UΪ>O A-% and any two ^"-homo-
topic maps φ, ψ\ P —• M — Ai+ί of a finite complex P into M — Ai+ι

are homotopic in M — Aif i > 0. Let [f]eπk(M;a) be represented
by a proper map / : (Sk, it) —> (Λf, a). We can assume f(Sk x {m}) c
M — Am+Z, for every m ^ 0. Observe that, for every integer m,
fm = /U*x{m} is null-homotopic in ikί — Am+2 since /m and a constant
map of £* x {m} into Λf — Am+3 are ̂ ^"^homotopic. The point (*, m)
will under that null-homotopy, denoted hm,tf be carried along an arc
in M—Am+2 from the point /(*, m) = Aw>0(*, w) to the point Amιl(*, m)
Define a map λw on the boundary of a 2-cell {(*, m)} x I x I into
Jlf — Am+2 as ΛΛ,t on {(*, m)} x I x {0}, as ΛΛ>ι_t on {(*, m)} x {1} x /,
and as hm)0 on {(*, m)} x ({0} x III I x {1}). Maps λm in an obvious
way give us an element of π^M; a). Since we assumed that this
group is trivial, we conclude that each map λm can be, without loss
of generality, extended to a mapl/w: {(*, m)} x I x I->M — Am+ί.
With that observation, applying homotopy extension theorem, one
easily proves that fm is in M — Am+1 null-homotopic relative to the
point (*, m). Hence, [f] is the trivial element of πk{M', a).

(5.15) COROLLARY. Let M be an {S^-trivial at oo ANR space.
If M is n-smooth at ^ , then for each a representing an arbitrary
end [a], the groups πk(M; a) are trivial, k > n.

Proof. Follows from (5.14) because an ANR space M is {S1}-
trivial at oo if and only if groups π^M; a) are all trivial. The last
statement is proved by a method used in the proof of (5.14).

Related to (5.14) and (5.15) is also the following observation.
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(5.16) PROPOSITION. // M is an n-trivial at oo and n-smooth
at oo locally compact space, then M is trivial at oo.

Proof. Let A be a compact subset of M. Select a compact
set B' with respect to A using ^-smoothness at oo of M. Then
take a compact B with respect to Bf applying ^-triviality at co
of M.

Let φ: P-> M — δ be a map of a finite complex P into a com-
ponent of M — B. The restriction φ\pn: P

n —> M — B of φ onto the
^-skeleton of P is null-homotopic in M — B'. Hence, there is a
constant map^:P—>M~ Bf such that φ and ψ are ^"-homotopic
in M — B'. The choice of Bτ implies φ ~ ψ in M — A. Thus φ is
null-homotopic in M — A.

At present we can prove only the following partial converse of
(5.15) under rather strong movability type conditions on the
space M.

(5.17) THEOREM. Suppose M is calm at oo, movable at oo, and
{Sk}-trivial at oo, for every k > n ^ 0. Then M is n-smooth at oo.

Proof. Let A be a compact subset of M. Pick a compact set
C containing A using calmness at oo of M and a compact BZDC

using movability at oo of M. We claim that B is a compact set
satisfying (2.4) for <ar = & and 3f = <^\

Indeed, let φ, ψ: P -+ M — B be any maps of a finite polyhedron
P into M — B and assume that their restrictions <pΛ, α̂ w on the n-
skeleton of P are homotopic. Let k = dim P. Without loss of
generality we can assume k> n. Let compact sets Dn+t z> DΛ + 2 z> •
D I)*-! Z)DkZ) Dk+1 = Bbe chosen in such a way that every singular
i-sphere in M — Dt is null-homotopic in M — Di+ι, i — n + 1, n + 2,
•••,&. Let Df+1 be picked with respect to C and Dn+1 using calm-
ness at oo of M.

By the choice of B we see that maps φ and ψ are in M — C
homotopic to maps φf and ψf, respectively, mapping P into M —
D»*+i. Note that (φ')n and (^')w are homotopic in M — C. The way
Dί+ι and C were chosen gives {φfγ ~ (ψ')n in M — D.+ 1. Now, the
property of Dw + 1 implies (φ')n+1 - (^')%+1 in ilί ~ 2>w+2. Hence, (^')%+2

and [(^')ίϊ+2 are homotopic in M — Dw + 3. Continuing in this way we
see that φ' — (φ')k and ψ' = (^')fc are homotopic in ikf — A.+1 = M— B.
Finally, it follows that φ is homotopic to ψ in M — CcM — A.

(5.18) KEMARK. The assumption that M is movable at oo can
not be dropped out in (5.17) since the space M from (5.13) is calm
at oo, {S*}-trivial at oo, for every k ^ 0, nonmovable at oo and
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not w-smooth at co for any n ^ 0.

6* (^ , i^O-smooth compacta* In this section, by looking at
complements of Z-sets in the Hubert cube, we define a class of
(̂ % ϋ^O-smooth compacta in much the same way as we defined
^-calm compacta starting from the notion of a ^-calm at co space.
Then we state a few results concerning this class and give some
examples. The proofs are omitted because in method they are the
same as the proofs given in § 4 or they can be proved rather easily
from the corresponding results in § 5.

(6.1) DEFINITION. A compact metric space X is (^ , £&)-8mooth
provided there is a Z-set copy X' of X in Q such that Jkf— Q—X'
is ( ^ , £^)-smooth at co. Compacta ( ^ , ^%)-smooth are called n-
smooth.

(6.2) EXAMPLE. A compactum X is O-smooth if and only if
every component of X has trivial shape.

(6.3) THEOREM. The following statements about a compactum
X are equivalent.

( i ) X is (9f, &)-smooth.
(ii) If Xr is a Z-set in an ANR space N and is homeomor-

phic to X, then N — χr is (^ , &)-smooth at co.
(iii) If Xf is a Z-set copy of X in an ANR N, then Xr e ( ^ ,

£&)(N), i.e., for every open neighborhood U of Xf in N there is a
smaller V such that every two 2$-homotopic maps φ, ψ: K —> V of
Ke^ into V are homotopic U.

(iv) If X is a closed subset of an ANR N, then X e (^, <2ί)
(N).

(v) If X — limσ, where σ = {Xit fi}i^i>0 is an inverse sequence

of ANR's, then the infinite mapping cylinder Map (σ) of σ is ( ^ ,
!3ϊ)-calm at co.

(vi) Assume X = lim σ, where σ — {Xif / , ^ i > 0 is an inverse

sequence of ANR's. Then for every index i > 0 there is j ^ i such
that, for every two ^-homotopic maps φ, ψ: K-*X3 of Ke^ into
Xjf compositions fl°φ and fj°ψ are homotopic.

(6.4) THEOREM. Let a compactum X be (^ , 3f)-smooth and
assume X quasi-dominates a compactum Y [2], Then Y is also
(if, £?)-smooth.

(6.5) PROPOSITION. Assume ^ and cά?t are classes of spaces
with homotopy types of ANR's.
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(a) // a compactum X is (&*, &)-smooth and a class & is
shape dominated by a class 2$', then X is (^ , &f)-smooth.

(b) // a compactum X is ( ^ , &)-smooth and <£" is homotopy
dominated by &*, then X is also (^ ' , £&)-smooth.

(6.6) THEOREM. The product X = ΪL>o -XT* of countably many
compacta Xt is (<g% &)-smooth if and only if each Xi is (^ , £&y
smooth.

(6.7) THEOREM. The intersection X of any decreasing sequence
X1z>X2Z} of (<£*, &)-smooth compacta is (^ , &)-smooth.

(6.8) PROPOSITION. Let X be the union of compacta Xγ and X2

intersecting in a compactum of trivial shape Xo. If X is
smooth, then both Xx and X2 are

(6.9) THEOREM. A compactum X is (&", 3f)-smooth if and only
if each component of X is (^ , Stysmooth.

(6.10) EXAMPLE. Taylor's space X [18] is not n-smooth for
any n ^ 0.

(6.11) PROPOSITION. Let X be an approximatively 1-connected
continum. If X is n-smooth, then pro-groups πk(X) are trivial for
all k > n.

(6.12) PROPOSITION. A compactum X has trivial shape if and
only if X is approximatively n-connected and n-smooth.

(6.13) THEOREM. Suppose X is a movable, calm, and approxi-
matively k-connected, for all k > n, compactum. Then X is n-
smooth.

(6.14) EXAMPLE. The 1-sphere S1 is 1-smooth.
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