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This paper is concerned with finding necessary and
gufficient conditions for the von Neumann algebra _Z(G)
generated by the left regular representation 1° of a locally
compact, separable, non-unimodular group G to be type I,
semifinite, or to have a central summand of type III. In
the case where the modular function J; of G has closed
range, we are able to give a complete solution in terms of the
orbit structure of the natural action of G on the reduced
quasi-dual (I'g, #z) of the maximal unimodular subgroup
H = kernel ;. Thus -#Z(G) is semifinite if and only if the
action is smooth with isotropy subgroup H, and of type III,
if and only if the action is completely nonsmooth. Conditions
of a similar type are given which are necessary and sufficient
for .Z(G) to have a summand of type III,, A< (0, 1].

In §2 we develop the necessary preliminary material for the
later work, establishing the connection between semidirect products
of groups and crossed products of the corresponding group algebras.
Sections 8 and 4 give the proof of the above mentioned criterion of
semi-finiteness; this proof relies heavily on the theory of modular
automorphisms, and crossed products as developed in [3], [20], and
[21]. In §5 we turn to examples; we exhibit groups G;, €0, 1]
with _Z(G;) a factor of type III,, and also groups G,; with _Z(G,,,)
a factor of type III, with T(_ #(G,),) = 2n/log vZ. In fact, we
construct two such families of groups; one is a variation on Gode-
ments example of a group with type III regular representation, and
for these groups the associated von Neumann algebras are not
hyperfinite; the other family is constructed using the semi- direct
product of an abelian group by a solvable group so that the as-
sociated von Neumann algebras are hyperfinite. This second family
of examples is due to A. Connes (private communication). In the
final section we use the results of §3 to give a form of the Plancherel
theorem for locally compact separable groups G for which 6,(G) = R,
and _Z(G) is semifinite. For the most part this is an adaption of
the more general formula in [18].

2. Preliminaries. Throughout, G will denote a locally compact
separable non-unimodular group, with modular function d,.

ProPOSITION 2.1. Suppose 6,(G) = R,. Then there is a continu-
ous one parameter subgroup L = {g,:t€ R} of G with d4(g,) = €.
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Proof. Suppose first that G is connected. Then by a theorem
of Iwasawa [14] there are continuous one parameter subgroups
Vi,+--,V,of G, and a maximal compact subgroup K of G such that
G =KV, V,---,V,. Clearly 64K) = {1}. Thus there is a one para-
meter subgroup, which we may take as V,, such that d4(V,) =+ {1}.
Since V), is connected, we will have 6,(V,) =R,. Write V,={h,:t e R};
since the map te R — 0,(h;) ¢ R, is continuous and onto, we have
0q(h,) = e** for some acR. But then if g, = h,-, 6.(g,) = ¢ and
L = {g,:r ¢ R} is the desired subgroup.

If G is not connected, let G, denote the connected component of
the identity of G. Now either d,(G,) = {1}, or §,(G,) = R,.. In the
latter case the argument above shows we may find the desired sub-
group within G,. If on the other hand .G, = {1}, then &, induces
a continuous homomorphism of G/G, onto R,. Since G/G, has a basis
consisting of compact open subgroups, this homomorphism is locally
constant on G/G,. But this contradicts the assumed separability of
G. Thus in fact the desired subgroup may be found within G,.

Proposition 2.1 greatly simplifies many of our later computations,
the main reason being that the cocycle naturally associated with the
cross-section for G/H may be assumed to be trivial. We note also
that in the case 6,(G@) is singly generated, say {¢*”:n e Z} there is
trivially a subgroup {g,: n€Z} of G with 6.(g,) = e¢"*, (ne Z).

Our next preparatory result is on the interconnection between
crossed products for von Neumann algebras, and semidirect products
for groups.

First, let N be a locally compact group, with left Haar measure
dy, and let « be a continuous automorphism of N. It is well known
that there is a constant d(e) such that

| smdum) = 0@ |_samdatm)

for every function & which is continuous and of compact support on
N. Define a unitary U(@) on L*N, dy) by
(U@é)(n) = d(@)"e(@™*(n)) , EeLXN).

Then we have
(U()N () U(@)*&)(m)
= &a(n " 'a™'(m)))
= (Ma(n))&)(m)
ie., Ule)\"(n)Ule)* = A (a(n)) neN.

Now suppose K is a locally compact group and a: K — Aut N is
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an action of K on N by automorphisms, such that (k, n) — a,(n),
(k, ») e KX N, is continuous. For ke K, let U(k) = U(x,) be as above,
and define an action of K on . #Z(N) by & (z) = Ulk)xUk)*. Since
Uk)U(h), we have a,a,= &,,. Since k — U(k) is strong *-continuous,
we have a continuous action of K on . Z(N) in the terminology of
[21].

We may also consider the semidirect product N X, K of N by
K; the group multiplication is given by (n, k)(m, I) = (na,(m), kl) on
N x K. The following result is certainly well known, but the author
knows of no proof in the literature.

ProOPOSITION 2.2. The crossed product . Z( #Z(N);a& K) 1s
unitarily equivalent with 7 (N X. K).

Proof. Noting that the automorphism group {&,: ke K} is im-
plemented by the family of unitary operators {U(k): ke K}, the
indicated crossed product is generated by the operators on
I}N x K, dy X dy)

(@A (n)&)(m, k) = En"'m, k)

2.1
@D (V(R)E)(m, k) = 6(c)"*&(e(m), h™k)

for ne N, heK.
On the other hand . #(N X, K) is generated on L’ (N x K, d X d)

by the operators
(2.2) (M(m, h)E)(m, k) = 6(a,) " *e(a (n™'m), h™'k)

for (n, h) e N x K. But specializing the equations (2.2) to the group
elements (n, ¢), ne N, and (e, h), h € K, we obtain the equations (2.1)
as desired.

Now, with N an arbitrary locally compact group, we let ¢¥ be
the canonical weight on the algebra . Z(N) (see [20]). If « is a
continuous automorphism of N, and & the corresponding automor-
phism of . Z(IN) we have

LEMMA 2.3, ¢ (@(x)) = ()" (x); xe. ~«(N).,.

Proof. Let 27(N) denote the space of continuous compactly
supported functions on N with the usual structure of a left Hilbert
algebra. For e 22 (N), we let 7,(¢) denote the operator of “left
multiplication” by & on L*N). Recall that ¢"(m,(&* = £)) = ||&]|; and
that it is sufficient to check the desired identity for operators x of
the form 7,(&* « &) for £e€.27(G). (The general case when ¢ is in the
full left Hilbert algebra determined by .Z(@) is in fact identical.)
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So let £€.227(G). Then
&) = a(| s mdym)
= | _snram)a.m

= SN @ )N (r)d y(n) - 6(c)
= o(a)"*m(U(@)s) .
Thus a(m(&* « &) = d(a)m(U(@)§)* » Ula)¢) and

" (A(y(&* * 8))) = d(@)g" (T ((U(@)&)* U(w)$))
= o(a) [|U(@)¢ll}
= o(a) [1&]13
= d(a)p" (T, (&* * &)) .

We recall that if G is a locally compact group and H = kerd,,
then H is a closed normal unimodular subgroup. Furthermore, for
g€ @G, we may define an automorphism «, of H by a,(h) = ghg™;
clearly a,, = a,,, and the map (g,h)eG X H— a,(h)c H is
continuous. According to the results of [22], we have d(e,) = d4(g),
so that also ¢7 o &, = dy(g9)¢”. (We note that in this case 47 is
actually a trace since H is unimodular; we will write 7 or ¢ for
¢7.)

As a matter of notation, if @ is a continuous automorphism of
a locally compact group N, then & will denote the corresponding
automorphism of _#(N), and & will denote the restriction of & to
the centre 2°(N) of _Z(N).

Finally, we recall the following basic facts from [18]. Suppose
G is separable and non-unimodular, and H = kerd,. Let {o,:tc R}
denote the canonical modular automorphism of _Z(G), so that
00(0) = 00y N(0)). Let 3 = |* dps@) and w7 = | rrapty)
denote the central decompositions o% A¢ and A%, For any Hrepresen—
tation © of H, and any element geG define (&,x)h) = n(g " hg).
Since &,\7 is unitarily equivalent with A, we may consider &, as a
transformation on the reduced quasi-dual (I'y, ;) of H. For the
proof of the following facts, see {20].

THEOREM 2.4. (i) The fized point subalgebra _7Z(Q), of _#(GR)
under {o,:te R} 1s (\N°(h): he H}'. Thus Z(G)C{\°h): he H}".

(ii) The map (9,7)eG X I'y —&,(v)el'y is Borel. Under the
identification of L>(I'y, ttn) with 2°(H), @, is a point realization
of &,.
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(iii) There is an algebraic isomorphism & carrying .7 (@), to
A (H) such that

(a) £Q(h) = N (k)

(b)) wK(Z(@)c Z(H), and k(Z(@)) is the fixed point subalgebra
of 2 (H) under {c‘fg:%e G}.

(iv) Let vty :S rEdm() be the erg%dic decomposition of

X

(with respect to {@.:geG)) and N = Sr NIGUE(Y).  Them N —
@
S Ind$ ZNFdm({) is the central decompositionH of \%, so that (X, m) is
p.¢

measure tsomorphic with (I'g, te)-

3. The structure theorems; the case 04,(G) = R,. According to
Theorem 2.4 (iv), in order to study the components in the central
decomposition of A%, it is necessary to know the ergodic decomposi-
tion of the measure g, on I',. Our first task then is to find an
alternate description of the automorphism group {&,: g€ G} on Z'(H).
We note the automorphisms &,(h € H) act trivially, so that we should
regard the action as an action of G/H. In the case §,(G) = R,, we
identify G/H with the subgroup L of Proposition 2.1, and for g, e L,
we let @&, = &,, on Z(H), and @, = &,, on _Z(H).

Throughout the rest of this section w(t), v(¢) will denote the
operators on L*(R) defined by

(u(t)e)(s) = e **&(s)
((t)&)(s) = &(s — 1) .

THEOREM 3.1. Suppose 0,(G) = R,.. Then there is an algebraic
isomorphism of the crossed product F( Z(G);o,) with _Z(H)Q
B (LAR)), which carries the automorphism group {0,:tc R} dual to
{o,:tc R} to the automorphism group {&, Q Adv(t):teR}. Thus the
restriction {6,:tc R} of {0,:tc R} to the centre of B ( Z(@);0,) is
equivalent to the action {&,:tc R} of B on Z(H).

Proof. From the results of [21], the second crossed product
B(F( 7(G); 0,); 0,) is isomorphic with _Z(G) R Z(L*R)), and
B(#(G);o,) is isomorphic with the fixed point subalgebra of
AG) R £ (L¥R)) under the automorphism group {o, ® Ad v(t)*}.

We first show that .Z( 2(G); 6,) is isomorphic with _Z(N) X
Z(LYR)). Consider the automorphism group {¢,QX Ad v(#)*} on _Z(G) R
B(IXR). TFor LG x R), define (FL)(g, p) — SR e=72(g, 5)ds.
Noting that #(_Z(Q)) K Z(L*(R)).Z * = _#Z(G) R Z(L*R)) and that
FZARvt)"F * =1R u(t)*, we are invited to consider the action
{o, @ Ad u®)*} of R on _Z(G) R & (L*R)).

Define a unitary operator W on L*G x R) by (We&)g, p) =
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&(g;'g, ) (L = {g,: pe R}). Note that if o denotes the right regular
representation of G on L¥G@) then W(p%(g)  LW* = p%(g) ® 1, so
that We. 7(G) ® Z(L*R)) and W(_7(@)RQF( L RYW* = _2(G) R
(LA R)). Furthermore, if 4 is the canonical modular operator of
. Z(&), then

(W(4* @ u(®)*) W*e)g, )
= 04(9;'9)"e""&(g, D)
= (" Q De)g, p) -

Thus WU RQ ut)*) W* = 4*® 1. Consequently for xze_#Z(G)®
ZB(LAR)), ¢ is fixed under o, ® Adu(t)* if and only if WaxW* is
fixed under o,® 1 (where ¢ denotes the identity automorphism).
But, by Theorem 2.4 (i) and (iii), the fixed point subalgebra of
{o,Qi:te R} on . Z(G)Q F(L*R)) is isomorphic with _Z(H)®
B (LA R)) as required.

It remains to identify the automorphism {#,:tc R} on _#Z(H)Q
Z(LAR)). This is possible mainly because Takesaki’s Duality
theorem has a particularly explicit formulation in this context.
Following [21], the generators of .Z( #Z(G); d,) on L}L*G); R) are

M (@)8)(s) = 0a(9) "N (9)e(s) 5  g€@
(0, ()E)(s) = &(s — t) seR.

The generators of the second crossed product, acting on
LYIXG); R X R) are then

S (@)8)(s, p) = da(9)"“N(9)&(s, p) 5 gei
(3.2) (0 (1)8)(s, p) = €775(s — &, D) ; teR
(us(@)8)(s, @) = &5, 2 — @) ; qgeR
where the operators A\S(g), v,(t) are the images of the operators

described in (38.1). Performing the Fourier transform in the second
variable as in [21], we obtain generators

(A (9)&)(s, p) = da(g) N 9)&(s, D)
(3.3) (W )E)(s, p) = &(s —t, p — 1)
(us(Q)8)(s, P) = €7"%&(s, ) .

Letting .4+~ be the algebra generated by the operators described
in (8.3) and & the subalgebra generated by {v.(t): t € R} and {u.(q):
g < R}, then 74~ is generated by .&° and an isomorphic copy .#Z =
7(_Z(®@) of _#Z(G) in such a way that 4~ = . ® .#; the normal
isomorphism 7:. Z(G) — 4" N .F”' is defined by

(8.1)

(m(x2)&)(s, p) = 0.2,(x)&(s, D) -
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In our situation,

(@\(9))E)(s, p) = da(g) PN (9)(s, D)
= (M (@us(x(9)8)(s, p) ,

where y(g) = log d;(g). Thus, in .4, the first crossed product is
generated by the operators

{fc(hé"(g))ua(x(g)) ,  9€G
,U:s(t) ’ teR.

Thus under the identification of ./~ with _Z(G) ® Z(L*R)) the
first crossed product is generated by the operators

{M’(g) Xug), geG
1R v@), teR.

Since the dual automorphism {4,:t < R} satisfies 6,(05(g)) = A(g), and
6,(v,(s)) = e*'v,(t), examination of the generators (3.4) shows that the
dual automorphism on the first crossed product, viewed as a sub-
algebra of _Z(G) ® <#(L*R)), is given by 0, = Ad (1 ® u(t)). Per-
forming the Fourier transform as in the first part of the proof, our
generators become \(g) @ v(x(g9) (g€ G) and 1 Q u(t) (t € R) and the
automorphism group in question {Ad(A @ v(t)):teR}. Thus, we
compute the image of 1 X v(t) under the unitary operator W defined
in the first part of the proof.

(WAL Qv(E)W*e)g, ) = £0p-05'0, P — 1)
=&g7'9,p — 1)
= (\%g.) ® v(t)e)(g, D) -

So WA R vE)W* = AN(g,) ® v(t) = w(t). Thus the dual automorphism
group on . #Z(G),® (L R)) is given by Adw(t). But when we
identify . Z(G), with _#(H) as in Theorem 2.4 (iii), we obtain
precisely the automorphism group {&, @ Ad v(t):t< R} as required.
The final conclusion of the theorem follows trivially.

(3.4)

(3.5)

REMARK. (i) Suppose that the subgroup L of Proposition 2.1
may be chosen to be closed in G (examples indicate that such a
choice is always possible, although author knows of no proof to
support this contention). Then G = H X, L and the theorem just
proven is in effect the Duality theorem of Takesaki applied to the
convariant system (_#(H); @_,). Even without the assumption that
L is closed, however, a straight-forward computation shows that
B(A(H); d_,.te R) = _Z(G).

(ii) A similar theorem is possible (and will be proven) in case
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0s(@) is closed in R,. However, in case d,(G) is not closed, the
analogue of Theorem 3.1 remains unknown. It is not known whether
or not in this case we even have .Z(_Z(G); 0,) = . #Z(H) R B (L R)).
To some extent this difficulty may be removed by considering G X S
in place of G, where S is a group with 64(S) = R,, and for simplicity
#(S) a type I factor (e.g., S = {(8 i’) a*0,a,b eR}). But then
further analysis is difficult since the relationship between ker d, and
ker d,.s appears to be very complicated.

Our next objective is to combine Theorem 3.1 with the direct
integral theory, and, at the same time, to clarify the relationship
between the crossed product description of _#(G) as F( #Z(H); &,)
and the description of the central decomposition of A\¢ given in
Theorem 2.4 (iv).

Let _# be an arbitrary von Neumann algebra with separable
predual, and {o,:te€ R} an arbitrary modular automorphism group
on _#. Itis known from the results of [18] and [19] that if _# =
®
S AZ(w)dp(w) is the central decomposition of . #Z then
r

(a) the modular automorphism group {o,te R} decomposes,

@
o, = S 0, .,d¢(w) so that {o,,.:t e R} is a modular automorphism group
r

on _Z(w).

(b) there is a canonical isomorphism of .Z(_~Z;0,) with

@

SF (A W); 0,,) ).

(e¢) in the decomposition (b), the dual automorphism group

®

{6,:te B} decomposes, 6, = SF 0..dw) and {0,,tecR} is dual to
{0, ,:t e R} on Z(. 7 (®);0,,,)-

(d) the diagonal subalgebra of the decomposition (b) is the fixed
point subalgebra of the centre of F( A5 0,) under {#,: t € BR}. (This
is not actually proven in [19] but may be seen easily be observing
that {6,.:te€ R} is ergodic on the centre of #Z(_#(w);o,,) so that
(e) gives the ergodic decomposition {#,:teR} on the centre of
G A5 O,).)

In our situation, we consider the central decomposition

(L(G), ) = Si{//(GX‘”)' N} pto(@)

of _Z(@) and A\°. Thus (b) furnishes us with a decomposition of
A (H)R Z(LX(R)) and hence of M\, with diagonal subalgebra
k(Z(G))c Z(H). By Theorem 3.1, the dual automorphism group on

_AH)® Z(IXR)) is given by & ® Ad v(t). Let \7 = Sf N 1)

®
be the decomposition of \* over £(Z(G)) and let &, = Sr a@, dpe(w)
G
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be the corresponding decomposition of the dual automorphism. Our
next result is intended to clarify the description of the central
decomposition of A% given in Theorem 2.4 (iv) by relating it to the
crossed product description.

®
PROPOSITION 3.2. Let A\ = S Nedps(w) be the central decomposi-
I'a
tion of A%, and N\ = S k.”dpeg(w) be the decomposition of M* arising

from the isomorphism of PB(A(@); 6,) with #(H)Q B (LHR)).
Then the representations A\ and Ind% \¥ are quasi-equivalent.

Proof. Let m¢ = Ind% \Z; we first write down generators for the
von Neumann algebra {z%(G)}”. Recall that =% acts on the Hilbert
space $(®) of Borel functions %: G — 577 (w) (the space of the repre-
sentation A¥) and which satisfy the properties:

(a) 7(gh) = NS (R)™1(9); he H
(8) | In@)rdi < o

where d§ is an invariant measure on G/H, which, in this case may
be taken as Lebesque measure on R. The action of 7% on H(w) is
given by

(wiem)Ng) =ng7'g,); NePHlw), ge@G.

However, $(w) may be identified with L*(o#(w); R) by means of the
unitary operator U: $(w) — L*( o7 (w); R) defined by (Un)(t) = 7(g,) so
that (U*&)g) = M(97'92)5(x(9)). We then compute

(Uni(g)U*E)t)
= (ri(g) U*E)9.)
= (U*¢)g™'9.)
= N (97991205 — 2(9)) -
Specializing to the case g = he H, g = g,eL we obtain generators
for {#8(G)}" on L} (o7~ (w); R) of the form
{(ﬁfi(h)m(t) = Ng(g:'hg (@) ;  heH
@gI)(t) = 1t — 8); seR.
On the other hand, the action of the automorphism group
{@..;teR) on Z(H)w) = {N(H)}" is determined by &, \Z(h) =

Na(9:hgr"), so that the crossed product Z(_#(H)w); &,,) has gener-
ators on L o7 (w); R) given by

i(i(h)s)(t) =N (g7 'hg)e(t);  heH
(M8)8)(t) = &t — s) ; scR.

(3.6)

3.7
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Comparison of (3.6) and (3.7) shows that {7T5(G)}' and .2 (.27 (H ) w); &,,,,)
have identical generators.

We consider now the dual automorphism {6, ,:t € R} of _Z(H)®)®
Z(LXR));  since  0,,(®) = (1 Qv@E)(@,,, ® )@)1Qv(@)*), and
Ad (1 ® v(t)) commutes with &, ,, the automorphism groups {0,,,:t e R}
and {@,.,® i:te R} are equivalent in the sense of [21]. We let 7%,
7% denote the canonical inclusions of . Z(H)(w)® <& (L¥R)) in the
respective crossed products; the above observation combined with
the results of [21] shows there is a normal isomorphism +» of {7%(G)}”
into F#( #(H)w) R Z(LYR)); &,,X 1) with

P(@i(h) = wi(h) ® 1)
P((9:)) = Ms) .

But from the duality theorem, .2 ( 7(H)w)& Z(L*(R)), a,,, X 1) is
isomorphic with _Z(@)w) R <Z(L*R)). We compute the images of
7E\NE(R) ® 1) and A(8) in . Z(G) (@) Q <Z(L*R)). For this, it is easiest
to note that from [21], there is a normal isomorphism +, of
B (A H)0)QH (LHR)); &,,,Q1) with .Z(_Z(H)(0)QZ (L (R)); 6,,.)
carrying wi(x) to wl(x) (xe Z(H)w)R L (LAR))) and A(s) to A(s).
Notice also that the unitary operator W defined in the proof of Theorem
3.1 is decomposable over 2Z(G)® 1, and examination of equations
(8.4) and the form of W show that the images of w/(\WZ(h)® 1) and
AMs8) in _Z(G)w) ® <#(L*(R)) may be taken as being defined by

{(Xf:’ (R)E)D) = Ni(g; hg,)E(D)
(Ms)8)(p) = &p — 3) .

(3.8)

3.9)

Finally, we may define a unitary operator V, on Z(w) X L¥R),
where #(w) is the Hilbert space of the representation \¢, by
(V.8)®) = Ni(9,)6(p). Thus, from (3.9) we have

{( VAi(h)Vie)p) = Mi(hE(p)
(VM) VE)D) = (W(9.)E( — 8))

However, from the proof of 3.1, we see there is an isomorphism 4,
of _Z(G)w) into _Z(G)(@) ® Z(LXR)) with 3,(M(9)) = Ni(9) ® v(x(9));
it is necessary to take the Fourier transform in equations (3.5).
Thus the representation of G determined by (3.10) is quasi-equivalent
with AE.

(3.10)

Before proceeding with our main theorem we recall the following
criteria, proved in [21], for the type of a crossed product. Let
be a property infinite semfinite von Neumann algebra, and {6,: ¢t € R}
a continuous one-parameter automorphism group on _#;,. Let # =
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(.4 0). We also suppose that . # admits a faithful normal
semifinite trace = with z06, = ¢ 'z. Then

(i) .# is a factor if and only if {4,} is ergodic on the centre
=z, of /7.

(ii) if _# is a factor and ¢, € R, then ¢ e S(.#) if and only
if ¢, is the identity on 2.

(iii) if .# is a factor, then it is semifinite if and only if the
action of {4,} on 2 is equivalent to translation on L™(R).

Conversely, if .# is a type III factor and {¢,} is any modular
automorphism group on _#;, then #(.#;0, is properly infinite,
semifinite, and possess a faithful normal trace z with 706, = ¢’z
({6,} is the dual automorphism group.) We also note that if _#Z is
not necessarily of type III, but is a factor, then the restriction of
the dual automorphism to the centre of <Z(_#; g,) is still ergodic.

Let G be a locally compact separable group acting on a standard
measure space (X, ¢) so that the map (9, ) e G X X — B,(«x) is Borel.
(Here B:G — Aut X is a homomorphism.) An invariant Borel set
Bc X will be said to be smooth for p if there is an invariant p-
null Borel set B, € X such that (B — B,)/G is countably separated in
the quotient Borel structure (see {11]). We will have need of the
following

LEmMaA 3.8. Let G, (X, pt) be as above. Then there is an in-
variant Borel set BC X which is smooth for p, and such that if
B, is any other invariant Borel set which is smooth for p, then
MB, — B) = 0.

Proof. Follows trivially from the observation that any family
of disjoint invariant Borel sets of positive measure in X is countable,
and a simple exhaustion argument.

In the particular situation where we consider the action {&,: t ¢ R}
of R (or G/H) on (I'y, pt;), we let B, be an invariant Borel set in
I, satisfying the conclusion of Lemma 3.3. We refer to B, as the
smooth part of (I'y, My, &,) (or just of I';).

Finally if _# is an arbitrary von Neumann algebra with separa-
ble predual, and p is a central projection in ., we will say that
p is of pure type III, (L €0, 1]) if p{v:.~Z(7) is not of type IIL,} = 0
where Z'p = S@u// (M)dp(v) is the central decomposition of . Zp.
We note that thre set {v: _#Z(v) not of type III;} is in fact Borel by
the results of [19], and the definition makes sense.

We keep the notations G, H, L, (I'y, ttz), {@;:teR}), Z(H),
(I, M) ete. as developed above. We recall that to each &,-invariant
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Borel set in I';; (or d,-invariant projection in Z°(H)) there corresponds
a projection in 27(G), and vice versa, via the isomorphism &.

THEOREM 3.4. With 64,G) = R., we have:

(1) The maximal central projection p; of type I in Z'(H), and
the maximal central projection q; of type I in Z(G) satisfy
k(q;) = p;. Thus _Z(G) is of type I if and only if _#Z(H) is of
type 1.

(ii) The maximal central semifinite projection q,; in Z(G)
corresponds to the set

P,; = {veBy: the isotropy subgroup of v wuder {&:tecR} is
trivial}.

(iii) For Ne(0, 1] the maximal central projection q, im (&)
of pure type III, corresponds to the set

P, = {ye By: v has period precisely log » under {d,:tc R}}.

(iv) The maximal central projection q,of pure type III in 2 (G)
corresponds to the set

P(,:TI[—BH.

REMARK. (i) Considering the action {@,: g€ G} of G on (I'y, fty)
we may redefine the sets P,;, P, by

P, = {76311: G;‘ = H}
Po={(ve By d0/G) =\neZ)) ne(1],

where G, is the isotropy subgroup of 7.

(ii) According to the theorem, I is split in four distinct
parts. First there is the nonsmooth part (III,). There is also the
fixed points under {@,: t € R} (I1I1,). Within B, there are those points
whose orbits are “loops” (type III,, with the “size” of the “loop”
determining A). Finally there are the points with orbits which are
copies of the line, corresponding to the semifinite part of _Z(G).

Proof of 8.4. We let E be a Borel cross-section for the action

of {@,:teR} on B,. As usual, we let \¢ = S? Mdps(w) and A =

Nty (v) be the central decompositions of A\ and A7 respectively.

g (i) Let p;, q; be as described in the statement of the theorem

and let @, o! be the restrictions of &, ¢, to .Z(H), = #(H)p,
and _Z(G); = .#Z(G)q; respectively.

The crossed product .#(_#(G);, 01) is isomorphic with _Z(G); ®
L*(R), since ¢! is inner; on the other hand it is also isomorphic
with Z(H)u,p ® Z(LX(R)). Thus _#Z(H),,, is of type I and
£(¢;) = Ds.
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Conversely, the crossed product Z( 7 (H);; @) is isomorphic
with _#Z(H); ® L~(R) ({al:te R} being inner, as _# (H); is of type
I). On the other hand this crossed product is isomorphic with
A (G)e-1»p by Proposition 8.2. Thus £7(p;) < ¢q; and £(q;) = p;.

(ii) Let P;; be as defined in the theorem, and p,; be the
corresponding projection in 2°(H). (Note that P,, is Borel as the
map Y el — isotropy subgroup of ¥ under {&,:¢c R} is a Borel map
from I';; to the closed subgroups of R, in the sense of [13].)

We identify P;; with (P;; N E) x R; the action {@,:t€ R} on P,
is given by a,(v,t) =(v,t —s) for vyeP,NE and s, teR. Since
{@,:te R} is a point realization of the restriction of {@, te R} on
P, and {@:te R} is equivalent to translation on R, the crossed
produet of _#Z(H)p;, with respect to the restrictions of {@,:t € R} to
A (H)p;; 1s a direct integral of semi- finite factors (by Takesaki’s
criterion). On the other hand, this crossed product is .Z (G *(p;1).
Thus £7(p1;) = 1.

Conversely, if 0!’ denotes the restriction of ¢, to .Z(G)q,;, then
(A (G)yr; 0F) =~ #Z(G)q;; ® L7(R), since {ol:teR} is inner.
Furthermore the restriction of the dual automorphism to the centre
of the crossed produect is given by translation on L*(R). This crossed
product may also be thought of as Z(H).,,, ® Z(L(R)). If Py
is a Borel set realizing «(q;;) in I, then it is clear that
Utin(Py; — Pyy) = 0, and that almost every point in P;; has trivial
isotropy subgroup under {&,:tec R}. Thus x(q;;) < p;; as required.

(iii) Let P, q; be as in the statement of the theorem, and p,
be the projection corresponding to P; in 2 (H).

The representation M of H defined by M(h) = M (h)p, evidently

®
is a direct integral \¥ = S Mdpy(®) of representations having the

properties

(a) M\ is {@,:te R)-invariant, and the corresponding action of
R on the centre of (A\Z(H)}" is periodic of period log .

(b) the representations Ind4\Z furnish the central decomposi-
tion of the restriction of A% to £7'(p;). Using Takesaki’s criterion,
we conelude that £7'(p,) < q..

So far the proof has been little more than an interpretation of
[21] in the group-algebra context. The converse of (iii) is a little
more delicate and will require an auxilliary result, which may have
independent interest. Let gq,, ¢;;; be the maximal central projections
in 2(G) of pure type III,, and type III respectively. Choose
invariant Borel sets Q,, Q;;; realizing the projections x(q,) and £(q;;;)
respectively. Suppose for the moment we have been able to proof
that Q;;; — @, C B;; (this will be the content of our auxilliary result).
Then we will have P, £ Q,. On the other hand, the first part of
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the proof of (iii) shows that /', — P, < 1", — @, so that we will
have P, = @, (or more precisely x(¢,) = »,). But then we will also
have £(q;) = p, (Me(0, 1]); to see this note that we already have
£(q;) = p;, and the projections ¢, (A €(0, 1]) are disjoint. Thus if for
some A, € (0, 1] £(g,) > ps,then £(g;) N p, # 0. But then from above
£(q;,) O £(g,) #= 0 and so q;, N g, = 0(x, € (0, 1]). This is a contradiction,
and £(q;) = p; for all xe]0, 1].

Before giving our auxilliary result, we note some other facts
which are necessary for its application. Consider the action
{@:tecR} of R on Q,, — QO Let z”7 be defined by =x%h)=
N(h)e(qrr — q,). Let o :S st (@) be the ergodm decomposition
of the restriction £ of r, to Q,, — Q,, and z7 = S Yd(w) the
corresponding decomposition of 7”. For each w e X the representa-
tion Ind% 777 of G generates a factor of type III, for N = Mw) == 0.
Furthermore, the map @ e X — n(®)<c(0,1] may be assumed Borel,
from the results of [19]. Also the action of {&,:t< R} on the centre
of (ZWJ(H)}" is equivalent to the canonical action of R on L*(R/\N®)Z).

ProrosiTiON 3.5, Let (Y, f£) be a standard measure space, and
{@,:teR} be an action of R on Y with (y,t) - &(y) Borel, and

QAo fl ~ [, Let [l = S 1,0 w) be the ergodic decomposion of L with
X

respect to &. Suppose there is a Borel function n: X — (0, o) such
that for almost all w e X, the action {&,:t e R} on (Y, pt,) is equivalent
to the camonical action of R on R/Mw)Z. Then Y is smooth for
7 under &,.

Proof. Consider A = {(y, w)e Y x X: u,((y)) > 0} where ~*(y)
is the orbit of y under {@, tc R}. Note that for fixed ye Y, w —
1t(7(1)) is Borel, and that for fixed w € X, y — pt,(<?(y)) is also Borel
to see this, note that if we normalize the /¢, to be probability
measures, and choose (arbitrarily) y(w) € Y with z (77 (y(w))) = 1 (such
points exist by hypothesis), then {y: p.(Z(y)) > 0} = Z(y(w)). Thus

A is Borel as (y, @) — p,(<(y)) is Borel.
Also, the projection of A4 on X is (to a p-null set) all of X.

Thus by the eross-section theorem |[2], there is a Borel map y: X —Y

with (y(w), @)e A for almost all we X.
We claim that y is injective on the complement of some null

set in X. For if y(®,) = y(®.) =y, then u,(2(y)) = 1.(7(y)) =1,
and so z, and p,, are mutually absolutely continuous. But this is
excluded by the construction of the ergodic decomposition. Thus
the range of y, say FE, may be assumed Borel and meets each orbit in
at most one point. The saturation S of E is also Borel ([23]); since

(Y = 8) = 0 for almost all ®, A(Y —8) = | p(X ~ S)dpw) =0,
R
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so that Y is smooth for .

4. The structure theorem; the case 0,(G) = {¢"":neZ}. We
turn briefly to the case where 0,(G) is a singly generated subgroup
of R; 6,(G) ={e"":neZ}, where we suppose for convenience that
T > 0. Again, our method is to identify the automorphism group
of . #(_7(G);0,) dual to {0,:te R}, and then to use Takesaki’s type
criterion. In this case however, Z(_Z(G); ¢,) and 7 (H)R Z(L*R))
are not necessarily isomorphic, and we need instead to utilize the
notion of “induced covariant system” as expounded in [21].

We choose once and for all an element ¢g,€ G with 6,(g,) = €7,
and denote by «, the automorphism of H determined by a,(h) = g,hg;'.
Of course in this situation G is the semi-direct product of H by Z
with respect to a,, and . Z(G) = FZ( A (H);,ar.neZ).

Recall that o,(\%(g)) = 04(9)*\g), so that {o,:te€ R} is periodic
of period 2z/T. Thus the modular automorphism should be considered
as an action of R/2rn/T)Z on .#(G). Let ¢: R — R/(2n/T)Z be the
canonical homomorphism, and define an action of R/(2%n/T)Z on . #Z(G)
by

Ve (@) = 0,(2) ; ve Z(G).

We identify the dual of R/2rn/T)Z with TZ via the duality
(e(8), nTy = ¢***. For convenience we introduce the following
unitary operators; on L*R/(2x/T)Z) define operators p(e(s)) (s€R)
and q(nT), (neZ) by

{(p(E(S))E)(S(t)) = &(et — 9))
(g(nT)E)(e(?)) = e™"&(e(t))

and on L¥TZ) define unitaries 3(s(s)), §nT) (se R, neZ) by

{(ﬁ(e(S))S)(mT) = e ""e(mT)
(@nT)e)mT) = &(m — n)T) .

4.1)

(4.2)

Recall that the Fourier transform &#: L R/2r/T)Z) — L¥TZ) defined
by (F8&)(nT) = Sé'mﬂé(s)ds carries p to $ and q to 4.

ProrosiTION 4.1. There s an algebraic isomorphism of
G A Q) Yoy BICm|TYZ) with #Z(H)Q B(LNTZ)) which carries
the automorphism group dual to {r..,} to {&F Q Adq(nT)}. Thus
the restriction of the dual automorphism to the centre of the crossed
product is equivalent to the action {&y:meZ} of Z on Z(H).

Proof. As in the proof of Theorem 3.1, the indicated crossed
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product in the fixed point subalgebra of _#(G) ® & (LN #/2r/T)Z))
under the automorphism group {i., ® Ad ple(s))*:s€ R}. Further,
the generators of this fixed point subalgebra are

M Qalxg)* ;s g€l
1® ple(s)) 5 seR

where y(g9) = log d,(g) e TZ.

The dual automorphism group is given by {Ad 1 ® q(nT)); n € Z},
and the second dual (bidual) automorphism group by {v.,QAd p(e(s))*}.
Performing the Fourier transform in the second variable we obtain:

(4.3)

Generators: N9 Q@ a((aN* ; 9eG
(4.4) : 1 plels)) ; seR
) Dual automorphism: Ad(1® §nT)) ; neZ

Bidual automorphism: ., & Ad p(e(s))* ; seR.
We define a unitary W on LG x TZ) by
(WeXg, nT) = &(g5"g, nT) .
As in Theorem 3.1 we compute

(W(4* @ p(e®)*) W*e))g, nT)
= 0a(9:"9)" e (g, nT)
= (4" Q@ 1)&)g, nT)
and also
(WA anTyHW*eNg, mT)
= &(g57"g:"g, (m — n)T)
= ((\(g7) ® A(nT))e)g, mT) .

Since We #(G)R 2 (L¥TZ)), the fixed point subalgebra of _Z(G)®
F(LXTZ)) under the bidual automorphism group (4.4) is isomorphic
(via oz — WaW*) with #Z(H)Q & (L*TZ)), and the dual auto-
morphism is given by {ar ® Ad GnT): necZ}.

We let 1, = B(AZ(Q); ¥) and {B.;: ne Z} denote the dual
automorphism group on .4, Our next object is to relate the
covariant system {_77; B,r; » € Z}and the covariant system {Z(_#Z(G);
o:; R); 0,: t € R}, where 0, is dual to o, on 47 = B(_Z(R); 0,; R).

PROPOSITION 4.2.

(1) The covariant systems {47; 0,:t € R} and Ind%, {_+;; B} are
equivalent.

(ii) The restriction G, of 6, to the centre of ¥ is the identity
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if and only if t =nT for some meZ, and, for this n, B,r 1s the
identity on the centre of _1,.

Proof. (i) We consider the algebra L”(R)® .+, as the algebra
of all essentially bounded, o-strong*-measurable operator fields from
R to _#;. Following [21] we define _#, as the subalgebra of
L*(R) ® . ¥, consisting of operator fields x with

2(t) = Bur(x(t + nT)) a.e.
On _#, define an action of R by
As(@)(E) = 2(t — 8) .

The covariant system {_#;; x,} is by definition Ind2,{_75; 5}.

Evidently .7, may be identified with L*(0, T)) X .4, (with the
same measurability requirements as above). Under this identification,
the action y, becomes

Bsnr@(t —r + 1)) ; 0=st<r

(4.5) LN =15 e — 1)) 5 r<t<T

where s =nT +7r, 0 < »r < T.

Alternatively, .#; may be considered as acting on L¥G x TZ),
with generators as given in (4.4). It is readily verified that if we
identify L¥[0, T) X G x TZ) with LG x R) by the unitary U,

(U&)g, nT + r) = &(r, g, nT) o=sr<™),

then the image of L*([0, T)) ® .#; is generated on LG X R) by the
operators

MO N9,  9eG

(4.6)
1X uls), seR.

But these operators are nothing but (the Fourier transforms of) the
generators of the crossed product Z( #(G); o,, tcR).

A direct computation using (4.5), the form of B, as given in
4.4, and the above identification shows that the action of ¥, on the
generators of Z(.#(G); d,) (4.6) is given by

XL(9) ® v(x(9) = M(g) ® v(x(9))

and
L1 @ u?) = 'L &Q ult) .

But this is precisely the action of the dual automorphism.
(ii) Consider the restriction X, of y, to the centre L>([0, T)) ®
Z(;) of L™({0, T)® .#;. From (4.5) it is trivial that ¥, being
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the identity implies that s = nT for some ne€Z, and that the re-
sriction 8., of B,; to 2°(_#3) is the identity. The converse is trivial.

We remark that the discussion immediately preceeding Proposi-
tion 3.2, and the proposition itself persists in this situation with
obvious modifications (the proof being based on the covariant system
{_#Z(G); ¥} rather than { .Z(G);o)). We omit details, but will
appeal to the result when necessary.

Let (I'y, tt;) be the reduced quasi-dual of H, and &, the auto-
morphism of (I, tt;) corresponding to the automorphism a, of H.
We note that the action {#,:tcR} of R on I';, x [0, T) induced by
the action {#,:te R} of R on L>([0, T))® 2 (.« (H)) is nothing but
the flow built under the constant function @(v) = T(vel',) from @,
(see [1], [12]). Here we are identifying . 4§ with _#(H)Q Z(LX(TZ)),
from Proposition 4.1.

We let n denote (normalized) Lebesgue measure on [0, T'); to
continue our analysis we need to compare the ergodic decomposition
of t, (with respect to @,) and g, x » (with respect to 6,) as well
as relating the “smooth parts” of these actions (see Lemma 3.3 and
the discussion preceeding it). Throughout the following lemma, =7,
will denote the projection of I";, x [0, T') on I',,.

LEmMMA 4.3. (i) Let Bz, Br denote the smooth parts of the actions
Iy, @) and {I'y x[0, T); 8} respectively. Then py(m,(Br)dBz) = 0.

(ii) If p; = Scf L. dm(x) is the %rgodic decomposition of g
(with respect to @,), then U XN =S (tt, X n)dm(x) is the ergodic
decomposition of fty X m with respect ;o {6,).

(iii) Let &,= S &, dm(x) be the decomposition of &, correspond-
ing to the decomposition in (ii), and 6, = S 8, .dm(x) the decomposi-

tion of {0,:tc R} corresponding to ergodic decomposition of fy X n.
Then, for almost all x, {0,,:tcR} on {I'y; x [0, T); . X m} is the
Sflow built under the comstant function O(v) = T from the automor-
phism &, on (I'y, ).

Proof. The only nontrivial observation needed is that if B <
I'y x [0, T) is smooth for p,; X n, and E is a Borel cross-section for
the action of {f,: t € R} then by deletion of a null set we may assume
7y 1s one-to-one on E. Thus 7n,(H)< I'; is Borel and is a cross-
section for the action of {&;:neZ} on the saturation of = ,(E).
Parts (ii) and (iii) are trivial and left to the reader.

We turn now to the anologue of Theorem 3.4. We keep the
notations as already developed.
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THEOREM 4.4. Suppose G is separable, and 64(G) = {e"": n e Z}.

(i) Let p; and q, denote the maximal central projections of
type I in .7 (H), 7#(G) respectively; then k(q;) = p;.

(ii) Let q;; be the maximal central semifinite projection in
AZ(G) and p;; the central projection im 7 (H) corresponding to
P,; = {v € By: the isotropy subgroup of v under {Ar: n e Z} is trivial}.
Then r(q;;) = Py

(iii) For each mn, let p, be the central projection in .7 (H)
corresponding to

P, = {v e B,: isotropy subgroup of v under
{ar-meZ) is kn:keZ}}.

Then &£ '(p,) is the maximal central projection of .Z(G) of
pure type Ill. where » = e *.

(iv) If P,=Iy — B;, and p, is the corresponding central
projection of 7 (H), then k™ (p,) s the maximal central projection
in Z (@) of pure type III,.

The proof of the theorem is identical in essence to that of
Theorem 3.4; the analogue of Proposition 3.5 for actions of Z is
needed also; we leave the details to the reader.

One consequence of the theorem is that if 6,(G) = {¢"":neZ)}
with 7 > 0, then any central summand of pure type III, in Z(®)
is actually of pure type IIl,—.r for some n € Z*. This of course may
seen be somewhat more easily by observing that the spectrum of
the canonical modular operator on .Z(G) is {¢"":n e Z}, and thus,
in the central decomposition any “component” of the modular auto-
morphism also has spectrum in {¢"": n € Z} (see [18]).

5. Examples. In Theorems 3.4 and 4.4, we have derived
necessary and sufficient conditions for the regular representation of
a locally compact group to generate a von Neumann algebra with
a central summand of pure type III, (A €0, 1]). To the authors
knowledge only one example of a group with type III regular
representation exists in the literature; this example is due to
Godement, and it turns out that the associated von Neumann algebra
is a factor of type III,. Slight modification of this construction
yields a family of groups G;, G,; »€(0,1] with _~Z(G;) a factor of
type III,, 7 (G,; a factor of type III, and T(_Z(G,,,) = 2r/log MZ.
The von Neumann algebras associated with these groups are un-
fortunately not hyperfinite; to remedy the situation another con-
struction is needed. We construct groups ‘P;, P,; (Ax€(0,1]) such
that S(.Z(P)) = \W:neZ}, S(#Z(P,) =1{0,1} and T( Z(P,,) =
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2nt/logAnZ. Furthermore .~ (P,), .# (P,;) are hyperfinite. The author
is indebted to A. Connes for this second family of examples (private
communication).

Before giving the examples we need the following remarks.
Suppose H is a unimodular group such that _#(H) is a factor;
let d, be a Haar measure on H, and «; a continuous automorphism
of H such that dpa;'/d; = . With &, the corresponding automor-
phism of _Z(H) and G; = H X,, Z, we have by Lemma 2.3 ¢ o @, =
AE; so that _Z2(Gy) = F(#(H);, &) is a factor of type III, by
Proposition 2.2 and [3]. The difficulty of course is to produce
examples of such groups and automorphisms as H and «;.

We will also need the following rather easy,

LEmMMA 5.1. Let H, a; be as above. Let K = {0,1}?, regarded
as a compact group, and s the coordinate shift on K. Let K be the
dual group of K, and § the autmorphism of K dual to s on K.
Define the automorphism B; of H x K by Bih, &) = (ax(h), (%)), and
put Go; = (H x K)X,; Z. Then S(.#(G,) =1{0,1}, T(.#(G,)) =
2r/log MZ. '

Proof. The centre of .#Z(H X K) is isomorphic with L*(K)
and so is nonatomic. The action on L”(K) corresponding to the
automorphism B, of _#Z(H X K) is precisely §, and so is ergodic.
Furthermore the canonical trace 7 on Z(H)® .#(K) satisfies
7 - B, = Mt < 7 so that [3] applies, to tell us that S(_#(G,,) = {0, 1}.

To compute T(.#(G,,;) we note that if elements of G,, are
denoted by (h, x, n)e H X K x Z, then the canonical modular auto-
morphism group of _Z(G,,; satisfies o,(n(h, Z, n)) = N"'z(h, &, n),
where #(h, £, n) = \xh, &, n). Thus with T; = 2x/log\,

O'T)\(ﬂ-(h, xz, ’)’L)) = 7\'i’ﬂrlsz'-(h’ '/2! n)

=xu(h, Z, n) .

Thus ¢;, = i, and T:Z & T(A~Z(G,,2)-

Conversely suppose that o, is inner for some value T, of t. By
[3], oy, = Adu for some unitary u in the centre of the fixed point
subalgebra of _#(G,,;) under {o,). But the fixed point subalgebra
is {x(h, &, 0): (h, 2) e H x K}", so that u e {r(e, #, 0): & ¢ K}”". Further-
more, u satisfies the equation

un(e, 0, n)u* = \""x(e, 0, n) , or alternatively
TC(@’ 0; n)*uﬁ(e, O, n) — )J"‘Tou .

But, by definition of the crossed product, Ad (e, 0, n) implg-
ments the automorphism B? of _#(H x K); thus identifying .Z(K)
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with L”(K), and letting w be the image of w under this identification,
we obtain
w(s™(x)) = M"w(x) a.e. on K.

It is well known however that s is weakly mixing, so that (see [9])
s has pure point spectrum. Thus A7 =1 and T,e T:Z. Hence we
obtain T(V//Z(Go,z)) = T;Z.

We now proceed to the examples.

The hyperfinite examples.

Let U(2, @) denote the upper triangular 2 X 2 matrices with
rational entries, and nonzero determinant. Let N(2, Q) be the
normal subgroup consisting of elements of U(2, Q) having determinant
one. Let N,(2, @) be the subgroup of GL(2, R) generated by N(2, Q)

/2
and the matrices @ ! Vg), Ane(0,1). Note that N2, Q) may be
regarded as the direct product of N(2, @) and Z. We consider the
groups P, (x (0, 1]) defined by

P =RX, U2 Q)
Pz — R2 Xs Nz(z, Q)

where the actions of U and N, on R* are the usual ones. We choose
to regard P, as (R* X, N(2, Q) X, Z where the action of N(2, Q) is
the usual one, and the action of Z on R* X, N(2, Q) is given by

n(x, T) = "z, T)
(x, TYe R* x N2, Q) .

LEMMA 5.2. _Z(P) is a factor of type 1II, for each X <€(0,1].
Further, . #(P,) is hyperfinite.

Proof. We first ascertain the type of _.Z'(P)).

(1) With H= R*X, N2, Q), #(H) is a hyperfinite factor of
type II,. For this we note that the discrete group N(2, Q) acts
ergodically on R?, for if Ac R® is measurable and of positive
Lebesgue measure, m(4) > 0, with m(44TA) =0 for all T e N2, Q),
then m(A4SA) = 0 for all unimodular upper triangular matrices S.
On the other hand, these matrices act transitively on the comple-
ment of a null set, and hence ergodically. Thus A is the complement
of a null set, and N(2, @) acts ergodically. By the classical criteria
for the type of factors arizing in the group measure space construc-
tion _#Z(H) is a factor of type II..

The quickest proof that _# (H) is hyperfinite is to observe that
N2, Q) is solvable, and hence _Z(H) is cohyperfinite; on the other
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hand, .# (H) is properly infinite, and thus is hyperfinite, (see [4]).

To see that ..Z(P,) is of type III, is now easy for ne (0, 1).
For P, = H X, Z, and the action of the generator of Z on H clearly
scales the Haar measure by a factor of A. The observations at the
beginning of the section show that .Z(P,) is of type III, (A (0, 1)).
Again, since N,(2, Q) is solvable . Z'(P,) is cohyperfinite, and properly
infinite, thus hyperfinite.

Finally we check the type of _Z(P,). For this it is easiest to
calculate Kreiger’s ratio set for the group measure space construc-
tion (see [3], [10]). In order to apply the results of [3], we must
check that the action of N(2, Q) is almost free. So let AC R* be
measurable with m(4) > 0, and let Te N(2, @). We must show that
if, for every measurable set BC A with m(B) > 0, we have TBN
B # 0, then T = identity. Clearly we may suppose that m(TB4B) =10
for every measurable BC A of positive measure (else the condition
TBN B =# ¢ for all measurable BC A is violated). But then A4, =
{xe A: Tx #+ 2} is of measure zero. Since T is linear, it is the
identity on the vector space difference of 4 — 4, with itself. But
this difference contains a neighborhood of 0 ¢ R?, since m(4 — 4,) > 0,
so that T = identity. Note that our argument in fact shows that
any nontrivial subgroup of GL(2, R) acts almost freely on R*.

We let » = »(R? U(2, @) be Kreiger’s ratio set; for a given
pe@,., we wish to show that per. So let A R* be measurable
of positive measure, and Te U2, Q) be any transformation with
det T = p. By ergodicity of N(2, Q), there is a transformation
SeN(2, Q) with m(ANSTA)>0. Let B=ANT'S"'4; then
m(B)>0, BCA, STBZ A, and det (ST)=p, so that (dm-(ST)™")/dm=p
on B, and per. Since the ratio set is closed, it is all of R,, and
A7 (@) is of type III,. The hyperfiniteness of . Z (G, follows from
the solvability of U(2, @) and [4].

Based on Lemma 5.1 we may now produce examples of groups
P,, with _~#Z(P,;) a type III, hyperfinite factor, and T(_ ~Z(P,;) =
2r/log WZ, A €(0,1).

REMARK. There is an alternative development of the examples,
which has some technical advantages and is obtained as follows.

Let P, be as above, and B, — P, x S where S — {(g i’) a, beR,

a ;tO}. Recall that _Z(S) is a factor of type I, so that _Z(R)
is again a type III, hyperfinite factor. Let H, = kerd,; since R,
contains a closed subgroup on which d,, is one-to-one and onto R,,
we may write B, = H, X,R.. For neR,, let «, be the correspond-
ing automorphism of H,; from [22] and Lemma 2.3, ¢7:o &, = A%,
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The semidirect product R; = H, X., Z then has .#Z(R;) a factor of
type III,, (we note that by Theorem 3.4 _#(H,) is a factor); since
A4 (R,) is hyperfinite, _# (H,) is cohyperfinite and properly infinite,
thus hyperfinite, and .Z(R,) is hyperfinite. The advantage of this
construction is that the automorphisms &, of _#Z(H, satisfying
6" o &, = Aé™ may be chosen to form a one parameter group.

The nonhyperfinite examples.
We give a brief description of the construction. Consider
Godements example G, = R* X, GL(2, @). For rne(0, 1), let SL,2, Q)

denote the group generated by SL(2, @) and N”(é (1)> Put G, =

R* X, SL;2, @); as in the previous examples it is readily shown that
A (Gy) is a factor of type III, (A€(0,1]). Alternatively we may
consider G, x S = H, X, R as in the remark above, and then the
groups G} = H, X,log\Z; again _Z(G}) is a factor of type III,.
The construction of Lemma 5.1 may be performed, producing groups
G,.; with S(.Z (G, ) = {0, 1} and T(.Z(G, ) = 2rflognZ. The fact
that .Z(G;)) and .#(G,, are nonhyper-finite follows from the
observation that G,, G, , contain copies of SL(2, @), and that in turn
SL(2, Q) contains the free group on two generators. It is now
sufficient to appeal to the results of [16].

REMARK. It should be noted that at this point there are no
known examples of groups G for which _Z(G) has nontrivial central
summands of pure types III, and III, for » # ¢. The author has
failed in all attempts to construct such an example.

6. Plancherel theory. In [18], the author has given a
Plancherel formula valid for arbitrary separable locally compact
groups. Let G be such a group (we assume implicitly that it is not
unimodular), and H = kerd,. The important part of the results of
[18] is that the Plancherel formula for G may be expressed in terms
of that of H.
Specifically, let G, H be as above and ¢(z resp.) be the canonical
weight (trace resp.) on _Z(G) (#(H) resp.). Let &(T) be the
associated weight (trace) on the reduced group %*—algebra CH@G)
(C#(H)). Consider the central decom@position T = SF T,dpy(Y) of T,
and the ergodic decomposition x, = Sr rEdus(w) of /fH (cf. Theorem
® _

2.4). Let 7 = S T,dt:(w) be the decogmposition of T over £ (Z°(()),
r @

where we have ff: S T.dpi(v). For x,y € CH(H), define xi(x, y) =

Ty

T.(y*x); we refer to yZ as the bitrace defined by 7, on C}(H).
Suppose now ¢¢€.%(G), the continuous function of compact
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support on G; we define &,€.2 " (H) by the formula £,(k) = &(hg). It
is known ([18]) that that y/(m(%,), m(5,) is constant on cosets of
H in G, where 7w, is the “regular representation” of .2 (H) in
C:(H) (i.e., m(n) is convolution on the left by » on L*(H)). The
Plancherel formula for G takes the form,;

el =, §,,, 2, mEdgdpa@)

where dg is Haar measure in G/H, chosen so that

|, c@deto) = | | etamdawag

(d; and d, denote left Haar measures in G and H respectively).
- o _ _
Also if ¢ = S d.,dts(w) is the central decomposition of ¢, then

Fum@ m(@) = | i@, mENd -

We wish to specialize these results to the case when 64,(G) = R,
and _#Z(G) is semifinite. The class of groups satisfying these condi-
tions embraces all connected, nonunimodular separable groups by
virtue of [5] and [15]. Our viewpoint throughout the discussion is
that the quasi-dual and Plancherel formula for H are known precisely;
and we seek to give a computable Plancherel formula for G in terms
of that of H.

Suppose then §,(G) = R,, and _#(G) is semifinite. According
to Theorem 3.4, the measure spaces (I'y, tt;) and (I'z X R; ttg X m)
are equivalent, where m denotes Lebesgue measure on R. So let

(&3]
057 = T Toldte(@)dm(t)
be the central decomposition of \*, 7, T; we regard ¥ and M\, as
representations of both H and C}(H). Note that ML () =N (e, (2))
(xeCrH)), and that 7, and T, are related by 7T.,.,&) =
Tiwy (VL (@) for e C¥(H). The algebras 2Z%(w,0) and Z%(w,t)
generated by {(\Z ,(h):he H} and {\% ,(h): he H} are identical, and
thus we must have 7,,(x) = K(w, t)Tn(x), Wwhere K(w, t) is some
positive constant, and x € _#Z#(w, 0). On the other hand 7(a,(x)) =
¢ T(x) for x € C¥(H) so that we may compute

@) = || O @)dp@)dm(s)

=§ T oM (@)t @)dm(s)
FGxR
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- Srg, (w5400, (T) At @)dm(s) .
=, K@ 5 + 0T oM@ dp(@)dm(s)
and
S Swe“m.no»{a,n(x))d#c;(w)dm@)
- SpgxkeﬂK(“” )T (00N, 1 (@) A (@) dm(E)

Thus, we obtain K(w, s + t) = ¢ *K(w, t) almost everywhere on I'y X
R X R. But K(w,0) =1, so that K(w, s) = ¢* almost everywhere.
Evidently we may assume then that K(w, s) =e™ for all (w,s)e
I'; x R. Maintaining the previous notations then we obtain

THEOREM 6.1. Suppose 6,(G) = R, and .Z(G) is semifinite.
Then, for &c 27 (G) we have

=, | | entom@) m@)imedidu ),

where Y1, is the bitrace on CH{(H)defined by the trace T, appearing
®

in the central decomposition T = T (0. Btc(@)dm(s) of T. Further-
FGXR
more,

sm@m@) = || et @), mENdmedg .

REMARK. It is well known that _Z(G) is semifinite if and only
if {o,:t € R} is inner (see [20]); indeed we must have o,(x) = ¢'#xe "
for some selfadjoint operator H affiliated with the centre of the
fixed point subalgebra of {o,:teR}. In case 6,(G) = R and _#Z(G)
is semifinite such an operator H may be described as follows.
Regard I', as FG x R, and decompose the Hilbert space L*G) over

S (H);, LAG) = 3 Cron@lta(@)dt. With respect to this decomposi-
tion H may be deﬁned by (H&)(w, t) = té(w, t) where & &(w, t) and
Sktzlief(a), DIPdps(w)dt < . In case 64G) = {e"":neZ} and Z(G) is

semifinite an explicit generator for {¢,:t <€ R} may also be found in
the same way.

REMARK. The recent work of A. Connes (unpublished) show that
for each \€(0,1), the von Neumann algebra .Z(P;) constructed in
the above examples is in fact the Powers’ factor of type III,. This
then gives yet another construction for this family of factors.
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