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We show that a certain simple and well-known measure-
preserving transformation due to Chacon has the property
of commuting only with its powers. We also state a theorem
concerning the centralizer of certain rank one transforma-
tions. In addition we state without proof the fact that
Chacon’s example has no factors.

In [5] Ornstein showed that there exists an invertible measure-
preserving transformation (automorphism) which is mixing and rank
one and, moreover, that any such automorphism has trivial centralizer,
i.e., commutes only with its powers. The purpose of this note is to
show that a simple and well-known example of a weakly-mixing
automorphism, which is due to Chacon [3], also has trivial centralizer
(Theorem 1). It is worth observing that Theorem 1 is false for an
arbitrary weakly-mixing rank one automorphism. In fact, it is possible
to construct a weakly-mixing rank one automorphism S which splits,
S =8, x8,.

Although the mixing property of Ornstein’s example makes it
more remarkable there are at least two reasons why Chacon’s example
is of some interest in this context. First Ornstein’s construction is
complicated and nonexplicit in nature, as opposed to Chacdn’s which
could hardly be simpler or more explicit. Secondly, even the examples
of weakly-mixing transformations having no roots constructed in
[2, 1] are quite difficult compared with the present one which actually
does much more.

Chacdn’s transformation can be most efficiently described as
follows. Let T be the shift on {0, 1} and define by recursion the
finite sequences o(n) of 0’s and 1’s:

gl0) =0
o(n) = o(n — Lon — Llon — 1) .
(o(1) = 0010, o(2) = 0010001010010, ete.)

Let &_’c‘{O, 1} consist of those sequences x such that each finite
segment of x is a segment of o(n) for some n. Then it is easy to

show that (<7, T) is a minimal uniquely ergodic system so there is
a unique T-invariant Borel measure ¢ on {0, 1}* which is supported

on ¢ [t can be defined explicitly on finite sequences x (that is, on
cylinder sets) by
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(1) t(x) = lim fr(x, o(n))

where fr(x, d(n)) denotes the frequency of appearance of x as a
segment of o(n).

To see that T is (isomorphic to) Chacdén’s example one takes in
his geometric construction the partition {P,, P,} where P, consists
of the initial single level of the construction and P, all levels added
later on. P is a generator (this follows from Lemma 2 below) and
hence sets up an isomorphism of the geometric construction with 7.
It is easily seen that the image measure is supported on ~° and
satisfies (1).

We can now state the main result.

THEOREM 1. If ¢ is a (not necessarily invertible) measure-pre-
serving transformation of ({0, 1}, pt) and T = Tp then ¢ = T* for
some integer k.

For the proof we need a bit of terminology and three lemmas.
If a is a sequence of 0’s and 1’s of length n we write |@| = n. For
1,j€Zi, 5]l ={keZ:i <k < j} and if ©€{0, 1}* we write 2[4, j] for
the segment of x of length j — ¢ + 1 beginning at ¢+ and ending at
j. If z[1, j] = a we say a occurs at 7 in . For x and y finite
sequences of length n, d(x, y) = 1/n & {i: (%) = y(3)}. (We think of a
finite sequence as a string of symbols with no specified index set but
for definitions like the above ¢ and ¥ must be indexed in an obvious
way.) For (x,y)e{0, 1}%, d(x, y) = lim, ;... d(x[—1, j], y[—1, §]) if the
limit exists.

Any measurable transformation ¢ of ({0, 1}?, ¢) which commutes
with the shift is called a code. ¢ is said to be finite if there is an
n such that (pwx)(0) depends only on «*, for a.a.x. In this case we
write |@| < n. Any code ¢ can be approximated by a finite code
in the sense that for each ¢ > 0 there is a finite code ¢’ such that
d(p(x), p'(x)) < e for a.a.x. (Approximate ¢ (P,) by cylinder sets
and apply the erodic theorem.) In this case we write ¢ ~ P,

For purpose of the following lemma only, we adopt [0, |o(n)| —1]
as the index set of o(n) and let I,, C[0, |o(n + m)| — 1] be the set
of indices corresponding to initial entries of the component o,’s of
O,im- The following lemmas say that o(n) occurs in o(n + m) only
where we expect it.

LEMMA 2. If o(n) occurs at © in o(n + m) then i€l,,,.

Proof. This is easy to see by induction on n.
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REMARK. It follows from Lemma 2 that if xe<” and ¢(n) and
o(n 4+ m) occur in x on nondisjoint sets then o(n) is contained entirely
in o(n + m).

The copies of o(n) which appear in o(n + 1) (there are only the
three obvious ones, by Lemma 2) will be said to have orders 1, 2,
and 3 respectively, counting from the left. Similarily if xe < any
o(n) appearing in « has a unique order determined by its position
in the o(n + 1) containing it.

LEMMA 3. Suppose « occurs at v im o(n)(n = 5), || > |0,—s| and
B 1is the string of length |&| which occurs at i + 1. Then d(a, B) >
1073,

Proof. Let o(n)* (respectively o(n),) denote o(n) with the final
(respectively initial zero) deleted. Then it is easy to see that for
all n, d(o(n)*, o(n),) > d(e(1)*, o(1),) = 2/3. Since |a| > |o(n — 3)|
there must be a o(n — 4)* and o(n — 4), occuring in the same relative
positions in a and B respectively. This forces

7 on—H*| 2 12 44
d(a, 8) > o] 3 pg 0T

LEMMA 4. Suppose @ is a code and @' is a finite code such that
lgp'| < 107%l6(N — 2)|, N =z 5. Consider an xe{0,1}? such that

p(x) e & and suppose that for some m = N, o(n) occurs at i in x
and codes under @' with error less than 107%, that s

d@' @i, @ + [o(n)| — 11, e@)[4, i + [o(n)] — 1) < 107,

Then there is a k such that k| < |o(n — 2)| and o(n) occurs at i +k
in ().

Proof. Since @(x) e &, 6(n) must occur at some j in x with

i rml 1=i=i+ 20l

(Since @(x) € & any |o(n)| + 1 consecutive indices must contain the
beginning of a o(n).) If the lemma is false then either

(2) i+|a<vz—2>1§a‘gi+£’f2L>'+1

or
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(3) i—’i(zﬂ—lgjgi—zom—zn.

We now consider these cases separately and arrive at a contradiction
in each. In case (2) we have the following picture:

2
2

1.1
E)

2
e
L

(25}

-
J

k3

P'(x)

ST I ——
131
PO S ——
[1 FERSOUGERUNER SN

Q

‘Q)

LA
mh

P(x)

<.t
(=7
ln gl

Here square brackets denote beginnings and ends of o(n — 1)’s and
the indicated zero is a final zero in a o(n —1). We have depicted
j <1+ |o(n)| but the picture is intended to cover the case j =1 +
|o(n)| as well. In either case the leftmost v shown in z is «[m, n]
where [m, n] = [1 + |o(n)], ¢ + 2lo(n)| — 11 N [F, 7 + |o(n)| —2]. Note
that &{m, n] = |o(n — 2)| — 1 = |o(n — 3)| since we are in case (2).

Now sinece @’ and B’ are both coded from v they will agree except
for end-effects which are in number less than

2|9"| < 2:107°o(N — 2)| < 107"|o(n — 2)] .
Thus

d L 10—7|0'('”/"2)| 10—7|U(n—2)| 1079 .
@B < < e =gy

Moreover since z[i,1 + |o(n)| — 1] codes with error less than 1078

d(a, a) < _"T_g”i)_' 10~ < 4410~ < 107,

and the same for d(B, 8). Thus
dle, B) < 107° +107° + 107° < 107®

which contradicts Lemma 3, since the relative positions of @ and B
in o(n) differ by one.
In case (38) the picture is
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where we have indicated an initial zero of a ¢(n — 1) and we arrive
at a contradiction in a similar way.

Proof of Theorem 1. Choose a finite code ¢’ such that ¢'}0\_j¢,
Fix an re 7 such that p(x)e < (this is true for a.a.x since o is
measure-preserving) and d(e(x), ¢'(x)) < 10~® (which is also true for
a.a2.x). Since 2 € ~7 we may choose sequences i(n) — — oo and j(n)— oo
such that z[i(n), j(n)] = o(n). Fix N = 5such that |¢’'| £107¢|c(N — 2)|
and

d(p@)[i(n), i(m)], '@[i(n), j(n)]) < 107 for all n= N.

Now by Lemma 4, g(N) occurs at i(N) + k in ¢(x) for some
[k} < |o(N — 2)|. Applying Lemma 4 again we find that o(N + 1)
occurs at i(N +1) +1 in @(x) for some |I| < |o(lN—1)| and this
o(N + 1) must contain the o(IN) appearing at 4(N) + &k in o(x),
since [o(N —2)| + |6(N —1)| < |o(N)| (see the remark following
Lemma 1). We claim that the order of the o(N) at «(N) + k in p(x)
is the same as that of the o(N) at #(N) in z. This is so because
otherwise we would have

Iz [o(N)] — [k Z |6(N)| — |o(N — 2)| =z 2]6(N - 1)],

a contradiction. It follows that the orders are the same, as claimed,
which obviously implies that I = k.

Now we apply Lemma 4 a third time and conclude in the same
manner that o(IN + 2) occurs at 4(N + 2) + k. Continuing in this
way we find that ¢(IN + m) occurs at +«(IN + m) + k in o(x) for all
m = 0. Since i(n) — — o and j(n) — o this implies that p(x) = T"x.
Of course k& depends on z but since there is such a k for a.a.x, there
is a fixed k such that o(x) = T%x for x € E, p((E) > 0. It then follows
from the ergodicity of T that ¢(x) = T™x for a.a.x.

We could also have obtained Theorem 1 as a corollary of the
following theorem. To state it we first deseribe (somewhat informally)
a certain class of automorphisms to which the T of Theorem 1
belongs. A rank one automorphism (this notion has gone by many
names in the past- in [5] it is called class 1) is an automorphism S
such that for any partition P, the (P, S) names have the following
structure: Given ¢ almost have every name ¢ is within ¢ (in d) of
a sequence 7 which is a concatenation of copies of a single finite
string 7, and arbitrary “joining” strings such that the joining strings
occupy a proportion less than ¢ of the places in 7. If 7 can be chosen
so that the joining strings have only two lengths ¢ and b and if
the number of successive joiners of length a is bounded then we’ll
say that S is rank one with two return times. For the T of Theorem
1, the two return times are just 0 and 1.
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THEOREM 5. If S is rank one with two return times then the
set of measure-preserving transformations which commute with S
1s the weak closure [4, p. 61] of the group gemerated by S.

Theorem 1 follows from Theorem 5 as follows. If T = Tgp and
T* — ¢ weakly for some nondecreasing sequence k&, then T*i~*i—
converges weakly to the identity. One then shows, by arguments
as in Lemmas 2 and 3, that for ze &, d(x, T*) > 107 for all k = 0,
so that &k, — k,_, = 0 for large 4, forcing ¢ = T*.

We do not know whether Theorem 5 is valid for any rank one S.

We conclude by stating without proof another property of T.
It is known [6] that a mixing rank one automorphism has only the
trivial factor algebras. The same holds for the T of Theorem 1:

THEOREM 6. Up to null sets the only o-algebras invariant under
T are the full o-algebra and the trivial o-algebra {4, &).

Theorem 6 is proved by coding arguments similar to those in
Theorem 1. The idea is that if ¢ is a homomorphism of T which is

not 1 —1 we can find x, y € & such that # = Ty for all neZ and
o(x) = p(y). Approximating ¢ by a finite code ¢’ one then shows
that d(@'(6(n)*), @'(6(n),)) (notation as in Lemma 3) is small for large
n. One concludes that d(p(x), (Tx)) =0 for xe¢?, which implies
that @ is constant by the ergodicity of T.
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