Pacific Journal of

Mathematics

COMPLETE REDUCIBILITY OF ADMISSIBLE
REPRESENTATIONS OVER FUNCTION FIELDS

STEPHEN J. HARIS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 79, No. 2, 1978

COMPLETE REDUCIBILITY OF ADMISSIBLE
REPRESENTATIONS OVER
FUNCTION FIELDS

STEPHEN J. HARIS

In his investigations of the ‘‘natural domain of validity”
for all Siegel Formulae over number fields, Igusa was lead
to a certain class of representations, which however, make
sense over any field, not just number fields. Calling these
representations absolutely admissible, Igusa analyzed their
arithmetic nature in ‘‘Geometry of absolutely admissible re-
presentations’ [4], to find the ring of invariants, the
stabilizers of various points etc. The objective of [2] and
of this paper is to show that for function fields, the abso-
Iutely admissible representations arise from the same
arithmetic questions concerning the Siegel Formula, as was
the case for number fields. In [2] we obtained a list of the
composition factors of the representations that arise in this
manner. In the present paper we show that these re-
presentations are in fact completely reducible, whence for
the characteristic of the function field sufficiently large (a
bound given explicitly for each group) the arithmetic of
invariants discussed in [4] hold for function fields, exactly
as for number fields.

The method of proof is cohomological, using the struec-
ture theory of semi-simple groups to find a sufficient condi-
tion, which will guarantee that the extensions split. A case
by case examination shows that this condition is satisfied in
every case save for SL, and E;, where further arguments
are needed.

The author wishes to thank John Sullivan for helpful
conversations concerning the cohomology.

1. A sufficient condition for extensions to split. Let G be a
linear algebraic group defined over a field ¥ and fix a universal
domain 2>k, Let V, W be two rational G-modules that are
finite dimensional vector spaces over £ and set W*=Hom, (W, Q).
By the theory of derived functors we can identify Ext,(V, W)
with H(G, V@, W*), since the category of G-modules has enough
injectives [3]. In particular Ext; (V, W)= H'(G, V @, W*), whence
the extension of W by V splits if HYG, V @, W*) = 0.

PROPOSITION 1. Let G be a semi-simple algebraic group, V a
rational G-module, which is a finite dimensional vector space over
Q2. Fix a maximal torus T of G and a Borel subgroun BDO T,
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which will serve to order the roots of G. If mo weight of G in V
18 of the form =+a «, where a = 1, integer, & a simple root of G,
then HYG, V) = 0.

Proof. Let P, be the one parameter subgroup associated with
the root «, i.e., the image of the morphism =z,:G,— G, where
tx (2)t™t = x,(t*2). Here te T, a is a root of G (with respect to T),
ze 2 and t* = a(t). Then G is generated by T, P,, P_, for ae 4,
the simple roots for the ordering determined by B. Let f:G—V
be a 1l-cocycle. Since the cohomology groups of tori are trivial, we
can modify f by a suitable coboundary to have f(¢) = 0, for all te 7.
Now V =3V, where V, ={ve V|t.w =tw, allte T}. So, writing
f(@(?)) = >, 1,(2), where z — [,(z) is a regular function G, — V,, since
it is given by a polynomial function, we have f(x,(2) = Dz, 21,
with [, ;e V,. But f(id) = 0, so in fact f(x,(2)) = Diisws 2.0

Now, using the cocycle relation f(gg’) = f(g) + ¢g-f(¢’) and the
conjugation relation tx,(z)t™ = x,({*2) we see upon comparing the
coefficients of z* that if [,, = 0, then {* = ¢t°, so if the weights of
@ in V are not of the form +ia, 1 =1 @€ 4 we must have f =0,

whence HY(G, V) = 0.

COROLLARY. If V, W are G-modules, then the extension of W
by V splits if the weights of VQ W* are not of the form *ia for
some 1 =1, a4

Further, every G-module all of whose composition factors have
the same highest weight ), is completely reducible, for G semi-simple.
This is a consequence of the fact that for an irreducible representa-
tion there is a unique Borel stable line, the multiplicity of \ is one
and every other weight is of the form s =X — D>, m.(s)@, with
my(s) = 0 an integer [1]. We shall give a proof of this known result
because of its importance in our work and for lack of a convenient
reference.

LEMMA (Humphreys). G a semi-simple group, V a rational G-
module all of whose composition factors have the same highest
weight. Then V is completely reducible.

Proof. For yeV,, x,2)y =y + vectors of weights s + i«
(¢ >0). This can be seen exactly as in Proposition 1; hence if X\ is
the highest weight that occurs in V, every vwe V, gives rise to a
Borel stable line, since vectors of weight A + ia(7 > 0, @ > 0) cannot
occur. Also span (G.v) = span (U". v) for such v€ V,, so this has a
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unique line of weight A, whence span (G.v) is an irreducible G-
module, since any G-submodule must have a Borel stable line, while
the only highest weights in V are )\, thus such a line must contain
v, by the uniqueness just remarked. Let W be the G-submodule of
V generated by the vectors of weight . Then W = {(G.v,> + -+ +
{(G.w,) is completely reducible. If W=V, then V=W + V/W as
T-module, the highest weight that can occur in V/W is less than X,
contrary to V having only )\ as highest weight of the composition
factors.

The irreducible representations of G are characterized by their
highest weight and for a given A\, the irreducible G-module (in
characteristic P) having highest weight A is a quotient of the cor-
responding module (in characteristic 0). Thus, to obtain complete
reducibility, it suffices to show that for the modules in characteristic
0 the weights are not of the form +aa. By the above lemma, we
need only consider the composition factors corresponding to different
weights.

2. Complete reducibility of admissible representations. From
[2] and the previous remarks, we need to investigate the following
representations.

Type A,. 0.+ Ony O+ P2 O+ Pa-riy P2+ Ony Ouos + Ouy OpAs, +
#b4,. By the outer automorphism of the Dynkin diagram we have
0: = On_i., Where 0 denotes the contragredient representation.

Case 0; + 0,. 0.Q P, = 0. X p,.. The simple roots are A, — A,
Ny — Ngy ***y Ay — Mpr1, While the weights of N\, are N, N, -+, Ay,
Npsr = Ny + +++ +N\,), whence the weights o, ® o,, being A, + \; are
never of the form +a(n, — N\;yy) if n = 2.

For n =1, a = 2\, and the weights of p, ® p, are +2\, 0, so
a further argument is needed. But for f: SL,—» V ® V a l-cocycle,
modified so that f|, =0, we have t.f(x,(z)) = f(x.(t°?)), so if V =
vy v, f(@(2) = L0, @ v, + L(2)v, @ v, + L,(2)v, ® v, + L(2)v, Q ;.
Then the above relation implies that f(x.(2)) = az(v, ® v)), f(X_.(2)) =
bz(v, X v,) for constants a, b.

The cocycle relation applied to the element x.(2) x_.(2") when
22’ + 1 +#+ 0, now implies that ¢ = b = 0, whence H(SL,, o, ®p0,) =0
for all n.

Case p, + p,. The analysis is similar to the above, since the
weights of p, are known to be N\, + ;{2 = J), 0, = Op_se
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Case 0,04 400, 0pos, Q O, has weights p*** (weights of 0, ® o)),
whenee for n # 1, we have complete reducibility. But by [2],n =1
cannot occur, hence this case by case examination shows that every
one of the representations known to be admissible for SL, is com-
pletely reducible. As we know this listing is exhaustive for » >
3/2n(n + 1).

Type B,. For G = Spin,,,,, we must show p, + o, is completely
reducible, for n =2, 3, 4. The point now is to obtain the weights
of p,, the spin representation. By Chevalley’s theorem [6, p. 14],
if W is the Weyl group acting on E, with F' a subset of FE, then
W, the subgroup of W which keeps F pointwise fixed is generated
by the reflections W,, which keeps F' pointwise fixed.

LEMMA. The weights of 0, are {L/2(FN =X, = <o+ =N}

Proof. In characteristic zero, o, is a representation of degree
2", For 4, the highest weight of p,, W the Weyl group, W. 4,,
the orbit of 4, has [W: W, ] elements. By Chevalley’s theorem,
we have W, c W(A,_,), the Weyl group of type A,_, whence

|W. A, = |W: W(A,_)| =2"nl/n] =2,

so that W acts transitively on the weights of o,. In particular p,
is of degree 2" in characteristic p with the weights {W.4,} =
{1/2(xx, = -+« £ 7,)}. Note that p, is self contragredient.

For B,, the simple roots are {A, — Ay, =+, Ny — A, A,} With the
weights of p, being +x;,. Thus =+, + 1/2(\, = --- £ ),) is never of
the form =+aa, acd, whence HSpin,., 01X 0,) = 0. Therefore
all the representations of a group of type B, listed in [2] are com-
pletely reducible.

Type C,. Now G = Sp,, and we must show o, + p, to be com-
pletely reducible where p, is the standard realization of G on M,,,
and p, is the representation on M,,, A M,,,. Thus the weights of
0, are =\;, for \, they are =+)\; \;, 0. But the simple roots are
v — Nl =1 <m, 20} so we see that 0, + p, is completely
reducible.

Type D,. Now G = Spin,, and we must show that the following
are completely reducible.
n = 4 401+103+(0u 0, + 05 (01+(04) (03+404

n =5 0+ 0y P+ 0u O+ P
n =6: 0, + 05 0, + 05 in general and if characteristic of &k = 2, for
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n = B Oy + 04 O, + 0s. Exactly as was the case for type B,, we
see that the Weyl group operates transitively on the weights of
Qu-1s P, (resp.) and as W(D,) = S, -(Z/2Z)*" with N\, — &\, with an
even number of negative signs, so that the weights are, for p,_;:
{1/2(£N, £ N, = -+ £ \,)|even number of negative signs}, for p,:
{1/2(+x, = x; &+ <+« £ \,)|odd number of negative signs}.

Therefore 0, Q) 0.1, 02 X 0, do not have weights of the form
*aa, ac{h; — Ny 1 =9 < n Mo + N}, Whenece 0, + 0,y 00+ 0.
are completely reducible for all . Also by the above, for n = 4,
0s ® o, has weights 1/2(N, £ N £ Ny £ 0) + 1/2(FEN, £ N =0 £ N
where in first parenthesis have an even, in second parenthesis an
odd number of negative signs, thus again p, + o, is completely
reducible. Finally, o, + 0, + o, is completely reducible, since if V
is the module for p,, V' the module for p, + p,, then V' = V' and
the weights of V Q V' are the weights of 0, ® 0,, 0. ® 0., Wwhence
by above, never of the form +aa, ac 4.

For n =5 the weights of o, are £\, = N\;(i # j) so it is self
contragredient, whence o, + o, seen to be completely reducible.

If the characteristic is two, » =5, 0,4, has weights 2 {weights
of p}, so weights of p, + 0, (resp. 0, + 0, are =2, +
1/2(N, £ -« = ;) odd (resp. even) number of negative signs, so
once again it is completely reducible.

Type E,. Here our notation differs from that of Bourbaki, with
the labelling of the Dynkin diagram being

1 2 3 4 5
0 0 0 0—0.

NO

We need to investigate o, + 0,.

The method used to find the weights of the spin and half spin
representations cannot be used now, since there is no convenient
description of the Weyl group for E,. However, we can apply
Springer’s criterion [5], which involves only the highest weights
A,y A, We find 3(4, + o, 4, + ) = 135 where 20 = sum of the posi-
tive roots, hence for p = 2 o, + o, is completely reducible.

Thus we have shown, by the above case by case examination
that every representation listed in [2] is completely reducible, which
if the characteristic is sufficiently large, shows all absolutely admis-
sible representations to be completely reducible.
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