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BY USE OF 4,(X)

JEROEN BRUIJNING AND JUN-ITI NAGATA

Covering dimension, in the sense of Katéetov, of a topo-
logical space X is characterized by use of 4,(X) which will
be defined in the main discussion in terms of cardinalities
of finite open covers of X.

1. Introduction. L. Pontrjagin and L. Schnirelmann [6] charac-
terized dimension of a compact metrizable space X by use of the
numbers N,(¢, X) = min {m € N| the metric space (X, o) has a cover
7 such that |Z/| =m and diamU < ¢ for every Ue %}. Their
result is quite interesting in the sense that covering dimension, which
is defined in terms of order (a kind of local eardinality) of a cover,
is characterized in terms of global cardinality of a cover. J. Bruijning
[1] generalized Pontrjagin-Schnirelmanns theorem to separable metric
spaces by use of totally bounded metries and to topological spaces
by means of totally bounded pseudometrics.

In the present paper, we shall characterize covering dimension
of topological spaces by use of a new funection 4,(X), which will be
defined later. It seems that 4,(X) can provide us with a neater
characterization of dimension, perhaps because it does not involve
the metric p in its definition while N, (e, X) does.

2. Conventions. In the following discussions we frequently
consider a finite collection % = {U,, ---, U} of subsets of a space
X such that Y {U;|]1 <j <4}DA for a certain subset A of X, and
a cover 7" ={V, --+, V;} of A such that V;cU,NA for 1 <7 <1.
Then we may say: % is shrunk to 7~ on A.

If 77 consists of open (closed) subsets of A, we shrink % to
the open (closed) cover 7” of A. If A = X, we may drop the words
“on A”. If N7 = @, 7 is vanishing.

We shall denote by C% the set of all m-element subsets of the
set {1, 2, -+, k} and by (Z) its cardinality, i.e., (Z) = kl/ml(k — m)!.

By the dimension of a space X, dim X, we will mean its Katétov
dimension, i.e.,

dimX = —1 iff X=0g;
dim X < n(n = 0) iff every finite cover of X,

consisting of functionally open sets, has a finite refinement, also
consisting of functionally open sets and with order < n + 1;
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dimX =n(n=0) if dimX <% but not dimX <% —1;
dim X = o iff not dimX <#n, for every =n.

We will sometimes use the following, without explicitly mentioning
it: for normal spaces, Katétov dimension coincides with ordinary
covering dimension [3, p. 268].

For basic concepts in general topology and dimension theory see
[3],[4], and [5]. The reader is warned that different authors some-
times mean different numbers by the order of a cover; in our definition,
the order is the maximum number of mutually intersecting sets in
the cover, but in Engelking [3] the order is defined to be one less.
Since we will frequently be referring to [3] the reader should be
aware of this.

3. The main theorem: the normal case. Let X be a topological
space and k a positive integer. Define
4,(X) = min {m € N| for every functionally open cover % of X with
|% | < k there exists a functionally open cover 7 of X with
|7 <m and 77 < Z).
Here 777 = {St (z, 7°)|x € X} and < means: “refines”.

REMARK. If X is a normal space, we may drop the word “func-
tionally” in the above definition either or both times it occurs and
still arrive at the same number. This is easily proved using similar
techniques as in the proof that Katétov dimension coincides with
ordinary covering dimension referred to above. We will use this
observation in the sequel without explicitly mentioning it.

PrROPOSITION 1. Let n =0, and X be a topological space with
dim X <n. Let keN. Then

4(X)=2" -1 if k=mn+1

k k .
Ak(X)§<l>+---+<n+l> if k=n—+1.

Proof. Suppose Z = {U, ---, U,} is a functionally open cover
of X. Since dim X =< n, we can shrink % to a functionally open
cover 7" ={V, ---, V,} with ord 7" <n + 1. Further shrink 7 to
a functionally closed cover &% = {F, ---, F}} (as in [3, p. 267]). For
every nonempty A C{l, ---, k} we define the following functionally
open set:

W(A) = [N{V[ie A]ININ{X\F,|t¢ 4}] .
Let o7 = {W(A)|W(A)=@}. Since ord 7 =n+1, W(A)= @ if |A|>
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n + 1. Therefore | % |<2 —1if k<n +1,and |% | < (i‘)+

+<n f_ 1> if k=n+1. It is also easy to see that 774 < 7" < Z, be-

cause for each xe F,, St (x, %#")C V,. This proves Proposition 1.

LEMMA 1. Let X be a normal space and n = 0. Then dim X < n
i every oven cover {W,, «--, W,.,} of X can be shrunk to a vanishing
open cover of X.

Proof. See:Engelking [3, p. 282].

LEMMA 2. Let X be a mormal space with dim X = n, where
either n=1 or n =0 and X infinite.

Let ke N. Then there exist k disjoint closed subsets of X with
dimension =n.

Proof. The proof is by techniques similar to those of C. H.
Dowker [2] who proved related results.

If n =0 we use the fact that X is infinite to prove our result.
If » > 0 the result will follow from: there exist two disjoint closed
subsets of X with dimension = n. Let % ={U, ---, U,} be an open
cover which has no open shrinking of order <= and has no proper
subcover. Since »>0,72=2. Let & ={F, ---, F;} be a closed
shrinking of 7. From [3, p. 276] it follows that some element of
&, say F,, has dimension = n. Let V be an open set such that
F,cVcVcU. We claim: dim (X\V)= n. Indeed, the collection
{U, U\V, ---, U\V} is an open cover of X\V. If dim (X\V) < u, by
standard methods one can prove the existence of a collection %%~ =
{W,, ++-, W} of open subsets of X such that W,cU,, W,CU,\V, ---,
W, cU\V,ord % <n and X\Vc U %- Then define O, =V U W,
0,=W,, -+-,0,=W, to get an open cover {O,, ---, O;} of X with order
<n and shrinking %/, contradicting our initial assumption. Thus
dim F, > n, dim X\V=n, and F, N (X\V) = @. This proves Lemma 2.

PROPOSITION 2. Let X be a normal space with dim X = n and
let either n =1 or n =0 and X infinite. Let ke N. Then

4(X) = 2F -1 if k=<n+1
k k
4,(X) = (1) R +(n~|—1> of k=n+1.
Proof. We will only prove the proposition for the case k= n + 1,

since the case &k < n + 1 then follows by substituting ¥ — 1 for =.
So, let k=n + 1. Let {C(a)lxeCk,} be a collection of disjoint
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closed subsets of X of dimension =7 (Lemma 2). For each @ eC!,, we
can find, by Lemma 1, an open cover Z (@) = {U?|i € a} of C(«) which
cannot be shrunk to a vanishing open cover of C(a). Note that
|7 (@) =nm + 1. Note also that Z () cannot be shrunk to a vanishing
closed cover of C(a) either, since such a cover could, by using
normality of C(a), be expanded to a vanishing open cover of C(«)
still refining Z/ (). Now, define open subsets U; (1 <1 < k) of X as
follows:

U, = [X\U{Cl@)|aecC: U [U{U:lical]

(note that «, not ¢, is the free variable in the right hand formula).
Then % ={U,|1 <4 <k} is an open cover of X. Suppose 7 < %

for a finite open cover 7. We claim: |77 = <llc> + oo + <n lj_ 1>,

which implies 4,(X) Z ({ )+ -+ (,, k1) We will show this in
the following way: let {1, ---, k} be chosen so that 1 < |B]| <
n + 1. We will prove the existence of an element V(8)e€?" such

that
B={jefl,---, k}V(BCUj .

In this way we can assign in a one-to-one manner an element V(8) e 7~

to every B. Since there are <]f 4 eee + (n ﬁ 1) B’s, this gives us

|77 = <116> 4 oeee <n ﬁ_ 1). So, let g {1, ---, k} be subject to the
condition 1 < |B| = n + 1, and fixed. Let vc{l, ---, k} be so that
BNy = and BUveCE,,. We will write «a =BU7v. Put K =
C@\U{U¢|iev}. Observe that {U%|jepB} is a collection of open
subsets of C(a) which covers K and cannot be shrunk to vanishing
closed cover {K;|je B} on K: namely, suppose it could. For each
je B, the set K; could, by normality of C(«), be expanded to an open
set H; of C(a) such that K;Cc H;CUj in such a way that
N{H;|7eB} = @. Thus Z(a) ={U;|ica} could be shrunk to the
vanishing open cover {H;|je€ B} U{U?|i €7} of C(«), which is a con-
tradiction. Now define closed sets G;, j € B, as follows.

For any jep, putG; = {xe K|St (x, 77) CU;}. Then it is easy to
see that G;cU% and that U{G;|jeB} = K (recall that 74 < %).
Hence N{G;lic B+ @. Let xecN{G;ljeB). Let V(B be an
element of 7° containing z. Since x2€G; for jepB, V(B)cU; for
jepB. Since xz¢ U, for ie¢pB, V(IB)¢U, for t1¢B. Thus B =
{7e{l, ---, B} V(B)C U;}. As noted above, this suffices to prove the
proposition.

Combining Propositions 1 and 2, we have the following

COROLLARY. Let X be an infinite normal space, with dim X =
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7,0 < n < oo, and let k be a natural number. Then

dy(X) =2F — 1 if k<n+1

'k k
A,,(X):( >+---+< ) ok ml.
1 n+1

REMARK. This corollary is nothing but a special case of our
main theorem. The first equality holds for finite - as well for infinite
dimensional X.

Proof. If X is finite dimensional, this is a combination of Pro-
positions 1 and 2. If dim X = <o, Proposition 2 gives us 4,(X) =
2% — 1, thus we only have to prove 4,(X) <2 — 1. To this end, let
< ={0, ---, 0,} be an open cover. Obviously, ord «” <k. Now take
this <7 and substitute it for ° in the proof of Proposition 1. Since
in this proof the fact dim X < is used only to find this " with
ord 7" < n + 1, everything still works and we find a cover 97~ with
|777| < 2" — 1 and ! < 7 This proves our corollary.

4. The main theorem: the completely regular case, In this
section we will extend the above result to the class of completely
regular spaces. Let, for X in this class, X be its Cech-Stone
compactification.

LEMMA 3. Let X be a Tychonoff space. Then dim X = dim 8X.

Proof. This is well-known and, in fact, may be chosen to be
the definition of dim X. See e.g., [3, p. 272].

PRrROPOSITION 3. Let X be a Tychonoff space, and k=1. Then
4(X) = 4,(BX).

Proof. Proposition 1, applied to X, and Proposition 2, applied
to BX, together with Lemma 8 yield 4,(X) < 4,(8X). To prove the
converse, let ke N and 2z ={U, ---, U,} be a functionally open
cover of BX such that for every (functionally) open cover 7" of SX
with 74 < 2z the relation |7°| = 4,(8X) holds true. Shrink Zr to
a functionally open cover %' = {U, ---, U} with U;cU,(1 <1 =< k).
Define %7 ={U, N X, ---, U, N X}. Then 77 is a functionally open
cover of X. Suppose 27" is a functionally open cover of X with
w4 < 77 We will prove: | 7| = 4,(8X).

Let Ex be theop erator which assigns to every open subset O
of X the largest open subset, Ex O, of X with the property that
ExONX =0. In [3, p. 269-270] it is proved that Ex (0,N0,) =
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Ex O, N ExO, for open sets O, and O,, and that Ex(O,U0,)=Ex0, U Ex0,
whenever O, and O, are functionally open. Furthermore, it is easily
seen that ExOcO (closure taken in 8X). Write o7 = (W}, ..., W)}
and define 7" ={ExW}, --., ExW}}. Then U7 =ExW,U--- UExW =
Ex(WiU---UW,) =Ex X = BX, thus 7" is an open cover of BX.
Let pe X and consider all elements of 7 that contain p.

Let us say that these are ExW,, ---, ExW, (m <1). Apparent-
ly, o =ExW;n---NExW, =BEx(W:;n---NW,), which implies
w:n---nNwW, +@. Let qeW:n---NW,. Since %' < 9,
wWiJ---UW,cSt(g, 77")cU;NnX for some 7,1 <7 < k. Thus
St(p, 7)) =ExW;U --- UExW,, =Ex(W;U --- UW,)CEx(U;n X)c
UNnXcU,cU,e 7. Therefore 74 < %/, and by the choice of %
and the fact that |7°|=|%""| =1 we conclude [ = 4,(8X). This
proves 4,(X) = 4.(8X). Since we already had 4,(X) < 4,(8X), the
proposition is proved.

COROLLARY. Let X be an infinite Tychonoff svace, and let k
be a natural number. Then, if dimX = 2,0 < n < oo,

4,(X) =2F -1 if k=n-+1

4(X) = 5 Y k= 1
- (M e[ F) i bzaie

Proof. This follows immediately from Lemma 3, Proposition 3,
and the corollary in the preceding section.

5. The main theorem: the general case, Let X be a topological
space. Define a completely regular space X and a continuous mapping
61 X — X as follows: if & = {f|f: X—][0,1], f is continuous}, let
¢: X — [{se~ I, be defined by é(x) = (f(@));c.-. (Here I, =[0,1] for
fe.o7) Define X = ¢(X).

REMARK. The functor which associates X with X was used in
dimension theory by K. Morita [7] under the name of Tychnoff
functor.

LEMMA 4. (i) If Uc X is functionally open, so is ¢(U)cC X;

(ii)y If Uc X s functionally open, then U = ¢ *(s(U));

(iii) If O, and O,C X are functionally open, then (0, N 0,) =
#(0,) N ¢(0y).

Proof. (i) It suffices to observe, that if U = £7((0, 1]), ¢(U) =
77'((0, 1]), where 7,: X — I, is projection; (ii) if U = f~%((0, 1]), and
xe U, then f(x) =0, thus z¢ ¢ (¢(U)), (iii) always 4(0,N0,) T4(0,) N



A CHARACTERIZATION OF COVERING DIMENSION BY USE OF 4,(X) 7

8(0,). Let peo(0,)Ng(0,). Then there are x€0,, y € 0, with ¢(x) =
¢(y) = p. Thus ye¢7((0,) = O..
Therefore p = ¢(y) € 4(0, N O,).

PROPOSITION 4. (i) (K. Morita [7]) dim X = dim X;
(i) 4y(X) = 4(X) for all ke N.

Proof. (i) Let dimX <=, and let % ={U, ---, U,} be a
functionally open cover of X. Obviously, %’ = {¢(U)), -+, ¢ (U.)}
is a functionally open cover of X. Let 7' ={Vj, ---, V/} be a
functionally open refinement of %’ such that ord7”’ <n + 1 and
define 77 ={¢(V1),---,6(V})}. By (i) of the preceding lemma, 7" is a
functionally open cover of X and 7" <%/; from (iii) of the same lemma
it follows that ord 7" =ord #'<m+1. This proves dim X<n. Now
let dim X < n, and let % = {U,, ---, U,} be a functionally open cover
of X. Then ' = {¢(U), -+, 4(U,)} is a functionally open cover of
X, and, consequently, has a functionally open refinement 7' =
{(Vy, ---, Vi} with ord 7" <n+1. Now 7 ={s«(V)), +--, 67 }(V,)} is
a functionally open cover of X with ord 7 < n + 1. Take an element
of 7, e.g., (V). Thereissome ¢,1 <1t < m, such that V; < 4(U,).
But then ¢ (V) cC¢*¢(U,)) =U,, by (ii) of the proceding lemma.
Thus 7° < %/, which completes the proof of the first part of Proposi-
tion 4.

(ii) From (i), Proposition 1 and the corollary of §4 it follows
that 4,(X) < 4,(X). To prove the converse, let 2 = {U,, +--, U,} be
a functionally open cover of X. Define %’ = {¢7%(U,), +--, 6 "(Up)}.
Then there exists a functionally open cover 7' ={V}, ---, V,.} of X
with7" < Z'and m = |7 | £ 4,(X). Put 7 = {¢(V)|Ve7'}). Then
7" is a functionally open cover of X. Let pe X, and consider the
elements of 7#° which contain p. Let us say that these are ¢(V3),
ce, d(V)). Since g(V) N --- N@(V)) = @, we infer, by (iii) of Lemma
5 Vin---NV/,# @. But 7'M < %', so there exists U;e %, with
Viu---UV/cU; Thereforeg(V)U - ---UHV)=¢(V,U---UV))C
o(Uy) =U,. Thus 7' < Z,and |7°|<|7"'| = m < 4,(X). This proves
4,(X) £ 4,(X), and completes the proof of Proposition 4.

Now we will state and prove our

MAIN THEOREM. Let X be a topological space, such that either
1<dimX < or dimX =0 and X is infinite. Let dim X = n,
and let k& be a natural number. Then

A(X) =2 — 1 if k=n+1

A,,<X>=(i°>+---+( if kznl.

n—}-l)
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Proof. Note that the conditions of the theorem imply that X
is always infinite: for if dim X > 0, so is dim X by Proposition 4,
and a Tychonoff space with positive dimension is always infinite. So
we may apply the corollary of §4 to X, and this, together with
Proposition 4, proves our result.

COROLLARY. If X satisfies the conditions of the main theorem,

dim X = lim 108 4(X) _ 1
- log k
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