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ON THE GENERALIZED CALKIN ALGEBRA

J. J. BUuoNI AND A. KLEIN

A bounded linear operation 7: X—Y between Banach
spaces is said to be weakly compact if it takes bounded
sequences onto sequences which have a weakly convergent
subsequence. Let WI[X,Y] denote the weakly compact
operators from X to Y, B[X, Y], the bounded operators and
K[X, Y], the compact operators. Now WI[X, Y] forms a
closed subalgebra of B[X, Y] and for X=Y, W[X, X] is a
closed (in the uniform topology) two-sided ideal of B[X,X].
The purpose of this note is to construct a faithful repre-
sentation of the Generalized Calkin Algebra B[X, X}/K[X,
X], which parallels a similar representation of B[X, X/
K[X, X]in Buoni, Harte and Wickstead, ‘ Upper and lower
Fredholm spectra’’.

This construction in obtained is §1 and some consequences in
§ 2 with regards to operators TeB[X, Y] with a reflexive null
space, N(T), and closed range, R(T). Operators of this type have
been studied by Yang. Throughout this note, the weak closure of
a set S in X will be denoted by S*.

1. If X is a complex Banach space then let [.(X) denote the
Banach space obtained from the space of all bounded sequences
z = (x,) in X by imposing term-by-term linear combinations and the
supremum norm ||x||. = sup, || .}l

DerFINITION 1. If X is a Banach space then denote m(X) =
{(z,) e l(X)|(Z,)" is weak-compact in X}.

LEmMMA 1. If X is a Banach space then the following hold.

(1) m(X) is a subspace of 1.(X).

(2) a sequence x = (x,) 1s in m(X) iff every subsequence of
(x,) has a weak convergent subsequence.

Proof. (1) is clear and (2) is an immediate application of the
Eberlein—Smulian theorem [2, p. 430] which states that for a
subset A of X then A” is weak-compact iff every sequence in A
has a weakly convergent subsequence.

Let m(X) denote the norm closure of m(X) in [.(X).

LEMMA 2. Ewvery subsequence of an element in m(X) (m(X)) is

9



10 J. J. BUONI AND A. KLEIN
also in m(X) (m(X)).
Proof. This follows immediately from Lemma 1 part 2.

THEOREM 3. If X is a Banach space then m(X) is a closed
subspace of [.(X).

Proof. Let @ = (x,) e m(X), i.e., the closure of m(X) in 1. (X).
It shall first be shown that (x,) has a weak-Cauchy subsequence
and then that this sequence converges to an element in X. Thus
there exists y, = (¥,,.,) em(X) and (x,,), a subsequence of 2 such

that yl,ﬂl{ﬁy1 (converges weakly to w,) and ||(,,) — Wi.)lle < 1.
Now assume for 1 <! < j — 1, that we have (x,,) and (v,, Wwhich
satisfy the following:

(1) (x,, is a subsequence of (z,_,,.),
(L.1) (2) Y. 2,
(3) [[@n) — Wi lle < /L
Then since (x;.,,,) € m(X), there exists a subsequence (x;,) of (%;_,.)

and there exists (¥;,,) € m(X) such that ¥, — ¥; and |[(@;,.)— ¥y, <
1/7. So by induction, for all j, there exist sequences satisfying
(1.1). Now fix 7 and fe X* (the conjugate of X). We claim that
there exists M such that for all » and m = M that

(1.2) [ f (@) — F(@5m)| = 41LFNT -

To see this, recall that yj,n—ui y;, then there exists M such that

(1.3) | f Wi — fyd| S FI/7 for all m > M.
Now for all n, m = M,

1.4) 1 f@in) — f@5n) S 1 @50 — Wil + 1 Wi0) — F(¥)]
+ W) — fWim)| + [ FWim) — F(@5m)] -

Now by applying (1.1) and (1.3) to (1.4) yields (1.2). We shall now
show that (x,,) is a weak-Cauchy sequence. Given feX™ and ¢>0,
select j such that 4| f||/7 < e. Then by (1.2) there exists M, such
that for all m and n = M,

(L.5) | (@) — Fesm)| =4[ FI1/7 .

Set M = max (j, M,). For m and n = M, because (x,,) and (%,.)
are subsequences of (x;,), then | f(®,.) — f(@n.)| < 4|1 flI/7 <e.
It remains to show that any weakly-Cauchy subsequence of



ON THE GENERALIZED CALKIN ALGEBRA 11

(x,) e m(X) converges weakly. To this end, let(x,)em(X) be a
weakly-Cauchy sequence.

Define F: X*— C by F(f)=lim,.. f(x,). Since [F(| =Sl
sup, |/z,|l, then Fe X** Now lete >0, it shall be shown that
there exists ¥y € X such that ||F — y**|| < & where y** is the cano-
nical image of y in X**. To see this, select (y,) € m(X) such that
I (x,) — (W.)]] < ¢/3 and select a subsequence (y,,) of (y,) such that
Yoy, = y. Select fe X* such that || f|| £ 1. For k sufficiently large,
| (W) — F)] < ¢&/3 and | f(x,,) — F(f)| <e/3. Thus, for k suffici-
ently large,

F(f) — y** ()] S 1F) — f@a)] + [ f@) — (W)l
+ £ W) = SO S o + U F U, = vl + 5 <.

Thus, F' is in the norm closure of the canonical image of X in X **,
This image is norm closed; therefore, there exists xz ¢ X such that
F is the canonical image of z. Thus, m(X) = m(X) which proves
our theorem.

2. Now for TeB[X, Y] we have

LEMMA 4. (1) If TeB|X, Y], then T sends m(X) to m(Y).
(2) T is weakly-compact if T maps 1..(X) into m(Y).

Proof. Clear.

Now for TeB|X, Y], let P(T) be the induced operator from
I X)m(X) - 1.(Y)m(Y). Denote by F°(X) the quotient [.(X)/
m(X). Then We W[X, Y] if P(W)=0. Therefore we have the
following theorem.

THEOREM 5. B[.9(X), F°(X)] contains a faithful representation
of B[X, X|/W[X, X].

THEOREM 6. Lef TeB[X, Y].

(1) If N(T) is a reflexive subspace and is complemented in
X and if R(T) is closed then P(T) is one-to-one.

(2) If P(T) is one-to-one, then N(T) is a reflexive subspace
of X.

Proof. To see (1) let N(T) be a complemented reflexive sub-
space, then there exists a closed subspace M such that X = N(T)PH
M. Since R(T) is closed, then T|M(T restricted to M) is an isomor-
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phism. Now let us assume that there exists a sequence (x,) in
I(X) such that P(T)(x, + m(X)) = (Tz,) + m(Y) = m(Y).

Let x, =k, + 2z, where x,e N(T) and z,€ M. Since there exist
bounded projections onto N(7T') and M then (k,) and (z,) are in
l(X). Now (Tw,) has a weakly-convergent subsequence, say (I%,,).
Thus (T%,,;) converges weakly and since R(T) = T(M) is closed then

Tz”jﬁTz for some ze X. Since T is invertible when restricted

to M, thus, zn].ﬂz. Since N(T) is a reflexive subspace, some sub-
sequence of (k,,) converges weakly; (»,) has a weakly convergent
subsequence and (x,) € m(X).

To see (2), we assume that N(T) is not reflexive, then there
exists a bounded sequence (x,) in N(T) with no convergent sub-
sequence. Hence, (x,) ¢ m(X) while (T%,) € m(Y'); contradicting that
P(T) is one-to-one.
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