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Let W be a surface with a normal singular point w.
Consider the minimal resolution of that singularity,
W —->W. Let (w)=Y=1Y,---Y,; where the Y, are
distinet irreducible curves on W’. We are interested in
two divisors on W’ both of which have support on Y. These
divisors are Z, the fundamental divisor, and 1}, the divisor
of the maximal ideal. In general Z = J. In this thesis
we show that if w is a double point singularity which
satisfies certain conditions, then Z = M.

Introduction. Let A denote a normal, two-dimensional local
ring. For simplicity assume that the residue field, %, of A4 is
algebraically closed. Let z: Y — Spec (4) be a birational proper map
with Y regular, i.e., a resolution of the singularity Spec (4). Denote
by m’ the maximal ideal of A. Let #7'(w/) = Y, U --- UY,, where
the Y, are distinct irreducible curves on Y. Then, according to
Artin [1, page 132] there is a unique smallest positive divisor Z,
with support UL, Y, such that Z-Y,<0 for all 7. Z is called the
fundamental divisor. We also have the divisor of the maximal ideal,
M, given by

d
M = ZmzYz ’
i=

where m,; = min,.,. {w;(t)} and w, is the valuation determined by
Y. £ Y. In general Z < M. Artin {1, Theorem 4] shows that if
Spec (A) has a rational singularity, then Z = M on every resolution.
Laufer [4, Theorem 3.13] proves that if Spec (4) has a minimally
elliptic double point singularity, then Z = M on every resolution.
Laufer also gives examples of double point singularities for which
Z < M. His surfaces have defining equation 2* = f(x, y), where
flx, v) e k[[x, 1], f(0,0) =0, and f(x, ¥) is reducible at (0, 0).

In this paper we show that if f(x, y¥) has even order or if f(x, %)
has odd order and is irreducible at (0, 0), then Z = M on the minimal
resolution of 2z* = f(x,y). In §1 we give a method for obtaining a
specific resolution of Spec (4) [3]. In §2 we perform some necessary
computations with Z and M, and in §3 we give the proofs of the
theorems.

1. Methods for resolving double point singularities, Let A
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be a noetherian, complete, two-dimensional, equicharacteristic (not
two), normal, local domain of multiplicity two. Assume that the
residue field, %k, of A is algebraically closed. One has the following
characterization of A.

ProrosITION 1. With A as above, we have that

A ~ k[[x’ Y, T]]

AT — )
where f(x, ¥) € k[[x, y]], f(0, 0) = 0, and f(x, y) has no multiple factors.

Proof. According to [9, Ch. VIII, Theorem 22 and Theorem 24,
Corollary 2] A is a finite module over k[[z, ¥]] and [A: k[[x, ¥]]] = 2,
where {x, ¥} is a system of parameters of 4. Let L be the quotient
field of A and K be the quotient field of k[[x, y]]. Then [L: K] = 2
and there exists an element z € K such that L = K(z) and 2* = f(x, ¥) €
E[[z, y]]. Without loss of generality we may assume that f(x, y) has
no multiple factors. It is easy to see that the integral closure of
E[[z, ¥]] in L is k[[z, y, 2]]. In fact, let @ + Bz be an element of L
which is integral over k[[xz, y]]. Then Trace (@ + 8z) = 2a € k[[z, y]]
and Norm (« + Bz) = a® + B*f(x, ¥) € k|[«, y]], which imply that & and
B are elements of K[|z, y]]. But the fact that A is normal and
integral over K[[z, ¥]] implies that A, too, is the integral closure of
E[[z, y]] in L. Also, since A4 is local, f(0,0) = 0 [8, Ch. V, Theorem
34].

We wish to obtain a resolution of the singularity of the surface
Spec (4). Thus we wish to find a nonsingular surface W and a
proper map 7: W — Spec (A) such that 7 induces an isomorphism
between W — z7'(m’) and Spec (4) — m’, where m’ denotes the
maximal ideal of A.

Let R = k[[z, y]] and let m denote the maximal ideal of R. Let
¢: V — Spec (R) be a proper birational map obtained by successively
belonging up closed points. Let ¢7'(m) =X =X, U --- UX,, where
the X, are distinct irreducible curves on V. Let D be the divisor
of f(x,y)on V. Then D = D, + D,, where D, has support in X and
D, does not involve any X,. It is well known that we can find V
so that (D,);s = D7, X; has only normal crossings and D, is non-
singular. Each X, & V gives rise to a valuation x;, on the function
field of V. Call X; an odd (even) curve if v,(f(x, ¥)) is odd (even).
Suppose X; and X;(¢ = j) are both odd curves such that X;- X; = 1.
Let us blow up the point of intersection of X, and X;. Then we
obtain an even curve Esuch that £- X, = E-X,=1and X,-X; =0,
where X, and X; are the proper transforms of X, and X,;. Thus
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we may assume that no two odd curves meet.
Now let V' be the normalization of V in L. Then we get the
following commutative diagram:

Spec (A4) <oy

*) | Js

Spec (4) +¢— 1%4

We claim that 7w is a resolution of spec (4), i.e., that V’ is non-
singular. This follows easily from Proposition 1. In fact, let S be
the local ring of a point on V. Let f(x, ¥)S = au“v®, where {u, v}
is a regular system of parameters for S and « is a unit. Then S,
the integral closure of S, is also the integral closure of S[z], where
2t = flx, y) = auv®. Hence S’ = S[z’], where (?')* = au*v", 0 < a/,
<1, a=a"mod2, and b = b’ mod 2. Thus S’ is regular.

Let m’ denote the maximal ideal of A. Note that z7'(m') =
977 (m) = g7*(X). Thus, to find the irreducible components of 7~'(m')
we must see how the curves X, & V behave under normalization.
The rules are as follows and are easily deduced from the above
description of S'.

(1) If X;is and odd curve, then its reduced inverse image in
V'’ is an isomorphic copy of X,. This is because each point of X,
has just one point lying above it in V’ (check locally).

(2) If X,is an even curve meeting no odd curves, then in V7,
X, splits into two disjoint copies of itself. This follows because
X, = P’ and the ramification points of X, are precisely the points
of intersection of X, with odd curves. Note that N = 2g + 2, where
N is the number of ramification points of X, and g is the genus of
the inverse image of X, in V",

(8) If X,is an even curve meeting some odd curves, then the
inverse image of X, in V' is a two fold branched cover of X,. This
again follows from the local algebra. In this case, each even curve
must meet an even number of odd curves. This follows from the
formula N = 2g + 2.

Note that if X, is an even curve in X meeting at most three
other curves, then the inverse image of X; in V’ is rational.

We wish to determine the self-intersection numbers of the
inverse images of the X, from the numbers (X2). The rules are as
follows.

(1) If X, is an odd curve, then the self-intersection number
of the inverse image of X, in V' is (X?)/2.

(2) If X, is an even curve meeting no odd curves, then in V’
each component of the inverse image of X, has self-intersection
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number equal to (X3%).

(8) If X,is an even curve which meets some odd curves, then
the self-intersection number of the inverse image of X, in V' is
2(X?).

Let us prove rule one (the proofs of the other two rules are
similar). Let Z, denote the inverse image of X,. Let g be as in
diagram (*), g, be g restricted to Z;,, iy: X, —V and i,: %, -V’
be inclusions, and let ¢, and & denote structure sheaves. Then

NZ,- Z) = (2F,- Z;) = deg i5.(222,))
= deg t£,9%( /(X)) = deg g% (7 (X))
= deg i},(7 (X)) = (X3 .

See [5, Ch. IV, §13] for details.
Note that m’c%,. is locally principal.

2. Definitions and computations. Let 7: V' — Spec (4) be as
before and let z7'(m') = X;U --- U X., where the X; are distinct
irreducible curves on V’. Let a; = min,., {v;(¢)} and let a;=
min,., {vi(u)}, where v, and v; are the valuations determined by
X, 2V and X; S V'. Define a divisor M on V'’ by:

M=3aX;.

M is called the divisor of the maximal ideal. The a; can be computed
from the a, as follows. If X, is an odd curve and X is the reduced
inverse image of X, then a; = 2a,. If X, is an even curve meeting
some odd curves and X is the inverse image of X,, then a; = a,.
Finally, if X, is an even curve meeting no odd curves and if the
inverse image of X, is X;U X, then a; = a] = a;. The proofs of
these rules are straightforward.

On the other hand, there is another important divisor on V’
called the fundamental divisor, which we denote by Z. Asin Artin
[1, page 132], Z is the unique positive divisor on V’ such that:

(1) Z-X;=0, for every 1,

(2) if C is a divisor such that C-X; <0 for every 4, then
Z < C.

Let R be a normal two-dimensional local ring with maximal
ideal ¢q. For simplicity, assume that the residue field of R is
algebraically closed. Let 8: Y — Spec (R) be a resolution of Spec (R).
Let g7%(¢)=Y,U---U Y, where the Y, are distinct irreducible curves.
Then in this general setting M and Z are defined as above and we
have the following propositions.
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ProrosiTION 2. If Z, M, R, q, and Y, U --- UY, are as above,
then Z < M.

Proof. We show that M-Y; <0 for every j. Let w; denote
the valuation determined by Y; < Y. Clearly if M= 3¢, m)Y,,
then m,; = min {w,(f), -, w.f,)}, where the minimum is taken over
a basis f,, -+, f» of g. Denote the divisor of f; on Y by (f;). Then
(f) = F, + G;,, where F, is a linear combination of the Y; and G,
involves no Y,;. We obtain

Oz(f,;)'Yj:Fq;'Yj"f—Gi'Yj.
Now G,-Y;=0,s0 F;-Y; <0. Let F,=>3_b,Y,. Then

M = min(F,, ---, F,) = z( min {bi,}>Y,

I=1 \i=1,¢..,

and so M-Y; <0 [1, page 131].

PRrROPOSITION 3 [6, Lemma 2.8]. Let C, and C, be two divisors
on Y with support in Ui, Y,. Assume that C,-Y; <0 for every
7 and that C, £ C,. Then (C) = (C3) and C, = C, if and only if
(CH = (CY).

Proof. Let C, + B = C, Then
(CH = (CH +2C,-B + B* = (C)

since C,-B <0 and B*<0. If (C}) = (C%, then C,-B =<0 implies
that B2 = 0. Thus B = 0 since the intersection matrix for the Y,’s
is negative definite.

Let us also prove a lemma which will be useful in §3.

LEMMA 1. Let h: Y' — Y be the blow up of pe Y, with B(p) = q.
Let My and My, denote the divisors of the maximal ideal on Y and
Y'. Then h*(My) < M.

Proof. Let D =h"'(p) and A" (Y,) = Y; + n,D. Certainly the
coefficients of Y; in h7'(M,) and M, are equal. Let 7, denote the
local ring of p on Y. Then ¢27, = ta,, where a, is an ideal primary
for the maximal ideal of <7, and ¢ is a local equation of M, at p.
Let v, deeote the valuation determined by D. Then

vD<q) = vp(t) + ?)D(ap) ’

and since, at D, h™'(My) has coefficient v,(¢) and M, has coefficient
v,(q¢), we have proved the lemma. Note that ¢ is invertible if
and only if h™(My) = My..
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Let us now return to the case of surface singularities of multi-
plicity two. We wish to determine the possible values for the two
integers Z* and M? on a resolution of Spec (4), where A is an in
§1 and A has maximal ideal m’. Let B8: Y — Spec(4) and any
resolution of Spec(A4) and let g7'(m/) = Y, U --- UY,;, where the Y;
are distinet irreducible curves. By [6, Theorem 2.7] if m/¢%, is locally
principal, then M®* = —2 on Y. If m'% is not locally principal, then
consider a resolution a: W— Spec (4) such that m’~%, is locally principal
(V' for example), with »: W--»Y. Denote the divisor of the maximal
ideal on W by M’'. Lemma 1 and the remark following it then imply
that A7'(M) < M'. But then Proposition 3 implies that

0>M = (M) > (M) = —2

and thus M* = —1. Combining the two above cases we obtain that
—2 < M*< 0 for any resolution of Spec(A). Propositions 2 and 3
then imply that —2 < Z? < 0. These bounds for Z? and M:® give
us the following corollary to Proposition 3.

COROLLARY. With Z and M as above, if M* = —1, then Z = M.

Proof. Z*= M*= —1 implies that Z*> = —1. Proposition 3 then
implies that Z = M.

Note that m'c2” is not invertible in the above corollary since
m’ %, is invertible if and only if M* = —2.

Let us make the following two remarks. If Z?= —2 on some
resolution, then Z* = —2 on every resolution [6, Proposition 2.9]
and hence Z = M on every resolution by Proposition 8. Again using
Proposition 3, if Z < M on some resoluticn, then we must have
that M* = —2 and Z°> = —1.

We need the following general proposition.

PRrROPOSITION 4. Let Z be the fundamental divisor for a resolu-
tion of Spec(R), where R 1is as in Proposition 2. Let Y =
Y U-:--UY,; be the support of Z, with Y, distinct irreducible
curves. Let Z = >3 7Y, and let B= >%-,b,Y, be a divisor whose
support is contained in Y, where b, =0 for all 1. Suppose that
Z*= -1, BB= —2, and B-Y, <0 for every t. Then the following
two conditions hold.

(1) There exists a unique integer 1, such that Z-Y, = —1,
ro=1, and Z-Y; =0 for j + 1,.

(2) There exists a unique integer k, such that B-Y, = —1,
bw =2, and B-Y; =0 for j =k,

Proof. To prove part one we compute with Z as follows:
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—1=Z-Z=>3,r;(Y;-Z). Noting that Y,;-Z <0 for all 7 and
that 7; > 0 for all j [1, page 132], we obtain part one. To prove
part two we compute with B:

—2=B-B=%b(Y:-B).
Since Y;-B <0 for all © and b, = 0 for all ¢, we have three cases.

Case 1. There exists an integer %, such that B-Y, = —2,
bkozl, and B-Y,-=0 for j:r—“ko.

Case 2. There exist two distinct integers %k, and I, such that
B‘Yk0: B'Ylo = '—1, ka = blo = 1, and B'Yj - 0 fOI‘ jiko, lo.

Case 3 is part two of the present proposition.

We will show that Cases 1 and 2 cannot occur. First we need
a computation. Since Z < B, let Z’ = 0 be a divisor such that B =
Z + Z'. Then

—2=DB*=Z*+2Z-7Z' + (Z')?,
and thus
—1=2Z-7Z' + (7).

Since (Z)?* < 0, and Z-Z' £0, we must have that Z.-Z' = 0. But
then

B Z=Z'+Z-2'=—1.

Now it is easy to prove that Cases 1 and 2 are impossible. In
fact, for Case 1 we obtain

—1=B-Z=37r(Y;-B) = —2n,.

and so 7, =1/2 which is impossible. For Case 2 we compute
similarly:

~1=B-Z=37(Y;-B) = —1y — 7, -

Thus 7, + 7, = 1 which is impossible since r; = 1 for all j [1, page
132]. This completes the proof of Proposition 4.

Under the assumptions of Proposition 4 we can also obtain the
following information. The computation

—1=B-Z=3b(Y;-Z) = —b,
J=1
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vields b, = 1. Also, since b, = 2 we have that ¢, + k.

COROLLARY. Suppose that the hypotheses of Proposition 4 are
satisfied with B = M (i.e., assume that Z < M on the resolution).
Assume that Y, is rational and (Yi)= —1. Let a: Y-»V, be the
map obtained by blowing down Y. Let M, be the divisor of the
maximal ideal on V, and let Z, be the fundamental divisor or V,.
Then Z,= M,.

Proof. We have that a7’ (M,)-Y;, = 0, and thus a7'(M,) < M by
Lemma 1 and the remark following it. Then

M; = (@ (M)F > M* = —2

by Proposition 8. Thus M = —1 and we have that Z, = M, by the
corollary to Proposition 3.

3. Statements and proofs of the theorems, The purpose of
this section is to prove that Z equals M in the minimal resolution
of certain double points of surfaces, among which are those in whose
defining equation 2* = f(x, y), f(z, ) is irreducible. We will show,
for these double points, that Z equals M either in the resolution
V' desceribed in §1 or in the resolution obtained by blowing down
a certain curve on V’. Note that M is locally principal on V', so
that Z = M on V'’ if and only if Z? = —2, and in that case Z = M
on every resolution. Now the minimal resolution can be obtained
from V' by a succession of blowing downs [2, 7]. Hence the follow-
ing proposition will imply that if Z equals M on some resolution
then Z = M on the minimal one.

PROPOSITION 5. Let R be a normal two-dimensional local ring
with algebraically closed residue field and maximal ideal q. Suppose
M Y - Spec (R) is a resolution of the singularity of Spec R. Let
h: Y’ — Y be the blow up of pe Y, with Mp) = q. Let My and M.
denote the divisors of the maximal ideal on Y and Y', and let Z,
and Z. denote the fundamental divisors on Y and Y'. If M, = Z,.,
then M, = Z;.

Proof. Let Y, ---, Y, be the irreducible components of \7'(g).
Let D=h""(p)and b (Y,) = Y;+nD. Then h"'(M,)-Yi=M,-Y,<0
for all + [6, page 421]. Therefore Z, < h7'(M,) by the definition
of Z;.

Lemma 1 of §2 implies that A7'(M,) < M,.. Combining the
above two inequalities we obtain
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Zy = W' (My) = My, .

But by assumption Z, = My, and thus r'(My) = Zy.. Now [6,
Proposition 2.9] shows that Z,, = h™(Z;), and thus A~ (My) = h™(Z,),
which implies that M, = Z,.

We now commence to prove that Z equals M on V’ for certain
double points.

THEOREM 1. Let f(x, y) € k[[x, y]] be as in Proposition 1. Suppose
that f(x,y) has even order. Then on V' we have that Z equals M
(and hence Z equals M on every resolution of 2* = f(x, ¥)).

Proof. Recall that ¢: V — Spec (k[[z, y]]) is obtained by succes-
sively blowing up closed points. In the first blowing up (the blow-
ing up of m, the maximal ideal of K[[x, y]]) we obtain a curve
which is the inverse image of m. This curve also has an inverse
image in V, and we call it X,. Let M and M, denote the divisors
of the maximal ideals m’ and m on V'’ and V. Recall that M, =
S a.X; and M = 3., a;X;, where

a; = min {v,(t)}
tem

and

a; = min {vi(w)} ,
uem’

with v, and v; denoting the valuations determined by X,V and
X; < V'. Then X, is an even curve and M, - X, = —1. If X, meets
no odd curves in X, then ¢g7'(X,) is a disjoint union of two curves
isomorphic to X, and the intersection number of M with each of
these curves is —1. But this condition is incompatible with Z < M
by Proposition 4. If X, meets some odd curves, then we have that
M,-X,=—1and a,=1. Let X; =¢%X,). Then M-X; = —2 and
a, = 1, which, again, is incompatible with Z < M by Proposition 4.

If f(x, ¥) has odd order, then Theorem 1 does not hold in general.
In fact, if f(z, y) = y(@* + ¥°), then in the minimal resolution of
2® = f(x, y) we have that Z < M. This example was given by Henry
B. Laufer. Notice however that f(x, ¥) = y(z* + 9° is reducible. If
we assume that f(x, ¥) is irreducible at (0, 0), then we can prove
that Z = M in the minimal resolution.

THEOREM 2. Let f(x, y) € k[[, y]] be as in Proposition 1. Suppose
that f(x, ¥) has odd order and is irreducible at (0, 0). Then Z equals
M on the minimal resolution of 2* = f(x, y).
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Proof. Let X, be as in the proof of Theorem 1 and let X,
be defined similarly as curves and on V for ¢ =2, --+, n. Then X,
is an odd curve and we set X, = (¢7(X)),... We have two cases to
congider.

(1) Suppose that the first quadratic transform of f(x, y) has
the same multiplicity as f(z, ¥). Then on V we have that X,- X, =1
and X,-X; =0 for j >2. Thus (X} = —2 and so (X;)? = —1 since
X, is an odd curve. Note also that X is rational since X, is odd.
Thus we can apply the corollary to Proposition 4 (k, = 1).

Let us make two remarks here before continuing with the proof.
Since f(x, y) is irreducible at (0, 0) it is easy to see that X, is rational
for all ¢. This follows because it can be shown that each X, meets
at most 3 other curves in X and thus the genus of an even curve
meeting some odd curves is (N — 2)/2, where N must be 2. Also
note that the proof of Case 1 above still holds if we assume instead
that some quadratic transform of f(x, ¥) has the same multiplicity
as f(x, ), where f(x, ¥) is not necessarily irreducible at (0, 0).

(2) Suppose the first quadratic transform of f(x, v¥) does not
have the same multiplicity as f(z, ¥). Assume that Z< M on V.
Then Proposition 4 shows that there exists an integer 4, such that
Z-X; =-1, Z-X;=0 for j+#1i, and a; =1. It is clear from
the definition of the integers a, that ¢, = a, =1 and a, > 1 for 7 > 2.
We have two possibilities to check. Suppose that X, is an odd
curve. Let X; = (7' (X,)..s- Then since X, and X, are odd curves
we have that a; =a;=2 and a;=2 for ¢ > 2. This contradicts
Proposition 4 since a;, must be 1. Now suppose that X, is an even
curve. Since f(x, ¥) is irreducible it can easily be checked that X,
meets only one other curve in X. In fact, if (X} = —¢, then X,
meets only X,,. This curve cannot be odd since each even curve
meets an even number of odd curves, as stated in §1. Thus X,
meets no odd curves and so g7'(X,) consists of two disjoint isomorphic
copies of X,, say X; and X;. Now a; =2 and a; =2 for ¢ > 8.
Thus, since a;, = 1, i, must be either 2 or 8. But if Z has nonzero
intersection number with one of X; and X, then it must have it
with the other. In fact, the automorphism of L = K(z) given by
zt> —2z leaves Z fixed and interchanges X; and X.. Thus we have
a contradiction since Proposition 4 insists that ¢, must be unique.
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