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We let &, be a quadratic extension field of the rational
numbers, and we let [ be a rational prime number. In this
paper we show that there exists a constant ¢ (depending on
k, and [) such that the Iwasawa invariant w(K/k,) = ¢ for
all Z.-extensions K of %,. In certain cases we give explicit
values for c.

1. Introduction. We let @ denote the field of rational numbers,
and we let | denote a rational prime number. We let k&, be a finite
extension field of @, and we let K be a Z-extension of %, (that is,
K/k, is a Galois extension whose Galois group is isomorphic to the
additive group of the l-adic integers Z*). We denote the intermediate
fields by k ck ck,c---Ck,C--- <K, where Gal (k,/k,) is a eyelic
group of order [*. We let A, denote the [l-class group of k, (that
is, the Sylow I-subgroup of the ideal class group of k,). In [5,
§4.2], Iwasawa proves that |A4,| = [*», where

(1) e, = pI* +\n + v

for n sufficiently large, and g, N, v are rational integers (called the
Iwasawa invariants of K/k,) which are independent of »n. Also £ =0
and » = 0.

Next we let W be the set of all Z-extensions of k.. If Ke W,
we define

WK, n) = {K'e WI[KNK': k] ="} .

Thus W(K, n) consists of all Z-extensions of k&, that contain k,, where
k., is the unique subfield of K such that [k,: k] = [*. We topologize
W by letting {W(K, n) for n =1, 2, ---} be a neighborhood basis for
each Ke W. It can be proved that W is compact with this topology
(see [4, §3]). Next we let W’ be the set of Z-extensions of k, with
only finitely many primes lying over . In [4, Proposition 3 and
Theorem 4], Greenberg proves that W’ is an open dense subset of
W and that the Iwasawa invariant g is locally bounded on W’. So
if Ke W', there exists an integer =, and a constant ¢ depending only
on K such that pu(K'/k,) < ¢ for all Z-extensions K’ of k, with
[KNK': k] = 1™ Greenberg suggests that perhaps ¢ is bounded on
W, that is, perhaps there exists a constant ¢ such that pu(K'/k) <ec
for every K'e W. 1If there is only one prime of k, above I, then
Greenberg does prove in [4, Theorem 6] that g is bounded on W.
In this paper we shall prove that g is bounded on W if £k, is a
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quadratic extension of Q. We state this result as follows.

THEOREM 1. Let k, be a quadratic extension of Q, and let 1 be
a rational prime number. Then there exists a constant ¢ (depending
on k, and 1) such that n(K/k, < c¢ for all Z-extensions K of k,

2. Proof of Theorem 1. We let the notation be the same as
in the previous section. We let M be the composite of all Z-extensions
of k,, where k, is a finite extension field of @. It is known (see [5,
Theorem 3]) that Gal (M/k,) ~ Z{, where r, +1 < d < [k,: Q] and 7,
is the number of complex archimedean primes of %k, We note that
when k, = Q, there is exactly one Z-extension F' of @, and it is
contained in the field obtained by adjoining to @ all I"th roots of
unity for all ». Then for arbitrary k, the composite field Fk, is one
of the Z-extensions of k,. (It is called the cyclotomic Z-extension
of k,.)

We now specialize to the case where k&, is a quadratic extension
of Q. Then 1 <d<2. If k, is a real quadratic extension of Q, it
is known that d = 1 (see [5, §2.8]). So there is a unique Z-extension
K of k,, and hence the Iwasawa invariant g is bounded on W = {K}.
Next we suppose k, is an imaginary quadratic extension of Q. Then
d = 2, and hence there are infinitely many Z,-extensions of k,, since
there are infinitely many quotient groups of Z: isomorphic to Z.
So W is infinite, and we must show that g is bounded on W. If
there is only one prime of %, above [, then we know from [4, Theorem
6] that z¢ is bounded on W. Thus it remains to consider the case
where k, is imaginary quadratic, and ! decomposes in k,.

We let () = p,p,, where p, and p, are primes of k,. We recall
from the theory of Z-extensions (see [5, Theorem 1]) that no primes
other than p, and p, can ramify in a Z-extension of k.. We let
L = Fk,, the cyclotomic Z-extension of %k,. Since | ramifies totally
in F/Q and decomposes in k,/Q, then p, and p, ramify totally in L/k,.
We let I (resp., I,) be the inertia group for p,(resp., p,) for the extension
M/k,. (We note that we get the same inertia group for p, no matter
what prime above Pp, in M that we use because M/k, has abelian
Galois group. A similar result holds for p,.) Next we claim that
I, ~Z and I,~ Z,. Since p, and p, are totally ramified in L/k,, then
I, and I, have quotient groups which are isomorphic to Gal (L/k,) ~ Z..
Also the completions of %, at p, and at p, are isomorphic to Q,, and
by local class field theory, the inertia group for the maximal abelian
[-extension of @, is isomorphic to the subgroup U = {1 + al|lacZ}
of the group of units of Q.. Since U~ Z, when [+ 2, then I, and
I, are isomorphic to quotient groups of Z, when I # 2. Combining
the above results, we conclude that I, and I, are isomorphic to Z,
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when [ = 2. When | =2, U~ Z, X (£,/2Z,), and we still get I, ~ Z,
and I, ~ Z, since I, and I, are subgroups of Gal (M/k,) ~ Z:.

Now since Gal (M/k,) ~ Z}, I, ~ Z,, I, ~ Z,, and p, and p, are totally
ramified in L/k,, then Gal (M/k,)/I, ~ Z, and Gal (M/k,)/I, ~ Z,. Thus
there exists exactly one Z-extension K, /k,resp., K,/k,) in which
p.(resp., b, is unramified. So if K is any Z-extension of k, other
than K, and K,, then both p, and p, are ramified in K/k, (although
not necessarily totally ramified). Then there are only finitely many
primes of K above [, and hence by the results of Greenberg in [3],
there is a neighborhood of K in W on which p is bounded. Suppose
we could show that K, and K, have neighborhoods on which g is
bounded. Then all K€ W would have neighborhoods on which g is
bounded. Since W is compact, W is covered by a finite number of
these neighborhoods, and hence y¢ would be bounded on W. So to
complete the proof of Theorem 1, it suffices to show that y is bounded
on some neighborhood of K, and on some neighborhood of K,.

We consider K,/k, with intermediate fields k,Ck, Ck,C---C
k,C---CK, Since p, is unramified in K,/K,, then p, must ramify
in K, since by class field theory the maximal unramified abelian
extension of k, is of finite degree over k,. So there are only finitely
many primes of K, above p,. Let ¢ denote that finite number. Next
we recall that WK, n) = {K'e W|[K, N K": k,] = I"}, and these sets
W(K,, n) for n =1,2, ---, form a neighborhood basis for K, in W.
Since Gal (M/k) ~ Z} and F and K, are disjoint Z-extensions of k,,
then it is clear that M = FK,. If f, is the subfield of F such that
[fi: k] =1, then every K'e W(K,n) has a subfield %,,, such that
ki k) =1 and k., C fik,... We take = large enough so that [* > ¢.
Unless k,,, = k,,,, there are at most ["*(resp., t) primes of %, ., above
p,(resp., p,). Then if k,,, + k,.,, there are at most ["*(resp., t) primes
of K' above p,(resp., p,). If we let s denote the number of primes
of K’ that are ramified over k, then s <!" + ¢. From [3, Theorem
1], we see that

UK k) S ep/I" — s + 1) S ey, /" =" — ¢+ 1),

where [°»+1is the order of the [-class group of &,,,,. Since [fik...:kni] =
I, then by class field theory e,.,, <e¢,., + 1, where [**+1 is the order

of the I-class group of fik,.,. Soif K'e W(K,, n) and k., # k,.,, then
K k) = @Epy + D/ =1~ ¢ + 1)

Now f,K, is a Z-extension of f,. From Equation 1, ¢, = " +
Mmu + v, for n sufficiently large, where p, = p(f, K\ /f), M = MAK/f),
y, = V(f.K,/f.). So for n sufficiently large,

Eann + 1 =" + M +1) + v, +1
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and

, s , e + 1) 4y, + 1
K'/k) = (,.,+1 I‘~I“—t+1:#1 L L .
rU“( / )_(6 k1 )/( ) In+l I t - 1

Since

™ = nm 4+ 1)+ +1 _ )23 311
n—os = —t 4+ 1 1-1 < 9

we see that for » sufficiently large, /(K'/k,) < 3p, for all K' e W(K,, n).
So ¢ is bounded on some neighborhood of K,. Similarly g is bounded
on some neighborhood of K, Hence our proof of Theorem 1 is
complete.

3. Explicit upper bounds for ¢ in certain cases. We first
consider a real quadratic extension k,/Q. Then there is only one
Z~extension K of k;,, namely the cyclotomic Z-extension of %k, It
is known that p(K/k,) = 0 in this case (see [2]).

Now we consider an imaginary quadratic extension k,/Q. We
first suppose that | ramifies or remains prime in k,, We let H denote
the maximal unramified abelian [-extension of k%, and we let {* be
the exponent of Gal (H/k). If K is any Z-extension of k%, with
intermediate fields k,ck,ch,c.--Ck,C---C K, then the primes
above [ in k, ramify totally in K/k,, and there are at most [ such
primes. Then from [3, Theorem 1], we see that u(K/k,) <e,, where
fa = 1 A4,. So in Theorem 1, we may take ¢ to be the maximum of
the e, obtained from the extensions k, of k, such that k, is contained
in a Z-extension of &, and |k, k] = [*. Frequently we can obtain a
better upper bound for p. For example, if M is the composite of
all Z-extensions of k, and if M N H = k,, then the prime of k, above
[ is totally ramified in each Z-extension of %k, and hence from [3,
Corollary 1}, p(K/k,) = e, for each Z-extension K of k,.

Finally we suppose that [, is an imaginary gquadratic extension
of @ and that [ decomposes in %, In this case we shall give an
explicit upper bound for g only under certain conditions. We let M
be the composite of all Z-extensions of %, and we let M, be the
maximal extension of %, contained in M such that Gal (M, /k,) has
exponent 1. We note that Gal (M, /k,) ~ (Z,/IZ)* since Gal (M/k,) ~ Z,
and hence M, contains | -+ 1 subfields of degree I over k. We let
() = p, and p, are primes in k,. We shall assume that there ig
exactly one prime of M, above p, and exactly one prime of M, above
p,. (Note: From our discussion in §2 and our definition of 3, we
see that there is exactly one prime of M, above P, precisely when
p, remains prime in one of the extensions of %k, of degree [ and
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ramifies in the other ! extensions of degree ! over k,., A similar
result applies to p,.) Then there is exactly one prime of M above
p, and exactly one prime of M above p,. It then follows from [3,
Corollary 2] that we may take ¢ in Theorem 1 to be the maximum
of the numbers ¢,/ — 1) obtained from the fields %, contained in M,
with [k;: k)] = 1. As usual, I is the order of the l-class group of k..

In some of these situations where | decomposes in k,, we can
actually find g, \, v exactly for every Z-extension of k,, We assume
that [ does not divide the class number of %k, We let M, be the
maximal extension of k, contained in M such that Gal (M,/k,) has
exponent I’. (We note that Gal (M,/k,) ~ (Z,/l'Z,)*.) We also assume
that there is exactly one prime of M, above p, and exactly one prime
of M, above p,. Then there is only one prime of M, above p, for
each 7, and only one prime of MM, above p, for each <. We recall
from §2 that there is a unique Z-extension K, (resp., K,) of k, in
which p,(resp., p,) is unramified. Since [ does not divide the class
number of k,, then p,(resp., p,) is totally ramified in K, (resp., K,). So
K (resp., K,) is a Z-extension of k, in which exactly one prime is
ramified, and that prime is totally ramified. Since ! does not divide
the class number of %, then [ does not divide the class number of
every subfield of K, (resp., K,). (See [6].) So u(K./k,) = MK, /k,) =
V(K. /k,) = 0 and p(K,/k,) = MK, /k,) = v(K,/k,) = 0. If K, has subfields
k,Cchckc.--Cck,c---CK,, we note that Gal(M,/k;) is a cyclic group
of order I’ for each 4. Since I does not divide the class number of
k:, and since there is only one prime of M, (namely the prime of M,
above p,) that is ramified over k;, we see that [ does not divide the
class number of M, for each 7. Now we let K be any Z-extension
of k, with intermediate fields k,ck, Cck,c-.--Ck,C--- C K, and we
suppose K, has intermediate fields k,Ck/'Cckyc.--Ck,/ c---CK,.
If KNK, =k, and KN K, =k, then b, and p, are totally ramified in
k./k,, and then M,/k, is an unramified cyclic extension of degree I".
Since [ does not divide the class number of M,, then M, must be the
Hilbert I-class field of k,, and hence by class field theory the I-class
group of %, is a cyclic group of order (™ for all n. So p(K/k,) =0,
MKk, = 1, (K/k,) = 0. Now suppose KN K, = kj;. By arguments
similar to those above, it can be proved that the I-class group of %,
is trivial if » £ j and a ecyclic group of order "7 if n > j. So
WKk = 0, N(K[k,) =1, v(K/k,) = —j. Similarly if K N K, = &, then
1“(K/ko) = 0, MK/ky) = 1, v(K/k,) = —7J.

We conclude with an example to which the results of the previous
paragraph apply. We let k, = Q(v/—11) and [ = 3. We note that 3
does not divide the class number of %,, and 8 decomposes in k, (in
face, 3 = aya, with a, = 1 + 1V —11)/2 and a, = 1 — VvV —11)/2). If
M, is the maximal extension of %, of exponent [ contained in the
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composite of all Z-extensions of k,, we must show that there is only
one prime ideal of M, above («,) and only one prime ideal of M, above
(a,). Then the results of the previous paragraph will apply to k.
Now we let E = Qv —11, ¢), where { = (—1 4+ 1/ —3)/2 (a primitive
cube root of unity). Then [E: Q] = 4, and the three quadratic sub-
fields are %, Q(1/33), Q' —3). We note that there is exactly one
prime of E above («,) and exactly one prime of E above («,). Since
3 does not divide the class numbers of the quadratic subfields of E,
then it is easy to see that 3 does not divide the class number of E.
It then follows from Kummer theory that the maximal abelian
extension of E of exponent 3 in which only primes above 3 are
ramified is E(a'?, al?, ('3, /%), where ¢ = 23 + 4133 is the fundamental
unit of Q(1/33). It is not difficult to see that M,E = E({?, &) (cf.
[1, Example 3]). Again using Kummer theory, a calculation shows
that the prime of E above («,) remains prime in one of the cubic
extensions of K contained in M,E and ramifies in the other three
cubic extensions of E contained in M,E. A similar result is valid
for the prime of E above (a,). It follows that there can be only
one prime of M, above (@, and only one prime of M, above (a,).
Hence the results of the previous paragraph apply to k, = Q(v/ —11).

Note. We have learned that the Russian mathematician V. A.
Babaicev has obtained by other methods a proof of Theorem 1 (see
Math. USSR Izvestija, 10 (1976), 675-685).
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