Pacific Journal of Mathematics

A RADON-NIKODÝM THEOREM FOR *-ALGEBRAS

STANLEY P. GUDDER

Vol. 80, No. 1

September 1979

A RADON-NIKODYM THEOREM FOR *-ALGEBRAS

STANLEY P. GUDDER

A noncommutative Radon-Nikodym theorem is developed in the context of *-algebras. Previous results in this direction have assumed a dominance condition which results in a bounded "Radon-Nikodym derivative". The present result achieves complete generality by only assuming absolute continuity and in this case the "Radon-Nikodym derivative" may be unbounded. A Lebesgue decomposition theorem is established in the Banach *-algebra case.

1. Definitions and Examples. Although there is a considerable literature on noncommutative Radon-Nikodym theorems, all previous results have needed a dominance, normality or other restriction [1-4, 7, 8, 12, 15-18]. Moreover, most of these results are phrased in a von Neumann algebra context. In this paper, we will obtain a general theorem on a *-algebra with no additional assumptions.

Let \mathscr{A} be a *-algebra with identity *I*. A *-*representation* of \mathscr{A} on a Hilbert space *H* is a map π from \mathscr{A} to a set of linear operators defined on a common dense invariant domain $D(\pi) \subseteq H$ which satisfies:

(a) $\pi(I) = I;$

(b) $\pi(AB)x = \pi(A)\pi(B)x$ for all $x \in D(\pi)$ and $A, B \in \mathcal{M}$;

(c) $\pi(\alpha A + \beta B)x = \alpha \pi(A)x + \beta \pi(B)x$ for all $x \in D(\pi)$, $\alpha, \beta \in C$ and $A, B \in \mathscr{M}$;

(d) $\pi(A^*) \subset \pi(A)^*$ for all $A \in \mathscr{A}$.

The induced topology on $D(\pi)$ is the weakest topology for which all the operations $\{\pi(A): A \in \mathscr{M}\}$ are continuous [13]. A *-representation π is closed if $D(\pi)$ is complete in the induced topology. A *-representation π is strongly cyclic if there exists a vector x_0 such that $\pi(\mathscr{M})x_0 = \{\pi(A)x_0: A \in \mathscr{M}\}$ is dense in $D(\pi)$ in the induced topology [13]. We then call x_0 a strongly cyclic vector. Denoting the set of bounded linear operators on H by $\mathscr{L}(H)$, the commutant $\pi(\mathscr{M})'$ of π is

$$\pi(\mathscr{M})' = \{T \in \mathscr{L}(H) \colon \langle T\pi(A)x, y \rangle = \langle Tx, \pi(A^*)y \rangle A \in \mathscr{M}, x, y \in D(\pi) \} \text{ .}$$

Let v and w be positive linear functionals on \mathcal{N} . A sequence $A_i \in \mathcal{N}$ is called a (v, w) sequence if

$$\lim_{i o\infty} v(A_i^*A_i) = \lim_{i,j o\infty} w[(A_i-A_j)^*(A_i-A_j)] = 0$$
 .

We now generalize various forms and strengthened forms of the classical concept of absolute continuity.

(i) w is v-dominated if there exists an M > 0 such that $w(A^*A) \leq Mv(A^*A)$ for all $A \in \mathscr{M}$.

(ii) w is strongly v-absolutely continuous if for any (v, w) sequence $A_i \in \mathscr{N}$ we have $\lim_{i \to \infty} w(A_i^*A_i) = 0$.

(iii) w is v-absolutely continuous if $v(A^*A) = 0$ implies that $w(A^*A) = 0$.

It is clear that $(i) \Rightarrow (ii) \Rightarrow (iii)$. The following examples show that the reverse implications need not hold.

EXAMPLE 1. Let (Ω, Σ) be a measurable space and let \mathscr{N} be the C *-algebra of bounded measurable functions on (Ω, Σ) with $||f||_{\infty} =$ sup $\{|f(\omega)|: \omega \in \Omega\}$. Let v_1 and w_1 be probability measures on (Ω, Σ) and define the states $v(f) = \int f dv_1$ and $w(f) = \int f dw_1$ on \mathscr{N} . It is easy to see that w is v-absolutely continuous if and only if $w_1 \ll v_1$ (i.e., w_1 is absolutely continuous relative v_1). Now let $H = L^2(\Omega, \Sigma, v_1)$ and let $\pi: \mathscr{N} \to \mathscr{L}(H)$ be the *-representation with $D(\pi) = H$ defined by $[\pi(f)g](\omega) = f(\omega)g(\omega)$. Clearly, π is closed and strongly cyclic with strongly cyclic vector 1.

Now suppose that w is v-absolutely continuous and let W be the positive self-adjoint operator on H with domain

$$D(W)=\left\{g\in H{:}\left(rac{dw_{_1}}{dv_{_1}}
ight)^{_{1/2}}g\in H
ight\}$$

and defined by $Wg(\omega) = (dw_1/dv_1)^{1/2}(\omega)g(\omega)$, $g \in D(W)$. Notice that $\mathscr{H} \subseteq D(W)$ since $(dw_1/dv_1) \in L^1(\Omega, \Sigma, v_1)$. Moreover,

(1.1)
$$w(f) = \int f dw_1 = \int \frac{dw_1}{dv_1} f dv_1 = \langle W\pi(f)\mathbf{1}, W\mathbf{1} \rangle$$

for all $f \in \mathscr{M}$. The expression $w(f) = \langle W\pi(f)1, W1 \rangle$ is equivalent to the Radon-Nikodym theorem. It is this expression which we shall generalize to the noncommutative case. We now show that w is strongly v-absolutely continuous. Suppose $f_i \in \mathscr{M}$ is a (v, w) sequence. Then $f_i \to 0$ in H and from (1.1) we have

$$egin{aligned} \lim_{i,j o\infty}||Wf_i-Wf_j||^2 &= \lim_{i,j o\infty}ig\langle W(f_i-f_j),\ W(f_i-f_j)ig
angle \ &= \lim_{i,j o\infty}ig\langle W\pi[(f_i-f_j)^*(f_i-f_j)]\mathbf{1},\ W\mathbf{1}ig
angle \ &= \lim_{i,j o\infty}w[(f_i-f_j)^*(f_i-f_j)] = \mathbf{0} \ . \end{aligned}$$

Hence, Wf_i converges and since W is closed, we conclude that $Wf_i \rightarrow 0$ in H. It follows from (1.1) that $w(f_i^*f_i) \rightarrow 0$. We thus see that (ii) and (iii) are equivalent in this case.

Finally, suppose w is v-dominated. Then there exists an M > 0 such that

$$\int_{A} \frac{dw_1}{dv_1} dv_1 = w_1(A) = w(\chi_{\scriptscriptstyle A}^*\chi_{\scriptscriptstyle A}) \leq Mv(\chi_{\scriptscriptstyle A}^*\chi_{\scriptscriptstyle A}) = Mv_1(A) = \int_{A} Mdv_1$$

for every $A \in \Sigma$. Hence $dw_1/dv_1 \leq M$ almost everywhere. Since the converse easily holds, we see that w is v-dominated if and only if $w_1 \ll v_1$ and dw_1/dv_1 is bounded. In this case we have $W \in \pi(\mathscr{M})'$. This shows that (ii) need not imply (i) and (iii) need not imply (i).

Our results in \S 2 and 3 will generalize the above considerations.

EXAMPLE 2. Let \mathscr{A} be the C*-algebra of continuous functions on the unit interval [0, 1] with the supremum norm and let μ be Lebesque measure on [0, 1]. Let v and w be the states on \mathscr{A} defined by $v(f) = \int f d\mu$ and w(f) = f(0). Clearly, w is v-absolutely continuous. We now show that w is not strongly v-absolutely continuous. Let $f_n \in \mathscr{A}$ be the function $f_n(x) = 1 - nx$ for $x \in [0, 1/n]$ and $f_n(x) = 0$ for $x \in [1/n, 1]$. Then

$$\lim_{n\to\infty} v(f_n^*f_n) = \lim_{n\to\infty} \frac{1}{3n} = 0$$

and $w[(f_n - f_m)^*(f_n - f_m)] = 0$. Hence, f_n is a (v, w) sequence. But $w(f_n^*f_n) = 1$, so $\lim w(f_n^*f_n) \neq 0$. Thus (iii) need not imply (ii).

2. A Radon-Nikodym Theorem. If v is a positive linear functional on a *-algebra \mathcal{A} , then the GNS construction [10, 13] provides a unique (to within unitary equivalence) closed *-representation π_v of \mathcal{A} on a Hilbert space H_v with a strongly cyclic vector $x_0 \in H_v$ such that $v(A) = \langle \pi_v(A) x_0, x_0 \rangle$ for all $A \in \mathcal{A}$. We now give our main result.

THEOREM 1. If v and w are positive linear functionals on a *-algebra \mathcal{A} , then there exists a positive self-adjoint operator W on H_v and a (v, w) sequence $A_i \in \mathcal{A}$ such that

$$w(A) = \langle W\pi_v(A)x_0, Wx_0 \rangle + \lim w(A_i^*A)$$

for every $A \in \mathscr{M}$.

(a) w is v-absolutely continuous if and only if $v(A^*A) = 0$ implies $w(A_i^*A^*A) = 0$ for every $i = 1, 2, \cdots$.

(b) w is strongly v-absolutely continuous if and only if $w(A) = \langle W\pi_v(A)x_0, Wx_0 \rangle$ and

$$(2.1) \quad \langle W\pi_v(A)x, Wy \rangle = \langle Wx, W\pi_v(A^*)y \rangle$$

for every $A \in \mathscr{A}$ and $x, y \in \pi(\mathscr{A})x_0$.

(c) w is v-dominated if and only if $w(A) = \langle W\pi_v(A)x_0, Wx_0 \rangle$ for every $A \in \mathcal{A}$, and $W^2 \in \pi(\mathcal{A})'$. *Proof.* Let $H = H_v$, $\pi = \pi_v$, x_0 and K_1 , π_1 , x_1 be the Hilbert spaces, closed *-representations and strongly cyclic vectors of the GNS constructions corresponding to the positive linear functionals v and v + w on \mathscr{A} , respectively. Let J be the unique contractive linear map from K_1 into H satisfying $J\pi_1(A)x_1 = \pi(A)x_0$ for every $A \in \mathscr{A}$. Let P be the projection from K_1 onto $K = (\ker J)^{\perp}$. Let $T: H \to H$ be the positive self-adjoint operator defined by $T = JJ^*$. Then ker $T = (\operatorname{range} J)^{\perp} = \{0\}$ and hence $S = T^{-1}$ exists as a positive selfadjoint operator on H. Since J is contractive, $J \leq I$ and hence $S \geq I$. Let $W = (S - I)^{1/2}$. Then

$$D(W) = D(S^{_{1/2}}) = T^{_{1/2}}H = JK$$
 .

(The first and second equality follows by the spectral theorem and the third equality follows by the polar decomposition theorem.) By the polar decomposition theorem, $(S^{1/2}J)^*S^{1/2}J = P$ and hence $P - J^*J = (WJ)^*(WJ)$. Therefore,

$$(2.2) \begin{array}{l} w(A) = \langle \pi_1(A)x_1, \, x_1\rangle - \langle \pi(A)x_0, \, x_0\rangle \\ = \langle \pi_1(A)x_1, \, (I-P)x_1\rangle + \langle \pi_1(A)x_1, \, Px_1\rangle - \langle J\pi_1(A)x_1, \, Jx_1\rangle \\ = \langle \pi_1(A)x_1, \, (I-P)x_1\rangle + \langle WJ\pi_1(A)x_1, \, WJx_1\rangle \\ = \langle \pi_1(A)x_1, \, (I-P)x_1\rangle + \langle W\pi(A)x_0, \, Wx_0\rangle \ . \end{array}$$

Since $\{\pi_i(A)x_i: A \in \mathscr{M}\}$ is dense in K_i , there exists a sequene $A_i \in \mathscr{M}$ such that $\pi_i(A_i)x_i \to (I - P)x_i$. Hence,

$$\pi(A_i)x_{\scriptscriptstyle 0} = J\pi_{\scriptscriptstyle 1}(A_i)x_{\scriptscriptstyle 1} \longrightarrow J(I-P)x_{\scriptscriptstyle 1} = 0$$

and

$$v(A_i^*A_i) = \langle \pi(A_i) x_{\scriptscriptstyle 0}, \, \pi(A_i) x_{\scriptscriptstyle 0}
angle \longrightarrow 0$$
 .

Since $\pi_1(A_i)x_1$ is Cauchy in K_1 we have

(2.3)
$$\begin{split} \mathbf{w}[(A_i - A_j)^*(A_i - A_j)] &= ||\pi_1(A_i)x_1 - \pi_1(A_j)x_1||^2 \\ &- ||\pi(A_i)x_0 - \pi(A_j)x_0||^2 \longrightarrow 0 \;. \end{split}$$

Therefore, A_i is a (v, w) sequence. Moreover, since $|v(A_i^*A_i)| \leq v(A_i^*A_i)^{1/2}v(A^*A)^{1/2}$ we have $\lim v(A_i^*A) = 0$ for all $A \in \mathscr{M}$. Hence,

$$egin{aligned} w(A) &= \langle W\pi(A)x_{\mathfrak{0}}, \ Wx_{\mathfrak{0}}
angle + \lim ig\langle \pi_{\mathfrak{1}}(A)x_{\mathfrak{1}}, \ \pi_{\mathfrak{1}}(A_{i})x_{\mathfrak{1}}
angle \ &= \langle W\pi(A)x_{\mathfrak{0}}, \ Wx_{\mathfrak{0}}
angle + \lim w(A_{i}^{*}A) \;. \end{aligned}$$

(a) For sufficiency, if $v(A^*A) = 0$, then

$$||\pi(A)x_0||^2 = v(A^*A) = 0 \quad ext{and} \quad \lim w(A_i^*A^*A) = 0$$

and hence, $w(A^*A) = 0$. For necessity, if w is v-absolutely continuous and $v(A^*A) = 0$, then

 $|\mathit{W}(A_i^*A^*A)| \leq w[(AA_i)^*AA_i]^{\scriptscriptstyle 1/2}w(A^*A)^{\scriptscriptstyle 1/2} = 0$.

(b) For sufficiency, let $A_i \in \mathscr{M}$ be a (v, w) sequence. Then $\pi(A_i)x_0 \to 0$ and hence,

$$egin{aligned} || \, W \pi(A_i) x_0 - W \pi(A_j) x_0 ||^2 \ &= \langle \, W \pi(A_i - A_j) x_0, \; W \pi(A_i - A_j) x_0
angle \ &= \langle \, W \pi[(A_i - A_j)^*(A_i - A_j)] x_0, \; W x_0
angle \ &= w[(A_i - A_j)^*(A_i - A_j)] \longrightarrow 0 \;. \end{aligned}$$

Hence, $W\pi(A_i)x_0$ is Cauchy and since W is closed, $W\pi(A_i)x_0 \to 0$. It follows that

$$w(A_i^*A_i) = \langle W\pi(A_i^*A_i)x_{\mathfrak{0}}, Wx_{\mathfrak{0}}
angle = ||W\pi(A_i)x_{\mathfrak{0}}||^2 \longrightarrow 0$$

and w is strongly v-absolutely continuous.

For necessity, suppose w is strongly v-absolutely continuous. We first show that $J: K_1 \to H$ is injective. Suppose $x \in K_1$ and Jx = 0. Let $A_i \in \mathscr{N}$ be a sequence satisfying $\pi_1(A_i)x_1 \to x$. Then

$$\pi(A_i)x_{\scriptscriptstyle 0} = J\pi_{\scriptscriptstyle 1}(A_i)x_{\scriptscriptstyle 1} \longrightarrow Jx = 0$$
 .

Hence, $v(A_i^*A_i) = ||\pi(A_i)x_0||^2 \to 0$. Since $\pi_1(A_i)x_1$ is Cauchy as in (2.3) we have $w[(A_i - A_j)^*(A_i - A_j)] \to 0$. Thus, A_i is a (v, w) sequence and $w(A_i^*A_i) \to 0$. Hence

$$||\pi_1(A_i)x_1||^2 = w(A_i^*A_i) + v(A_i^*A_i) \longrightarrow 0$$

so that $\pi_1(A_i)x_1 \to 0$ and x = 0. It follows that ker $J = \{0\}$ and hence, P = I. Applying (2.2) we obtain $w(A) = \langle W\pi(A)x_0, Wx_0 \rangle$. To prove (2.1), applying (2.2) we have

$$egin{aligned} &\langle W\pi(AB)x_{_0},\ Wx_{_0}
angle &= w(AB) \ &= \langle \pi_{_1}(B)x_{_1},\ \pi_{_1}(A^*)x_{_1}
angle - \langle \pi(B)x_{_0},\ \pi(A^*)x_{_0}
angle \ &= \langle (I-J^*J)\pi_{_1}(B)x_{_1},\ \pi_{_1}(A^*)x_{_1}
angle \ &= \langle (WJ)^*(WJ)\pi_{_1}(B)x_{_1},\ \pi_{_1}(A^*)x_{_1}
angle \ &= \langle W\pi(B)x_{_0},\ W\pi(A^*)x_{_0}
angle \ . \end{aligned}$$

If $x = \pi(B)x_0$, $y = \pi(C)x_0 \in \pi(\mathscr{M})x_0$ we obtain

$$egin{aligned} &\langle W\pi(A)x,\ Wy
angle &= \langle W\pi(AB)x_{\scriptscriptstyle 0},\ W\pi(C)x_{\scriptscriptstyle 0}
angle \ &= \langle W\pi(C^*AB)x_{\scriptscriptstyle 0},\ Wx_{\scriptscriptstyle 0}
angle &= \langle W\pi(B)x_{\scriptscriptstyle 0},\ W\pi(A^*C)x_{\scriptscriptstyle 0}
angle \ &= \langle Wx,\ W\pi(A^*)y
angle \ . \end{aligned}$$

(c) The following proves sufficiency

$$egin{aligned} w(A^*A) &= \langle W \pi(A^*A) x_{\scriptscriptstyle 0}, \ W x_{\scriptscriptstyle 0}
angle = \langle W \pi(A) x_{\scriptscriptstyle 0}, \ W \pi(A) x_{\scriptscriptstyle 0}
angle \ &= || \, W \pi(A) x_{\scriptscriptstyle 0} ||^2 \leq || \, W ||^2 || \, \pi(A) x_{\scriptscriptstyle 0} ||^2 = || \, W ||^2 v(A^*A) \;. \end{aligned}$$

For necessity, suppose w is v-dominated. Then w is strongly v-absolutely continuous so (b) holds. Applying (2.1) there is an M > 0 such that

$$egin{aligned} ||W\pi(A)x_{\mathfrak{o}}||^{2} &= \langle W\pi(A)x_{\mathfrak{o}}, \ W\pi(A)x_{\mathfrak{o}}
angle \ &= \langle W\pi(A^{*}A)x_{\mathfrak{o}}, \ Wx_{\mathfrak{o}}
angle &= w(A^{*}A) \leq Mv(A^{*}A) \ &= M||\pi(A)x_{\mathfrak{o}}||^{2} \end{aligned}$$

for every $A \in \mathscr{A}$. Hence, W is bounded on $\pi(\mathscr{A})x_0$ and since W is self-adjoint, $W \in \mathscr{L}(H)$. It follows from (2.1) that

(2.4)
$$\langle W^2\pi(A)x, y \rangle = \langle W^2x, \pi(A^*)y \rangle$$

for all $A \in \mathscr{A}$, $x, y \in \pi(\mathscr{A})x_0$. Since $D(\pi)$ is the completion of $\pi(\mathscr{A})x_0$ in the induced topology [10], if $y \in D(\pi)$ there exists a net $y_{\alpha} \in \pi(\mathscr{A})x_0$ such that $y_{\alpha} \to y$ in the induced topology. Hence,

$$egin{aligned} &\langle W^2\pi(A)x,\,y
angle &= \limig\langle W^2\pi(A)x,\,y_lpha
angle \ &= \limig\langle W^2x,\,\pi(A^*)y_lpha
angle &= ig\langle W^2x,\,\pi(A^*)y_lpha
angle \end{aligned}$$

for every $y \in D(\pi)$, $x \in \pi(\mathscr{A})x_0$. Reasoning in a similar way for x, we conclude that (2.4) holds for all $x, y \in D(\pi)$. Hence, $W^2 \in \pi(\mathscr{A})'$.

3. Banach *-algebras. In this section we apply the material of §2 to obtain much stronger results on Banach *-algebras. When we speak of a *-representation π of a Banach *-algebra on a Hilbert space H we always mean a bounded representation; that is, $\pi: \mathscr{M} \to \mathscr{L}(H)$. The commutant of $\pi(\mathscr{M})$ now satisfies

$$\pi(\mathscr{A})' = \{T \in \mathscr{L}(H) \colon T\pi(A) = \pi(A)T \text{ for all } A \in \mathscr{A}\}.$$

If v and w are positive linear functionals on a *-algebra \mathscr{N} , we say that w is v-semisingular if there exists a (v, w) sequence $A_i \in \mathscr{M}$ such that $w(A) = \lim w(A_i^*A)$ for every $A \in \mathscr{M}$. Notice that if $A_i \in \mathscr{M}$ is a (v, w) sequence, then $\lim w(A_i^*A)$ automatically exists for every $A \in \mathscr{M}$.

COROLLARY 2. If v and w are positive linear functionals on a Banach *-algebra \mathscr{A} with identity then there exists a positive self-adjoint operator W on H_v which is affiliated with $\pi_v(\mathscr{A})'$ and a (v, w) sequence $A_i \in \mathscr{A}$ such that

$$w(A) = \langle \pi_v(A) W x_0, W x_0 \rangle + \lim w(A_i^*A)$$

for every $A \in \mathscr{A}$.

(a) w is v-absolutely continuous if and only if the positive linear functional $A \mapsto \lim w(A_i^*A)$ is v-absolutely continuous.

(b) w is strongly v-absolutely continuous if and only if $w(A) = \langle \pi_v(A) W x_0, W x_0 \rangle$ for every $A \in \mathscr{A}$.

(c) w is v-dominated if and only if $w(A) = \langle \pi_v(A) W x_0, W x_0 \rangle$ and W is bounded.

Proof. For the first statement of the theorem we need only prove that W is affiliated with $\pi_v(\mathscr{M})'$ and apply Theorem 1. From the proof of Theorem 1, J intertwines the representations π_1 and π and hence $T \in \pi(\mathscr{M})'$. Since $W = (T^{-1} - I)^{1/2}$, it follows that W is affiliated with $\pi(\mathscr{M})'$. Parts (a), (b), and (c) are a straightforward application of Theorem 1.

Corollary 2 (c) is a classical result [5, 9, 11]. We next prove a noncommutative analogue of the Lebesque decomposition theorem.

COROLLARY 3. Let v and w be positive linear functionals on a Banach *-algebra \mathscr{A} with identity. Then w admits a decomposition $w = w_a + w_s$ where w_a is strongly v-absolutely continuous and w_s is v-semisingular. Moreover, w is v-absolutely continuous if and only if w_s is v-absolutely continuous.

Proof. Let $w_a(A) = \langle \pi_v(A) W x_0, W x_0 \rangle$ and $w_s(A) = \lim w(A_i^*A)$ for all $A \in \mathscr{A}$ as in Corollary 2. Then w_a and w_s are positive linear functionals and $w = w_a + w_s$. It follows from Corollary 2 (b) that w_a is strongly v-absolutely continuous. We now show that w_s is v-semisingular. Since $A_i \in \mathscr{A}$ is a (v, w) sequence and $w_a, w_s \leq w$, we conclude that A_i is both a (v, w_a) and (v, w_s) sequence. Since w_a is strongly v-absolutely continuous we have

$$|w_a(A_i^*A)| \leq w_a(A_i^*A_i)^{1/2}w_a(A^*A)^{1/2} \longrightarrow 0$$

for all $A \in \mathcal{M}$. Hence

$$w_s(A_i^*A) = w(A_i^*A) - w_a(A_i^*A) \longrightarrow w_s(A)$$

for all $A \in \mathscr{A}$ so w_s is v-semisingular.

We have not been able to prove uniqueness for the above decomposition. However, if $w = w_1 + w_2$ where w_1 is strongly v-absolutely continuous, w_2 is v-semisingular and w_2 has the same "support" as w_s (that is, $w_2(A) = \lim w_2(A_i^*A)$ for all $A \in \mathcal{M}$), then $w_1 = w_a$, $w_2 = w_s$. Indeed, then A_i is a (v, w) sequence and hence, $w_1(A_i^*A) \to 0$ for all $A \in \mathcal{M}$. Therefore,

$$w_2(A) = \lim w_2(A_i^*A) = \lim w(A_i^*A) = w_s(A)$$

for all $A \in \mathscr{A}$. Thus, $w_2 = w_s$ and $w_1 = w - w_2 = w - w_s = w_a$.

The v-semisingular functional $w_s(A) = \lim w(A_i^*A)$ in Corollary 2 can be put in the form $w_s(A) = \lim w(A_i^*AA_i)$ which exhibits its positivity directly. The reason for this is that $\pi_1(A)$: ker $J \to \ker J$ in the notation of Theorem 1. Indeed, suppose Jy = 0 and let $B_i \in$ \mathscr{A} satisfy $\pi_1(B_i)x_1 \to y$. Then

$$\pi(B_i)x_{\scriptscriptstyle 0}=J\pi_{\scriptscriptstyle 1}(B_i)x_{\scriptscriptstyle 1} {\begin{subarray}{c} \longrightarrow} Jy\,=0$$
 .

Hence,

$$egin{aligned} J\pi_{ ext{i}}(A)y &= \lim J\pi_{ ext{i}}(AB_i)x_{ ext{i}} &= \lim \pi(AB_i)x_{ ext{o}} \ &= \pi(A) \lim \pi(B_i)x_{ ext{o}} &= 0 \ . \end{aligned}$$

It follows that $P\pi_1(A) = \pi_1(A)P$ for all $A \in \mathscr{N}$. Applying (2.2) we have

$$w_{s}(A) = \langle \pi_{ ext{ iny 1}}(A)(I-P)x_{ ext{ iny 1}},\,(I-P)x_{ ext{ iny 1}}
angle$$
 .

Hence,

$$w_s(A) = \lim \langle \pi_{\scriptscriptstyle 1}(A) \pi_{\scriptscriptstyle 1}(A_i) x_{\scriptscriptstyle 1}, \, \pi_{\scriptscriptstyle 1}(A_i) x_{\scriptscriptstyle 1}
angle = \lim w(A_i^*AA_i) \; .$$

Example 2 of §1 gives an illustration of Corollary 3. In this example, w is v-absolutely continuous. Even though w is v-absolutely continuous, w is quite singular relative to v. In fact, $w(f) = \int f d\mu_0$ where μ_0 is the probability measure concentrated at 0, and μ_0 and μ are mutually singular measures. We showed in Example 2 that f_i is a (v, w) sequence. Moreover, $w(f) = \lim w(f_i^*f)$ for all $f \in \mathscr{M}$. Hence, in this case $w = w_s$ and $w_a = 0$.

ACKNOWLEDGMENT. The author would like to thank John Bunce and the referee for their many valuable suggestions.

References

1. H. Araki, Bures Distance function and a generalization of Sakai's non-commutative Radon-Nikodym theorem, Publ. RIMS, Kyoto Univ., 8 (1972), 335-362.

2. _____, Some properties of the modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain, Pacific J. Math., **50** (1974), 309-354.

3. _____, One-parameter family of Radon-Nikodym theorem for states of a von Neumann algebra, Publ. RIMS, Kyoto Univ., 10 (1974), 1-10.

4. A. Connes, Sur le theoreme de Radon-Nikodym pour les poids normaux fideles simifinis, Bull. Sci. Math., 97 (1974), 253-258.

5. J. Dixmier, Les C*-Algebras et leurs Representations, Gauther-Villars, Paris (1964).

6. N. Dunford and J. Schwartz, *Liner Operators, Part II*, Wiley-Interscience, New York (1963).

7. H. Dye, The Radon-Nikodym theorem for finite rings of operators, Trans, Amer. Math Soc., **72** (1952), 243-280. 8. G. Elliott, On the Radon-Nikodym derivative with a chain rule in von Neumann algebras, Canad. Math. Bull., 18 (1975), 661-669.

9. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New York (1972).

10. S. Gudder and W. Scruggs, Unbounded representations of *-algebras, Pacific J. Math., 70 (1977), 369-382.

11. M. Naimark, Normed Rings, Noordhoff, Groningen, The Netherlands (1964).

12. G. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math., 130 (1973), 53-88.

13. R. Powers, Self-adjoint algebras of unbounded operators, Commun. Math. Phys., 21 (1971), 85-124.

14. F. Riesz and B. Nagy, Functional Analysis, Frederick Ungar, New York (1955).

15. S. Sakai, A Radon-Nikodym theorem in W^* -Algebras, Bull. Amer. Math. Soc., 71 (1965), 149-151.

16. I. Segal, A non-commutative extension of abstract integration, Ann. Math., 57 (1953), 401-457.

17. M. Takesaki, Tomita's Theory of Modular Hilbert Algebras and its Applications, Springer-Verlag, Berlin (1970).

18. A. van Daele, A Radon-Nikodym theorem for weights on von Neumann algebras, Pacific J. Math., 61 (1975), 527-542.

Received February 24, 1978 and in revised form July 13, 1978.

UNIVERSITY OF DENVER DENVER, CO 80208

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, California 90024

C. W. CURTIS

University of Oregon Eugene, OR 97403

C.C. MOORE University of California Berkeley, CA 94720 J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

R. FINN AND J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of MathematicsVol. 80, No. 1September, 1979

Jeroen Bruijning and Jun-iti Nagata, A characterization of covering dimension by u_{i} of A_{i} (X)	1
$use of \Delta_k(X) \dots \dots$	1
John J. Buoni and Albert Jonathan Klein, <i>On the generalized Calkin algebra</i>	9
Thomas Ashland Chapman, <i>Homotopy conditions which detect simple homotopy</i>	10
equivalences	13
John Albert Chatfield, Solution for an integral equation with continuous interval	
functions	47
Ajit Kaur Chilana and Ajay Kumar, Spectral synthesis in Segal algebras on	-
hypergroups	59
Lung O. Chung, Jiang Luh and Anthony N. Richoux, <i>Derivations and</i>	
commutativity of rings	77
Michael George Cowling and Paul Rodway, <i>Restrictions of certain function spaces</i>	0.1
to closed subgroups of locally compact groups	91
David Dixon, The fundamental divisor of normal double points of surfaces	105
Hans Georg Feichtinger, Colin C. Graham and Eric Howard Lakien,	
Nonfactorization in commutative, weakly selfadjoint Banach algebras	117
Michael Freedman, <i>Cancelling</i> 1-handles and some topological imbeddings	127
Frank E., III Gerth, <i>The Iwasawa invariant</i> μ <i>for quadratic fields</i>	131
Maurice Gilmore, Three-dimensional open books constructed from the identity	
<i>map</i>	137
Stanley P. Gudder, <i>A Radon-Nikodým theorem for *-algebras</i>	141
Peter Wamer Harley, III and George Frank McNulty, <i>When is a point Borel?</i>	151
Charles Henry Heiberg, <i>Fourier series with bounded convolution powers</i>	159
Rebecca A. Herb, Characters of averaged discrete series on semisimple real Lie	
groups	169
Hideo Imai, On singular indices of rotation free densities	179
Sushil Jajodia, On 2-dimensional CW-complexes with a single 2-cell	191
Herbert Meyer Kamowitz, <i>Compact operators of the form</i> uC_{ω}	205
Matthew Liu and Billy E. Rhoades, <i>Some properties of the Chebyshev method</i>	213
George Edgar Parker, Semigroups of continuous transformations and generating	
inverse limit sequences	227
Samuel Murray Rankin, III, Oscillation results for a nonhomogeneous	
equation	237
Martin Scharlemann, Transverse Whitehead triangulations	245
Gary Joseph Sherman, A lower bound for the number of conjugacy classes in a	
finite nilpotent group	253
Richard Arthur Shoop, <i>The Lebesgue constants for</i> (f, d_n) -summability	255
Stuart Jay Sidney, Functions which operate on the real part of a uniform	
algebra	265
Tim Eden Traynor, <i>The group-valued Lebesgue decomposition</i>	273
Tavan Thomas Trent, $H^2(\mu)$ spaces and bounded point evaluations	279
James Li-Ming Wang, Approximation by rational modules on nowhere dense	
sets	293