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Let f be defined on T and have an absolutely convergent
Fourier series

Fle)y=Ff o0

Set ||fl|=2|f.]. In this paper sufficient conditions for ||f*||=
0(1), as k—oo, are obtained.

THEOREM. Let f be defined on T, have an absolutely conver-
gent Fourier series and salisfy

(1) | fe*)| <1 for all 0.

If for each o such that |f(e”)| =1 there exists a rotation N of
R*, a polynomial o such that Re p(z) > 0 for all 7 +# 0, an n-tuple
» of positive integers such that o({r*?it,)) =1rpo(t) for all »r>0, and
a function v in C™(R*), m = max (n + 1, D, Ds, **+, D), sSuch that

n —

(2) 1) =o(Fer), 1—0,

=1

and if for all T in some R*-neighborhood of 0

(3) feH ) = cexp (B-7i — (0 + (),
where |¢| =1, Be€ R", then

(4) [1F*]] = 0Q1), as kb —— oo .

It is shown in §2 that this theorem extends a result obtained
by B. M. Schreiber in 1970.

1. Introduction. Let B and D denote the open and closed
unit dises respectively. The problem of characterizing those funec-
tions f of » complex variables which are analytic on D" and for
which (4) holds has been solved only for n =1. See [1,2]. For
the general case, n arbitrary, sufficient conditions on f and necessary
conditions on f have been given [9, 6] and related problems have
been studied [4, 5]. Unsolved, even in the case n =1, is the pro-
blem of determining all functions analytic on B* for which (4) holds.
This problem is equivalent to the problem of determining all endo-
morphisms of the Banach algebra of power series of » complex
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160 CHARLES H. HEIBERG
variables which converge absolutely on T”. See [8, 7].

2. Remarks, definitions and notation. To see that the theo-
rem in this paper extends Schreiber’s result, Theorem 7.5 in [9],
let n = 2 and consider f(z) = h(z)g(2,)1(z,) where

2 —1\/z, — 1\
wo=sa- (35352
(2) 2 B 2
i 6
g<z1):zf+<'z‘l—2—1> ’

8 2, — L\
1(z,) —z2+<—2 > .

The funection f(e'*) has one absolute maximum, namely at 7 =
(0, 0), and about this maximum has a local expansion of the form

fe”) = cexp (B-7i — atl — brity — dri* + o(z} + 1) ,

7 —(0,0), where Re(ar?+ briti+ dzi¥) >0 for 7 +#(0,0). (For
details see [5, pp. 141-3].) Schreiber’s result [9, p. 426] holds only
for functions having about each absolute maximum a local expansion
of the form

fle") =cexp (B-ti — > azi — 3 byt — X d;,zich

Jamy jemy FokzM

+ O(l[zl")

7 — (0, 0), where M = max (m,, m,).

Define a polynomial p in % variables to be positive definite if
o) >0 for all ¢ # 0 and to be g-homogeneous of index I if there
exists an mnm-tuple ¢ of positive integers and a positive number [
such that for all » > 0 and all ¢ in R", o({r"%0,>) = r'p(0).

Let T, Z, R, and C denote the unit circle, integers, real numbers
and complex numbers respectively. For any set S let S* denote
the n-fold cartesian product of the set with itself. For any subset
S of T* let CS denote the complement of S in T”. The letters o, 7,
and z denote points of R, B*, and C* respectively. Alternatively
denote a point z of C by using vector notation <{z,>, where z,
represents the ith component of z, and let ¢* denote (e%). Let 0
and 1 represent the origin of R* and the identity of 7™ respectively.
The scalar product of two points ¢ and ¢ of R" will be denoted
o-7. Let §,; denote the Kronecker delta. Take products indexed
by the empty set to be equal to one.

Let B(o, r) denote the set of points e* of T™ such that the
Euclidean distance of ¢ from ¢ is less than 7. Let E, denote the
set of points ¢ of T'" such that |f(e*)] = 1. Let L'(R") and A(R")
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denote the space of Lebesgue integrable functions on R” and the
space of their Fourier transforms respectively. Similarly define
LM Z*) and A(T"™). For any function £ on T* let supp{ denote the
support of .

Finally, the letters a, b, ¢, d will denote absolute positive con-
stants. The use of one such letter in two inequalities does not
mean that the letter represents the same absolute constant in both
inequalities. However, the use of such a letter in an inequality
involving the indices % or m means that the constant represented
by the letter is independent of % and m. The phrases “for k suffici-
ently large” and “for all m” will be omitted finitely many times
from this paper.

3. Proof of theorem.

LEMMA 1. Let o be a positive definite, g-homogeneous polynoms-
al of index 1. Then ¢; is an even integer for 1 < j = n and

Siel < e,0(z), for all T#0.

Proof. Fix j,1 =<7 <n. Let h(t) = o({td;;»), for all ¢t in R.
Since p is g-homogeneous of index 1,

h(t) = t%h(<9:3))

for all ¢ > 0 and hence for all ¢, & being a polynomial. Since h is
positive definite, ¢; is an even integer.

Assume that 7; % 0, let r =7¥ and define g, by 7 = {rVg,).
Since p is g¢-homogeneous of index 1, o(z) = rp(s). Since o; =1
and since p is positive definite there is a positive constant a; such
that p(o) > @;. Thus, o(r) = a;v3%. Note that this inequality also
holds if 7; =0. Summing over j yields no(r) = >%.a;7¥, from
which the lemma follows since each a; is positive.

LEMMA 2. Let f be defined on T" and suppose that for some
real number r in the interval (0, ) f vanishes on CB(o,r). Let g
be defined on R* by

9(x) = fle**) if |zl <7,
=0 if ltiz=zr.

Then fe A(T™) if and only if ge A(R™). Movreover, there are posi-
tive numbers depending only on r such that allg] < || f]] < bllg]l.

Proof. Without loss of generality, assume that ¢ = 0. Then
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Lemma 2 is the special case of Lemma 7.7 of [9] obtained by letting
H = {0}.

The following lemma is well-known and therefore its proof is
omitted.

LEMMA 3. Let )\ be a rotation of R™ and g be a function defined
on R". For each e L'(R")

(5) fron = flon
so that ge A(R™) if and only if gone A(R™). Moreover,
Hgll = llgon]] .

LeMMA 4. There exists a constant M = M(n) so that for any
sequence {a,},c,n of complex numbers and any constant b in C™

(6) Sla,| £ Mz3v(g, D]a, ™", n=1,
where the sums are over «all q wn Z", the product is over all le
A= {0, 1}* and
v(q, 1) = Ill(l +1q; — b; ).
Proof. See Lemma 3 of [6].

LEMMA 5. Let uw and w be g-homogeneous polynomials with
indices I, and I, respectively. Let o be a point such that u-w(o)=+
0. Then

lufw|((r0)) = 0(1), as r—0,
if and only if I, > I,.

Proof. Applying the definition of ¢-homogeneity to % and to
w yields

u/w| (o)) = rivteu(o)/w(o)
from which the lemma follows directly.

LEMMA 6. Let w be a g-homogeneous, positive definite polynomial
of index I, and v a polynomial in n wvariables such that

(7) ()| = 0(lu(@)]), T—0.

Then the index of q-homogeneity of each term of v is greater than
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or equal to I,.

Proof. It has been implicitly assumed in the statement of the
lemma that each term of v is g-homogeneous. It is straightforward
to prove that in fact each term of any polynomial is g-homogeneous
and that a sum of terms having a given index of ¢-homogeneity is
g-homogeneous with that same index. Therefore, if w is defined to
be the sum of those terms of v having smallest index of g-homo-
geneity and if I, denotes the index of w, it suffices to prove that
I,=1,.

Fix a point ¢ such that w(o) # 0. Since w is ¢-homogeneous,

¢+ 0. From (7) it follows that
(8) [v/w]|({1%0,)) = 0Q1), as r——0 .

Since v — w is a sum of terms each of index exceeding I, and since
w(o) == 0 it follows that each term of v — w upon division by w and
evaluation at (rY%¢,> is either zero or by Lemma 5 approaches 0
as v — 0. Thus,

(9) 2 () = of1), as #—— 0.
i w

Since

o= 21+ (v — w)fw)
u U

it follows from (8) and (9) that

() = o), as 7 —0,

which by Lemma 5 implies that I, < I, since w(o) = 0 and u(o)+0,
% being positive definite.

LEMMA 7. Given any finite, patrwise-disjoint collection
{B(0, 2v,)},cs Of open balls in T™" there exists a family {L,)..s of
nonnegative functions defined on T" such that for each c¢S

(i) supp{, = B(o, 27,),

(ii) ¢, =1 on B(o,r),

(iii) L, () e C*(R")
and such that

(iv) sl =1 om Tm

Proof. This lemma follows directly from Proposition 29 on page
254 of {3].
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LEMMA 8. Let f be defined on T", have an absolutely conver-
gent Fourter series and satisfy (1). Further assume that E; is
nonempty and finite. If {reer, and {l}oer, satisfy (1) — (iv) of
Lemma T and if, for each o€ E;, N, 13 a rotation of R" followed
by translation by o, then

LA = 0Q), k—— oo, if [[({,-[P)oe™ || = 0(1), b — <=,
for each o€ Ky .

Proof. This lemma is a direct consequence of Lemmas 2 and 3
of this paper and Theorem 3.3 of [9].

Proof of theorem. From (2), (8), and Lemma 1 it follows that
for each point ¢ of the set E,, which wag defined in § 2,

(10) If(ei(a+2(r)))l < exp (—c ;’; 7:’}5')

for all = in some neighborhood of 0 and hence that E; has no limit
points. Since T is compact, E, is finite. If E, = @, then by the
spectral radius formula || f*||—0, as k—oco. So assume that E;# Q.
Also, by Lemma 8 it suffices to assume that E, = {6} and that » is
the identity. Thus, it suffices to prove that

qgtnla’q,kl = 0(1), k—— oo ’

where the coefficients a, , are defined by
FHe™) = 3, a,e0.
qezZ”

For this purpose let b = kB3 and a, = a,,, where g is defined by
(8), and show that the right side of (6) remains bounded, as k
tends to <o, by showing for each [ in 4* that

n
- sy

() 3000, Dlagelt = 006755

as k — oo, where J denotes the set of integers j for which [; = 0.
Choose 7, > 0 so that (8) and (10) hold for all z such that |7] <
7. Let B denote the set {c € R™ ¢” e B, r,)}. Let & denote the
differential operator
. 0
Jg<—%atj B bJ> )

Recall that products indexed by the empty set are taken to be 1
so that if J =@, & is taken to be the identity. Use Parseval’s
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equality to write
¢ >, (I11g; —b;)]ag.fP = S | 2 fH(e") [Pdr
qezZ® ged ™
and conclude that (11) will follow from

k3
~ Tyl

(12) | I3z = o =
B
k — oo, and

[, |5 AT = 0™, T co .

The last estimate is easy since for some ¢ in (0, 1), |f(e”)| < d on
T™\B. Thus, to prove the theorem it suffices to establish the
estimate given in (12). Since, by (3),

SHe™) = cexpk(B-7i — (0 + 7)(7))
for all ze B and since b = kB it follows that
(13) | ZfHe")| = | D sexp k(—p—7)T)|,

for all v € B, where for any subset S of {1, 2, ---, n} the differential
operator =, is defined by Z; = Il;.s 0/0¢;.

Expanding the expression on the right side of (13) by applying
=, yields

1D £ =S8 T (= Dile + (@) exp k(=0 =) ,

where the sum is over all partitions &2 of J, |.Z?| denotes the
number of members in & and the product is over all subsets H of
J belonging to ..

By hypothesis veC™(R*) where m = max, -, ;. Applying
Taylor’s formula yields

(15) v(z) = v(z) + 0™, T — 0,

where v(z) is a polynomial in n variables. Since |v(r)| and |z|™ are
both 0(77), = — 0, it follows from (15) that |v(z)| is also. This
implies by Lemma 6 that the index of p-homogeneity of each term
of v(r) is at least 1 since >, 7P is a p-homogeneous polynomial with
index of p-homogeneity equal to 1 and since by Lemma 1 3 77 is
positive definite. Thus, the polynomial ¢ = p + v has no term with
index of p-homogeneity less than 1 and

(0 + M) = p(z) + 0(|z|™), T —0.

Since o, v, e C*(R™), m = n + 1, Taylor’s formula and the last
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equality imply that
Du(0 + 7)(T) = Dupi(z) + 0| |m71H),

7 — 0, where | H| denotes the number of elements in H. Since (3)
and (10) hold for all ze B,

|exp (—0—7)(7)| = exp (—c X, 7).
This, (14) and the preceding estimate imply that
16) | He)| = W T1 (| Duft(@)] + ol ) exp (—e 3 3)
where the sum and product are indexed as in (14).
For any n-tuple q¢ of nonnegative integers,
@H(]_;_I ti) = 0 if ¢; = 0 for some j in H,

= JI t5 otherwise ,
3

where

(17) Tj:q_,"“lifjeﬂ,
= ¢q,; otherwise .

Also, the index of p-homogeneity of any term a [[;7% of g is at
least 1, so that

1< 24/ = Xrilp; + EH 1/p; .
Thus,
(18) | Dat(K™77T )| < eh™ ;5 V17
for all ze B. Also, since m = p; for 1 £ j < n,

[<k——1/1‘jz-j>lm—|H| < ,<k—1/mz.j>lm—|11|
< ekt Hm

= Ck—HjeEHl/pj .

This estimate, (18) and (16) imply upon substitution of k'?iz; for
7; in (12) that

SB[ gfk(eu) lsz — 0((; k2! Hl;lﬁk—1+j§H1/pj)2k——j£l1/pi) ,

as k— co, where the sum and product are indexed as in (14). From
this estimate (12) follows and the theorem is proved.
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